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In a recent letter [S. Bouzat et al., Phys. Rev. Lett. 120, 178101 (2018)], a mathematical model for eyeball
and pupil motion was developed allowing for the understanding of the postsaccadic oscillations (PSO) as inertial
effects. The model assumes that the inner part of the iris, which defines the pupil, moves driven by inertial forces
induced by the eyeball rotation, in addition to viscous and elastic forces. Among other achievements, the model
correctly reproduces eye-tracking experiments concerning PSO profiles and their dependence on the saccade
size. In this paper we propose various extensions of the mentioned model, we provide analytical solutions, and we
perform an exhaustive analysis of the dynamics. In particular, we consider a more general time dependence for
the eyeball velocity enabling the description of saccades with vanishing initial acceleration. Moreover, we give
the analytical solution in terms of hypergeometric functions for the constant parameter version of the model and
we provide particular expressions for some cases of interest. We also introduce a new version of the model with
inhomogeneous viscosity that can improve the fitting of the experimental results. Our analysis of the solutions
explores the dependence of the PSO profiles on the system parameters for varying saccade sizes. We show that
the PSO emerge in critical-like ways when parameters such as the elasticity of the iris, the global eyeball velocity,
or the saccade size vary. Moreover, we find that the PSO profiles with the first overshoot smaller than the second
one, which are usually observed in experiments, can be associated to parameter regions close to criticality.

DOI: 10.1103/PhysRevE.99.032422

I. INTRODUCTION

When we look at a picture or a face, our gaze scans the
image not in a spatially continuous way but by performing a
succession of jumps between relatively distant points. Each of
these jumps or gaze shifts is called a saccade and involves
a fast coordinated rotation of the eyeballs that changes the
fixation point [1–3]. The duration of a saccade is typically of
the order of 100–200 ms, while the saccade amplitudes (from
here on referred to as saccade’s sizes) range from less than 1◦
to 30◦ or more.

Together with the progress of modern eye-tracking tech-
niques [3], which on a yearly basis provide simpler ways
of registering the eye movements, the analysis of saccadic
motion is becoming a common practice in many areas of
science, particularly in psychology and neuroscience, and
also in industry, marketing, and games [3]. In this context,
the development of mathematical models that allow us to
understand different aspects of eye motion has called the
attention of physicists, mathematicians, and engineers in re-
cent years. In particular, within the area of interdisciplinary
physics, relevant contributions have been made concern-
ing the dynamics of saccades [4–9], microsaccades [10,11],
and fixation [12,13]. This paper continues the developments
in Ref. [9] concerning pupil and eyeball dynamics during
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saccades, which, in turn, added physical considerations to
previous advances on the modeling of sacaddic motion [6].

Typical signals recorded by eye trackers show that, at the
end of a saccade, before the steady regime corresponding to
the fixation, the pupil signal usually performs a damped os-
cillation with one or two observable periods before complete
damping. These are the so called postsaccadic oscillations
(PSO) [14,15]. The maximal amplitudes of the PSO are
normally in the range 0–2◦ and their periods are of the order
of 20 ms [15].

Recently, the origin of the PSO has been related to dy-
namical deformations of the internal border of the iris during
sacaddes [14–16] or, in other words, with the motion of the
pupil inside the eyeball. This is the so called iris wobbling
or eye wobbling phenomenon [17,18] prompted by relative
movements between internal parts of the eye during saccades.
The PSO profiles vary among individuals [15,19] and change
with the age of the observer [19]. Moreover, they also depend
on the direction of the saccade [15] and are influenced by
the pupil size [20] and by the eye tracking technique used
[16,19,21].

