
Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier.com/locate/compstruct

On the bulk modulus and natural frequency of fullerene and nanotube
carbon structures obtained with a beam based method

M. Braunb,c, J. Aranda-Ruiza,⁎, M. Rodríguez-Millána, J.A. Loyaa

a Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid, Avda. de la Universidad, 30. 28911 Leganés, Madrid, Spain
bDepartamento de Construcciones, Facultad de Ingeniería, Universidad Nacional de La Plata, Avda. 1 esq. 47, La Plata B1900TAG, Argentina
c Consejo Nacional de Investigación Científicas y Técnicas (CONICET), CCT La Plata, Calle 8 N∘ 1467, La Plata B1904CMC, Argentina

A R T I C L E I N F O

Keywords:
Spherical fullerenes
Carbon nanotubes
Bulk modulus
Free vibrations
Finite element analysis
Beam based method

A B S T R A C T

In this work, the natural frequency of vibration and Bulk modulus under hydrostatic pressure conditions of
carbon nanotubes and fullerenes are investigated. For this purpose, three-dimensional finite element modelling
is used in order to evaluate the vibration characteristics and radial stiffness for different nanotube and fullerene
sizes. The atomistic method implemented in this work is based on the notion that nanotubes, or fullerenes, are
geometrical frame-like structures where the primary bonds between two neighbouring atoms act like load-
bearing beam members, whereas an individual atom acts as the joint of the related load-bearing system. The
current numerical simulations results are compared with data reported by other authors, highlighting the greater
simplicity and the lower computational cost of the model implemented in this work compared to other molecular
dynamics models, maintaining accuracy in the results provided.

1. Introduction

In the last two decades, significant progress has been achieved in the
area of nano-engineering. Exceptionally high Young’s modulus, large
aspect ratio and ultra-low density make carbon nanotubes (CNTs) and
spherical fullerenes ideal candidates for reinforcement materials [1].
Besides, potential modern applications involve the use of systems that
may consist of micro and nanostructures, for example micro- or nano-
electromechanical devices (MEMS or NEMS) [2] as well as in bio-
technology and biomedical fields [3,4], whose dynamic properties are
essential for its correct functioning. For these reasons many experi-
mental and theoretical works deal with the nanostructures reinforced
composites [1,5–7] and many others studies analyse the dynamic
properties of such nanostructures [8–15].

Regarding to the mechanical properties of these kind of structures,
there are plenty of experimental and theoretical techniques for the
characterization of the Young’s modulus of carbon nanotubes which
show a wide dispersion of results, as pointed out in the review by Rafiee
and Moghadam [16], and are concerned on the axial properties of CNTs
[17]. The mechanical properties of CNTs in the transverse direction are
less studied. In the nanostructures reinforced composites, the interfacial
(matrix-reinforcement) residual stresses and failure mechanism of the
nanocomposites are highly related to the transverse mechanical prop-
erties [1]. Also, for the CNT-based gas sensors, nanogears and hydrogen

containers, the deformation of the CNT in the transverse direction
cannot be ignored, this being the key issue in the failure of these nano
devices. Furthermore, when metal nanodroplets are capillarity ab-
sorbed by CNTs, the deformation of the latter in the radial direction can
be very large [18]. Therefore, it is important to understand the trans-
verse mechanical properties of these nanostructures.

In the specific case of spherical fullerenes, some researches study
their characterization mainly focusing on the analysis of fullerene C60
[19–23] and to a lesser extent on other spherical carbon-molecules
[24–26]. Generally, their prognosticated mechanical, chemical,
thermal, electric and electronic properties have broadened their po-
tential applications of fullerenes, ranging from bio-sensors, drug de-
livery, modern microelectronics, and bio-film resistant surfaces, to ar-
tificial molecular motors, non-bearings, mechanical reinforcement for
membranes and polymer composites [27–30].

The theoretical approaches for the modelling of the CNTs and
Fullerenes behavior can be divided into three main categories: the
atomistic approach, the continuum approach and the nanoscale con-
tinuum approach [17].

Atomistic modelling comprises an ab initio approach [31] and mo-
lecular dynamics (MD) techniques. After this, other atomistic modelling
methods, such as tight-binding molecular dynamics were developed.

