Mostrar el registro sencillo del ítem

dc.contributor.author
Segnorile, Hector Hugo  
dc.contributor.author
Bonin, Claudio Julio  
dc.contributor.author
González, Cecilia Élida  
dc.contributor.author
Acosta, Rodolfo Héctor  
dc.contributor.author
Zamar, Ricardo César  
dc.date.available
2017-10-06T18:45:12Z  
dc.date.issued
2009-12  
dc.identifier.citation
Segnorile, Hector Hugo; Bonin, Claudio Julio; González, Cecilia Élida; Acosta, Rodolfo Héctor; Zamar, Ricardo César; NMR dipolar constants of motion in liquid crystals: Jeener-Broekaert, double quantum coherence experiments and numerical calculation on a 10-spin cluster; Elsevier; Solid State Nuclear Magnetic Resonance; 36; 2; 12-2009; 77-85  
dc.identifier.issn
0926-2040  
dc.identifier.uri
http://hdl.handle.net/11336/26113  
dc.description.abstract
Two proton quasi-equilibrium states were previously observed in nematic liquid crystals, namely the S and W quasi-invariants. Even though the experimental evidence suggested that they originate in a partition of the spin dipolar energy into a strong and a weak part, respectively, from a theoretical viewpoint, the existence of an appropriate energy scale which allows such energy separation remains to be confirmed and a representation of the quasi-invariants is still to be given. We compare the dipolar NMR signals yielded both by the Jeener?Broekaert (JB) experiment as a function of the preparation time and the free evolution of the double quantum coherence (DQC) spectra excited from the S state, with numerical calculations carried out from first principles under different models for the dipolar quasiinvariants, in a 10-spin cluster which represents the 5CB (40-pentyl-4-biphenyl-carbonitrile) molecule. The calculated signals qualitatively agree with the experiments and the DQC spectra as a function of the single-quantum detection time are sensible enough to the different models to allow both to probe the physical nature of the initial dipolar-ordered state and to assign a subset of dipolar interactions to each constant of motion, which are compatible with the experiments. As a criterion for selecting a suitable quasi-equilibrium model of the 5CB molecule, we impose on the time evolution operator consistency with the occurrence of two dipolar quasi-invariants, that is, the calculated spectra must be unaffected by truncation of non-secular terms of the weaker dipolar energy. We find that defining the S quasiinvariant as the subset of the dipolar interactions of each proton with its two nearest neighbours yields a realistic characterization of the dipolar constants of motion in 5CB. We conclude that the proton-spin system of the 5CB molecule admits a partition of the dipolar energy into a bilinear strong and a multiple-spin weak contributions therefore providing two orthogonal constants of motion, which can be prepared and observed by means of the JB experiment. This feature, which implies the existence of two timescales of very different nature in the proton-spin dynamics, is ultimately dictated by the topology of the spin distribution in the dipole network and can be expected in other liquid crystals. Knowledge of the nature of the dipolar quasi-invariants will be useful in studies of dipolar-order relaxation, decoherence and multiple quantum NMR experiments where the initial state is a dipolar ordered one.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Dipolar Order  
dc.subject
Multiple Quantum Coherence  
dc.subject
Spin Dynamics  
dc.subject
Quasi-Equilibrium States  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
NMR dipolar constants of motion in liquid crystals: Jeener-Broekaert, double quantum coherence experiments and numerical calculation on a 10-spin cluster  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-10-04T14:46:34Z  
dc.journal.volume
36  
dc.journal.number
2  
dc.journal.pagination
77-85  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Segnorile, Hector Hugo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Bonin, Claudio Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: González, Cecilia Élida. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Acosta, Rodolfo Héctor. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Zamar, Ricardo César. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.journal.title
Solid State Nuclear Magnetic Resonance  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926204009000605  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ssnmr.2009.06.003