In the recent letter of Ref. [9], some of us and other col-
laborators have proposed a two-variable mathematical model
for the motion of the eyeball and the relative position of the
center of the pupil during saccades. The model allowed us to
reproduce the dependence of the PSO profiles on the saccade
size recently reported in Ref. [15], and also to relate such a
dependence to that of the peak velocity, which was measured
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in independent experiments [22,23] (see also experiments in
Refs. [6,19]). According to our model, the PSO are damped
harmonic oscillations induced by the inertial forces associated
to the eyeball deceleration at the end of the saccade. Such
inertial forces act effectively on the inner part of the iris
and possible on other internal pieces of the eye. The oscil-
lations are influenced by the viscoelastic characteristics of the
medium. For the sake of shortness, we refer to the dynamics
of the center of the pupil during saccades as the pupil motion
or pupil dynamics.

The model developed in Ref. [9] arises as a powerful and
easy-to-handle tool for analyzing saccade and PSO dynamics,
and for giving a physical interpretation of the experimental
data. Moreover, the results in Ref. [9], together with the ideas
and experimental evidences provided in Refs. [14–16,19],
strongly suggest that the analysis of the PSO can open a
door to characterize the internal structure of the eye and its
mechanical properties. This has an interesting parallel to the
fact that, in a wider time scale, the analysis of sequences of
saccades helps to characterize psychological and neurological
conditions.

The purpose of this paper is twofold. First, we provide
analytical solutions for the model developed in Ref. [9] con-
sidering a more general functional form for the force that
drives the eyeball rotation. Second, we perform a detailed
physical analysis of the solutions for eyeball and pupil motion
for varying parameters. The analysis includes results for a
new version of the model that considers space dependent vis-
coelastic properties [9]. Hence, this work generalizes in vari-
ous ways the model proposed in Ref. [9], provides analytical
solutions and expands the dynamical analysis considerably.

The paper is organized as follows. In Sec. II we present
the model introduced in Ref. [9] and we explain the gener-
alizations considered. In Sec. III we review the main results
in Ref. [9] and we dwell deeper in some of the objectives
of the present work. In Sec. IV we present the analytical
solutions for the constant parameters version of the model.
In Secs. V–VII we perform the physical analysis of the
solutions for eyeball and pupil motion considering different
model versions and conditions. Section VIII is devoted to the
conclusions.

II. MODEL FOR EYEBALL AND PUPIL
MOTION DURING SACCADES

Here we revisit the one-dimensional model for saccadic
motion proposed in Ref. [9] and we introduce the new ingre-
dients and generalizations considered.

The model has two dynamical variables. Namely, x(t ),
that describes the angular displacement of the eyeball along
a saccade, and y(t ), that stands for the relative position of
the pupil inside the eyeball. More precisely, x(t ) can be
considered as the angular position of the center of the cornea
in a rigid description of the eyeball (i.e., disregarding the fact
that the cornea may deform during the saccade). Meanwhile,
y(t ) represents the angular displacement of the center of the
pupil with respect to x(t ) in the direction of the saccade. In
this way, the absolute position of the center of the pupil along
a saccade, to be compared for instance with data taken from
an eye tracker signal, is given by x(t ) + y(t ).

To define the dynamics of x(t ) we assume that the eyeball
motion is driven by the extra ocular muscles in an overdamped
way [24]. Hence, we have the simple equation

ν ẋ = F (t ). (1)

Here, ν is the viscosity constant acting on the eyeball and F (t )
is the force produced by the extra ocular muscles. For simplic-
ity we fix ν = 1 so that F (t ) is scaled with the viscosity.

Given that Eq. (1) has translational symmetry on x and
that we are only interested in describing single saccades, we
consider the initial condition x(0) = 0 with no loss of general-
ity. The anisotropies and inhomogeneities that may affect the
eyeball motion on different directions or regions of the visual
field can be taken into account by varying characteristics of
F (t ).