Generally, ab initiomethods give more accurate results than MD, but
they are computationally expensive and only possible to use for a small
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number of molecules. MD can be used in large systems and provide
good predictions, but it is still limited owing to its being very time
consuming, especially with long or multi-walled structures. In recent
years, the atomistic approaches, due to their greater computational
cost, have been gradually replaced by continuum approaches which
are, at the moment, the most appropriate for effective computational
simulations of large systems.

The basic assumption of the continuum mechanics-based approach
consists in modelling a discrete structure as a continuum shell
[9,10,32,33]. Arash and Wang [34] showed the advantages of the
continuum theory applied to the modelling of shells and plates. How-
ever, the atomic characteristics of carbon nanotubes, such as chirality,
are not taken into account in the continuous shell approach, and so
their effects on the mechanical behavior of CNTs cannot be captured.
Furthermore, whatever the type of the continuum modelling approach,
the replacement of the whole CNT structure by a continuum element is
not a completely satisfactory method to evaluate CNT properties.

The nanoscale continuum modelling consists in replacing the
Carbon–Carbon (C–C) bond by a continuum element. The main ap-
proach in nanoscale continuum modelling consists in considering dif-
ferent elements, such as rods, trusses, springs and beams, well described
in elasticity theory, to simulate these C–C bonds.

In 2003, Li and Chou [35] have presented the beam based method
(BBM) for modeling the deformations of CNTs. The notion that CNTs
are geometrical space-frame structures was fundamental to their ap-
proach, leading to a classical structural mechanics analysis. The authors
used the stiffness matrix method to simulate the CNTs as space-frame
structures. This approach has been applied in different works in order
to calculate the elastic moduli in single walled (SWCNT) and multi-
walled carbon nanotubes (MWCNT) [17,35–38]. However, the BBM
developed by Li and Chou [35] was not applied to calculate the fun-
damental frequencies of vibration and the Bulk modulus of carbon
nanotubes and fullerenes.

Nowadays, many studies from the literature analyse this kind of
structures using analytical techniques [9,25,39] and molecular dy-
namics approaches [1,18], which entail high complexity. The major
advantages of the BBM are the greater conceptual simplicity and the
improved computational efficiency in the analysis of carbon nanos-
tructures deformations [35]. Furthermore, the Beam Based Method is
computationally less expensive than the Molecular Dynamics and other
nonlinear models [17,37,38,40] but provides less information re-
garding the stress–strain distribution in the structure, mainly in pro-
blems where the structure is submitted to large deformations.

In this work, based on the Li and Chou’s work [35], a three-di-
mensional finite element model of CNTs and spherical fullerenes is
proposed to calculate the fundamental frequency of vibration and the
Bulk modulus under hydrostatic pressure conditions. The paper is or-
ganized as follows: the atomic structure of fullerenes and CNTs is
shortly described in the second section. The model and general meth-
odology to calculate the Bulk modulus is described in section three. In
section four the results obtained are presented and compared to studies
presented by other authors. Finally, in section five the conclusions of
the paper are drawn.

2. Atomic structures

In this section we present a description of the atomic structure of
carbon nanotubes and fullerenes.

2.1. CNTs structure

The structure of a CNT is defined by the chiral vector and chiral
angle,

→
Ch and θ respectively. Fig. 1 presents the formation process of a

CNT by cutting a graphite sheet along the dotted lines and rolling it so
that the tip of the chiral vector touches its tail, being

→
T the translational

vector along the CNT axis. The chiral or roll-up vector, can be described
as follows:

→
= → + →C na ma ,h 1 2 (1)

being the integers (n m, ) the Hamada indices, and define the number of
steps along the zigzag carbon bonds of the hexagonal lattice in the di-
rections of the unit vectors →a1 and →a2 respectively.

The chiral angle θ is the angle between the chiral vector and the
direction (n,0), and can be defined as [41]:

=
+ +

−θ sin m
n mn m

3
2

.1
2 2 (2)

The chiral angle is limited for two cases, zigzag and armchair, being
°0 and °30 respectively [42].

