Mostrar el registro sencillo del ítem

dc.contributor.author
Green, L. M.  
dc.contributor.author
Démoulin, Pascal  
dc.contributor.author
Mandrini, Cristina Hemilse  
dc.contributor.author
van Driel Gesztelyi, Lidia  
dc.date.available
2017-07-24T18:37:21Z  
dc.date.issued
2003-12  
dc.identifier.citation
Green, L. M.; Démoulin, Pascal; Mandrini, Cristina Hemilse; van Driel Gesztelyi, Lidia; How are emerging flux, flares and CMEs related to magnetic polarity imbalance in MDI data?; Springer; Solar Physics; 215; 2; 12-2003; 307-325  
dc.identifier.issn
0038-0938  
dc.identifier.uri
http://hdl.handle.net/11336/21180  
dc.description.abstract
In order to understand whether major flares or coronal mass ejections (CMEs) can be related to changes in the longitudinal photospheric magnetic field, we study 4 young active regions during seven days of their disk passage. This time period precludes any biases which may be introduced in studies that look at the field evolution during the short-term flare or CME period only. Data from the Michelson Doppler Imager (MDI) with a time cadence of 96 min are used. Corrections are made to the data to account for area foreshortening and angle between line of sight and field direction, and also the underestimation of the flux densities. We make a systematic study of the evolution of the longitudinal magnetic field, and analyze flare and CME occurrence in the magnetic evolution. We find that the majority of CMEs and flares occur during or after new flux emergence. The flux in all four active regions is observed to have deviations from polarity balance both on the long term (solar rotation) and on the short term (few hours). The long-term imbalance is not due to linkage outside the active region; it is primarily related to the east–west distance from central meridian, with the sign of polarity closer to the limb dominating. The sequence of short-term imbalances are not closely linked to CMEs and flares and no permanent imbalance remains after them. We propose that both kinds of imbalance are due to the presence of a horizontal field component (parallel to the photospheric surface) in the emerging flux.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Flux  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
How are emerging flux, flares and CMEs related to magnetic polarity imbalance in MDI data?  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-07-24T14:12:33Z  
dc.journal.volume
215  
dc.journal.number
2  
dc.journal.pagination
307-325  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Green, L. M.. Mullard Space Science Laboratory; Reino Unido. University College London; Estados Unidos  
dc.description.fil
Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia  
dc.description.fil
Fil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.description.fil
Fil: van Driel Gesztelyi, Lidia. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia. University College London; Estados Unidos  
dc.journal.title
Solar Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1023/A:1025678917086