In terms of the roll-up vector, the zigzag nanotube is denoted by
(n,0) and the armchair nanotube by (n n, ). Fig. 2 shows the geometry of
these kind of SWCNT.

The radius of any nanotube can be calculated as follows:

= + +r a n mn m
π2

,NT
0

2 2

(3)

where a0 is defined as = −a a3 C C0 with the equilibrium carbon–-
carbon (C–C) covalent bond length −aC C usually taken to be 0.1421 nm.

Fig. 1. Schematic illustration of an hexagonal graphene sheet with definition of chiral
and translational vectors.

Fig. 2. Configuration of the analyzed carbon nanotubes. (a) Zigzag SWCNT and (b)
Armchair SWCNT.
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The physical properties of CNTs depends on their diameter, length
and chirality. In particular, this last characteristic has a strong influence
on the electronic properties of CNT [43]. The influence of chirality on
the Bulk modulus of CNTs is analyzed in the present study for CNTs
considered to be open without any fullerene end caps [32]. Regarding
to the calculation of the fundamental frequency of vibration, only the
armchair type has been considered, and the influence of the length and
the diameter on this fundamental frequency has been analyzed.

2.2. Fullerenes structure

In this study, we consider fullerenes with spherical and non-sphe-
rical shape, and analyse different sizes Ci, where the number of carbon
atoms i adopt the following values: 20, 30, 40, 50, 60, 70, 80, 90, 100,
180, 240, 260, 320, 500, 540, 720. Note that some molecules which
may be synthesized in the future are modelled in the present work in
order to clearly demonstrate the mechanical response variation for a
wide range of fullerene sizes.

These structures are composed by a number of pentagons and
hexagons depending on the number of carbon atoms that define them.
Fig. 3 shows some representative sizes analyzed in this work.

The input atomic coordinates which define the topology of each
molecule were initially taken from the fullerene library created by
Yoshida [44].

3. FE model and general methodology

In the first part of this section, we describe in detail the Beam Based
Method (BBM) implemented in this work. In the following parts, we

explain the methodology used to calculate the Bulk modulus of CNTs
and fullerenes, respectively.

3.1. Elastic constants of beam elements

The BBM was originally proposed by Odegard et al. [6], and de-
veloped by Li and Chou [35]. In this model, the elastic moduli of the
beam elements are determined by establishing the link between inter
atomic potential energies of the molecular structure and the strain
energies of the equivalent continuum structure submitted to axial,
bending and torsional deformations.

The force-field is expressed in the form of the total potential energy,
which is uniquely defined by the relative positions of the nuclei com-
posing the molecule. According to molecular dynamics, the total em-
pirical inter-atomic potential energy of a molecular system is expressed
as a sum of the individual energy terms due to bonded and non-bonded
interactions [45]:

∑ ∑ ∑ ∑= + + +U U U U U ,r θ τ vdw (4)

where Ur stands for a bond stretch interaction, Uθ for a bond angle
bending,Uτ for a bond torsion, andUvdw for a non-bonded van der Waals
interaction.

For covalent systems, the main contributions to the total potential
energy comes from the first four terms of Eq. (4). Under the assumption
of small deformations, the harmonic approximation is adequate for
describing the energy [46]. By adopting the simplest harmonic forms
and merging dihedral angle torsion and out-of-plane torsion into a
single equivalent term, we get for each energy:

= − =U k r r k r1
2

( ) 1
2

(Δ ) ,r r r0
2 2

(5)

= − =U k θ θ k θ1
2

( ) 1
2

(Δ ) ,θ θ θ0
2 2

(6)

= − =U k ϕ ϕ k ϕ1
2

( ) 1
2

(Δ ) ,τ τ τ0
2 2

(7)

where k k,r θ and kτ are the bond stretching force constant, bond angle
bending force constant and torsional resistance respectively, while

r θΔ ,Δ and ϕΔ represent bond stretching increment, bond angle varia-
tion and angle variation of bond twisting, respectively.

In order to determine the elastic moduli of beam elements, relations
between the sectional stiffness parameters in structural mechanics and
the force-field constants in molecular mechanics need to be obtained.
The sections of the bonds are assumed to be identical and circular, and
therefore the moments of inertia are equal. The elastic moduli that need
to be determined are the Younǵs modulus E and shear modulus G.

The deformation of a space-frame results in changes of strain en-
ergies. Thus, the elastic moduli can be determined through the
equivalence of the energies due to the inter-atomic interactions and the
energies due to deformation of the structural elements of the space-
frame. As each of the energy terms of Eqs. (5)–(7) represents specific
deformations, and no interactions are included, the strain energies of
structural elements under specific deformations will be considered.

According to the theory of classical structural mechanics, the strain
energy of a uniform beam of length L subjected to pure axial force N
(see Fig. 4a) is

∫= = =U N
EA

L N L
EA

EA
L

L1
2

d 1
2

1
2

(Δ ) ,A
L

0

2 2
2

(8)

where LΔ is the axial stretching deformation. The strain energy of a

Fig. 3. Configuration of some representative spherical fullerenes.

Fig. 4. Pure tension, bending and torsion of an element.
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uniform beam under pure bending moment M (see Fig. 4b) is

∫= = =U M
EI

L EI
L

α EI
L

α1
2

d 2 1
2

( ) ,M
L

0

2
2 2

(9)

where α denotes the rotational angle at the ends of the beam. The strain
energy of a uniform beam under pure torsion T (see Fig. 4c) is

∫= = =U T
GJ

L T L
GJ

GJ
L

β1
2

d 1
2

1
2

(Δ ) ,T
L

0

2 2
2

(10)

where βΔ is the relative rotation between the ends of the beam.
It can be seen that in Eqs. (5)–(10) both Ur and UA represent the

stretching energy, both Uθ and UM represent the bending energy, and
bothUτ andUT represent the torsional energy. It is reasonable to assume
that the rotation angle α2 is equivalent to the total change θΔ of the
bond angle, LΔ is equivalent to rΔ , and βΔ is equivalent to ϕΔ .
Therefore, by comparing Eqs. (5)–(7) with Eqs. (8)–(10), the following
direct relationships between the structural mechanics parameters EA IE,
and GJ and the molecular mechanics parameters k k,r θ and kτ are ob-
tained:

= = =EA
L

k EI
L

k GJ
L

k, , .r θ τ (11)

Eq. (11) comprises the basis for the application of structural me-
chanics to the analysis of CNTs and carbon-related nano-structures. By
assuming a circular beam section with diameter d, and setting

= =A πd I πd/4, /642 4 and =J πd /324 , Eq. (11) gives

= = =d k
k

E
k L
πk

G
k k L

πk
4 ,

4
,

8
.θ

r

r

θ

r τ

θ

2 2

2 (12)

Eq. (12) establishes the foundations for applying the theory of
structural mechanics to the modeling of carbon nanotubes or other si-
milar fullerene structures. As long as the force constants k k,r θ and kτ are
known, the sectional stiffness parameters can be readily obtained. In
this study, the bonds constants used are [47]: = × −k 6.52 10r

7 N/nm,
= × −k 8.76 10θ

10 Nnm/rad and = × −k 2.78 10τ
10 Nnm/rad and

=L 0.1421 nm. The geometrical and material parameters are obtained
from Eq. (12): =d 0.147 nm, =E 5.49 TPa and =G 0.871 TPa.

The three-dimensional finite element model is developed using the
Abaqus/Standard commercial code. Bonds were modelled using 2
nodes linear beam elements with a single integration point (B31 ele-
ments in the Abaqus/Standard elements library). This uniaxial element
presents tension, compression, torsion and bending capabilities, ac-
cording with the BBM proposed by Li and Chou [35], and the works
presented by other authors [17,37,38,40,48].

Initially, one beam element per bond was used in order to compare
with the stiffness matrix method of Li and Chou [35]. However, the
convergence tests carried out showed that if more elements are used,
the results do not vary significantly. This is attributed to the fact that
stretching is the major form of deformation of the beam element si-
mulating the atomic bond.

The Finite Elements commercial code used in this work has im-
plemented three different Eigensolvers, these are: Lanczos, Subspace
and AMS. The values for the first natural frequency of vibration have
been obtained using the three mentioned resolution methods, not ob-
serving differences between them.

The CPU time taken to solve the bulk modulus for a fully clamped
(9,9) armchair CNT, and a Fullerene C60 are 38 and 30 s, respectively.
For the same structures, the CPU time taken to calculate their natural
frequencies are 40 s for the CNT and 48 s for the fullerene. As we can
see, this approach has an acceptable CPU time to solve this type of
problems.

3.2. Bulk modulus of CNTs

The Bulk modulus of the CNT is calculated according to its de-
formation under hydrostatic pressure P, following the same procedure

presented in [18], by which the Bulk modulus is determined as the ratio
of the pressure to the normalized volume change:

= −K P
V VΔ /

.
0 (13)

where V0 is the initial volume of the CNT and VΔ is the mean volume
decrease.

The volume V of a deformed CNT is calculated as:

= − −V π r r l l( Δ ) ( Δ ).cnt CNT
2 (14)

being rcnt the radius of the carbon nanotube.
In this way, the relative volume change of a CNT under hydrostatic

pressure is obtained as:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

⎛
⎝

− ⎞
⎠

−V
V

r
r

l
l

Δ 1 Δ 1 Δ 1.cnt

cnt0

2

(15)

where VΔ is the change of volume −V V0 , and V0 is the initial volume
defined as =V πr lcnt0

2 . The hydrostatic pressure is applied as a radial
force fr

i at each node i (with the help of a cylindrical coordinate
system). This type of loading simulates the hydrostatic pressure P in the
cylinder, which can be approximated by the following procedure:

∑
= =P

f

πr l2
.i

p

r
i

cnt

1

(16)

where p is the total number of carbon atoms in the nanotube.

3.3. Bulk modulus of Fullerenes

The Bulk modulus K of fullerenes is calculated using Eq. (13). In this
case, the relative volume change of the spherical fullerene is related to
the radial strain εr as follows:

=V
V

εΔ 3 .r
0 (17)

considering tri-axial compression and small strains. At the same time,
this radial strain is determined by:

=ε
r

r
Δ

.r
f

f (18)

where rf is the initial radius of the fulleren and rΔ f is the mean radial
displacement.

Also, a radial force fr
i has been applied at each node i resorting to a

spherical coordinate system, thereby simulating the hydrostatic pres-
sure applied to the fullerene:

∑
= =P

f

πr4
.i

p

r
i

f

1
2

(19)

4. Results and discussion

In this section, we present the values of the Bulk modulus and first
natural frequency of vibration, both for carbon nanotubes and full-
erenes, obtained from numerical simulations. It is important to high-
light that all the considered hydrostatic pressures are below the collapse
limits, and consequently not instabilities are observed at all. Moreover,
the BBM is valid only when small deformations have been taken into
account, due to the fact that this method is not considering non-line-
arities, unlike other models as for example those based on Morse po-
tential.

The computational results are compared with the limited existing
theoretical results.
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4.1. CNTs bulk modulus

According to Eq. (13), the Bulk modulus of a zigzag CNT with dif-
ferent radius are plotted in Fig. 5. As we can see, the BBM results are in
agreement with the results obtained using different techniques in the
framework of Molecular Dynamics (MD) [49,50] and Continuum Elastic
Method (CEM) [18].

All studies reveal the same trends, the Bulk modulus of carbon na-
notube decreasing as the radius increases. The biggest difference is
found with the work of Shen and Li [50], in which they propose an
energy approach in the framework of molecular dynamics, about 22%
for the nanotubes of grater radius and a 19% in an average value. The
differences with the other two works, Natsuki et al. [49] and Li et al.
[18], are considerably lower, 5% and 7% in an average difference value
respectively. Natsuki et al. [49] use a molecular dynamics model cou-
pled with atomistic-based continuum theory, which fits to the data
obtained by our model, except for slight differences for smaller nano-
tube radius. Precisely in these smaller radius, is where our model best
suits the one presented by Li et al. [18], who obtain the Bulk modulus
using an analytical procedure based on the energy conservation, that is
only valid for zigzag SWCNT with a small radius. It is important to note
that the results provided by the model implemented in this paper (BBM)
are between those provided by [50,49], which, despite being based on
molecular dynamics models, differ greatly between them.

In the case of armchair SWCNT type, Fig. 6, reveals that the beha-
viour of the Bulk modulus is similar to the previous case, i.e. as the

radius increases the Bulk modulus decreases. The differences with the
results presented by other authors [50,49], are equivalent to those
observed for the zigzag cases.

4.2. Fullerenes bulk modulus

In first place, the values of the Bulk modulus obtained by BBM for
fullerene C60 is listed and compared with previous theoretical studies in
Table 1.

If we compare each specific value of Bulk modulus presented in
Table 1 with the corresponding average value of all of them ≃( 0.8 TPa),
we can see that in all cases the error is lower than the 15% (specifically
12% for the model implemented in this work), except for the results
presented by Giannopoulos et al. [26] and Amer and Maguire [20]
where the error is 85% and 56%, respectively. In this way, it can be
concluded that the model implemented in this work provides quite
accurate results when compared to the average value of the results
proposed by the rest of the authors.

The Bulk modulus value obtained in the current work shows a
26.76% difference with the results of the bond force method by Ruoff
and Ruoff [22], due to the fact that this model only consider axial bond
forces. Differences with the current Bulk modulus calculations are
16.90% for the Tapia et al. model [24] based on linear spring finite
element analysis, and 109.86% for the spring-based method proposed by
Giannopoulos et al. [26]. The use of the second spring element to si-
mulate the bending interaction by Giannopoulos et al. explains the
large difference observed. The model of Woo et al. [21] provides the
smallest difference of 1.41%. The few discrepancies between the Bulk
modulus results available in the literature and the results of the current
study are due to different modelling approaches, potential functions,
force fields constants, formulations for Bulk modulus determinations,
etc.

Analyzing now the influence of fullerene size, Fig. 7 shows the Bulk
modulus in function of fullerene radius obtained with different tech-
niques: the spring-based method (SBM) [26], the spring finite element
analysis (SFEA) [24], the density functional theory (DFT) [24] and the
BBM implemented in this work. We can see that all the results exhibit
the same tendency, where the Bulk modulus decreases as the radius
increases. However, notable differences may be observed among dif-
ferent theoretical predictions of Bulk modulus for the same radius.
Furthermore, we can see that the difference between theoretical pre-
dictions increases when the radius decreases.

Furthermore, the study presented by Giannopoulos et al. [26] is the
only work that analyse all fullerene sizes. However, as stated before, the
model implemented in [26] presents serious differences with respect to
the Bulk modulus of the C60 obtained with other methods ≃( 85%).
Therefore, in this work we present a complete calculus of the Bulk
modulus for all spherical fullerene sizes, with a more accurate model.

Fig. 5. Bulk Modulus as a function of zigzag CNT radius, predicted by different techni-
ques.

Fig. 6. Bulk Modulus as a function of armchair CNT radius, predicted by different tech-
niques.

Table 1
Bulk modulus of fullerene C60 calculated by BBM and compared with results presented by
other authors.

References Method K, TPa

Present work BBM: beam based method 0.71
Tapia et al. [24] SFEA: spring finite element analysis 0.83
Tapia et al. [24] DFT: density functional theory 0.87
Giannopoulos et al. [26] SBM: spring-based method 1.49
Kaur et al. [19] TP: tersoff potential 0.67
Kaur et al. [19] BP: brenner potential 0.69
Amer and Maguire [20] MD: molecular dynamics 0.35
Woo et al. [21] TBM: tight binding method 0.70
Ruoff and Ruoff [22] BFM: bond force method 0.90
Ruoff and Ruoff [23] CEM: continuum elasticity method 0.84
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4.3. CNTs fundamental frequency

The results obtained in the calculation of the natural vibration fre-
quency of single walled carbon nanotubes (SWCNT) with the BBM have
been compared with those presented by Ajori et al. [8], where a vali-
dated molecular dynamics code is used.

The geometry of nanotubes considered for the calculation of these
vibration frequencies has been the arm-chair type n n( , ), imposing also
both ends clamped as boundary conditions (fully clamped).

In order to calculate these fundamental frequencies of vibration, the
influence of both the length and the diameter of the carbon nanotube
has been analyzed, according to what has been done in the work of
Ajori et al. [8].

The results presented in Fig. 8 show the fundamental frequency of
vibration for arm-chair SWCNT of 225.8 Å length. The effect of the
width has been considered by varying the diameter of the CNT from
4.9 Å (corresponding to a (4,4) type) to 46.7 Å (corresponding to a
(34,34) type).

It can be observed that as the diameter increases, the natural fre-
quency of vibration decreases, a behavior properly reproduced by the
BBM, according to the results presented in [8]. The difference between
the results provided by both methods is only 7.5% in average value.

On the other hand, the Fig. 9 shows the value of the natural fre-
quency of vibration as a function of the length of the nanotube. For this
purpose, a nanotube of diameter 46.7 Å, corresponding to a geometry of
the type (9,9) has been considered.

As in previous case, both methods provide very similar results. It

can be observed that as the length increases, the natural frequency of
vibration decreases. In this case, the difference between the results of
both methods is about 12.6% in average value.

4.4. Fullerenes fundamental frequency

Regarding to the natural frequency of vibration for fullerenes, both
spherical and ellipsoidal types of fullerenes have been considered, in-
cluding a complete range of sizes. The spherical type include
C C C C C C, , , , ,60 80 180 240 320 500 and C720 fullerenes. On the other hand, the non-
spherical type are C C C C C C C, , , , , ,20 30 40 50 70 90 100 and C540.

The results obtained with the BBM have been compared with the
presented by Adhikari and Chowdhury [51], who use a code of mole-
cular dynamics. This comparison can be observed in Fig. 10.

Both methods show the same trend, since as the number of carbon
atoms in fullerene increases (and thus their size), its fundamental vi-
bration frequency decreases. The percentage difference between the
results provided by both methods in this last case is about 20% in
average value, slightly higher than in the case of nanotubes, but equally
valid.

5. Conclusions

In this work, we have evaluated the capability of the implemented
method to calculate the natural frequency of vibration and the Bulk
modulus of carbon nanotubes and fullerenes. The obtained results are
compared with data reported by other authors.

The Bulk modulus of the zigzag and armchair SWCNT decreases as
the radius of the nanotube increases, with no significant differences
between the zigzag and armchair configurations. These results are
consistent with those presented by other authors, with which differ-
ences of 22% are obtained in the worst case.

Also, we observe that the Bulk modulus of fullerenes decreased
when its size increases. In this way, the implemented model captures
the same trend reported by other authors.

The Bulk modulus of the C60 obtained exhibit a good agreement with
the values presented in the literature. The difference with the mean
value reported results and our results is less than 12%. Hence, we have
shown the capability of the model to predict the Bulk modulus in
spherical fullerenes.

Regarding to the calculation of the natural frequency of vibration, it
has been observed that the results provided by the BBM are in great
agreement with those obtained by molecular dynamics codes, both in
the nanotubes as in the fullerenes. The difference between the different
methods is about 15% taking into account the results of carbon

Fig. 7. Bulk modulus as a function of fullerene radius, predicted by different techniques.

Fig. 8. Fundamental frequency of fully-clamped armchair
SWCNT with different aspect ratios.

M. Braun et al. Composite Structures 187 (2018) 10–17

15



nanotubes and fullerenes.
The fundamental frequency of fully-clamped SWCNT decrease with

its length (keeping the diameter constant) and with its diameter
(keeping the length constant). Similarly, in the case of the fullerene
family, the natural frequency decrease with the number of carbon
atoms that conform the nanostructure.

Therefore, in this work we have presented a model capable of obtain
accurately both the Bulk modulus as well as the natural frequency of
vibration of carbon nanotubes and fullerenes. It is important to high-
light the greater simplicity and the lower computational cost of the
model implemented in this work compared to other molecular dy-
namics models, maintaining accuracy in the results and being one of the
first works on providing the numerical results of the Bulk modulus of all
spherical fullerenes sizes obtained with a more accurate model.
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