The model assumes that the iris is elastically linked to the
eyeball and that, when the eyeball rotates, the iris itself and
also other internal parts of the eye linked to it (such as the
lens) suffer inertial forces induced by the eyeball motion. The
main assumption is that, due to this, the internal border of
the iris (which defines the pupil) oscillates in such a way that
the center of the pupil behaves effectively as a point particle
subject to inertial forces on the reference frame of the eyeball.
Thus, the dynamical equation considered is

ÿ + γ ẏ + k y = −ẍ. (2)

Here, k is the effective elastic constant for the force −ky,
which tends to align the center of the pupil with the center of
the cornea, while γ measures an effective viscosity affecting
the relative motion. Finally, −ẍ stands for the inertial force felt
by the pupil in the reference frame of the eyeball. Note that the
mass is set equal to 1 with no loss of generality. The units of
k, γ , and F (t ) can be chosen to express x and y in degrees
and time in milliseconds. The initial conditions considered
are y(0) = 0 and ẏ(0) = 0 so that the pupil is at rest at its
relaxation position on the eyeball, which coincides with the
center of the cornea.

In this work we consider the forcing as given by

F (t ) = A tβ exp

[
− tμ

τμ

]
, (3)

where A > 0, μ > 0, β � 1, and τ > 0 are parameters that
control the shape and size of the saccade in a way that
we analyze below. This proposal generalizes the formula
considered in Ref. [9], which corresponds to the case β = 1.
The analysis in [9] was also limited to the case μ = 2, while
below we address the influence of μ on the saccade and PSO
shapes.

Regarding the role of the parameter β, note that by expand-
ing Eq. (3) for small t we get F (t ) � Atβ + o(tβ+μ). Then,
Eq. (1) leads to ẋ(t ) � Atβ at short times, and ẍ(t ) � Aβtβ−1.
This shows that the case β < 1 (not considered) is physically
meaningless since it leads to an infinite initial acceleration and
thus invalidates the overdamped approximation. Moreover, we
see that the initial acceleration coincides with the parameter A
for β = 1 and vanishes for β > 1.

While the parameters A, μ, β, and τ determine the forc-
ing profile acting on the eyeball (i.e., they could be fitted
to reproduce the activity of the extra ocular muscles), the
parameters γ and k characterize the viscoelastic properties
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of the iris-eyeball link concerning the relative motion of the
pupil. Along this work, we analyze basically three different
proposals for these parameters. The simplest one considers
k and γ as constants and independent of the saccade size.
This approach, referred to as model with constant parameters,
is good enough to understand the basic phenomenology of
the PSO, including for instance the dependence of the PSO
amplitude and period on the saccade size, as shown in Ref. [9].
However, accurate fitting of families of saccades of different
sizes performed by the same eye may require to consider
the viscoelastic properties of the iris as non constant. We
thus propose two alternative versions of the model. The first
one, referred to as model with force dependent parameters,
considers the parameters k and γ as functions of F (t ). This
model was briefly analyzed in Ref. [9]. The idea underlying
this assumption is that the action of the muscles that rotate
the eyeball may also produce smooth deformations which
can change the interaction between the iris and other internal
parts of the eye. The second one corresponds to a model with
inhomogeneous viscosity that considers γ as dependent on
y(t ). Finally, we also discuss the possibility of considering the
model with constant parameters but with values adaptable for
each saccade size.

III. PREVIOUS RESULTS AND RELATION
TO EXPERIMENTS

In this section we briefly review some of the main results
of Ref. [9] and we dwell deeper in the objectives of the present
work.

In Ref. [9], the model with μ = 2 and β = 1 was solved
numerically to reproduce and interpret previous experimental
findings on saccadic motion and PSO behavior. It was first
shown [9] that the model produces saccades and PSO profiles
for pupil motion compatible with experiments. Examples of
the saccades generated are depicted here in Figs. 1(a) and
1(b). As mentioned in the Introduction, by PSO we refer
to the oscillations observed at the end of the saccade, that
typically begin with an overshoot. It is worth stressing that we
consider the PSO as part of the saccade profile, that finishes
when the curve attains its asymptotic value [see the caption of
Fig. 1(b)]. In Ref. [9] it was also shown that, by considering
a fixed value of A and varying only the parameter τ to fit
the the desired saccade size xm, the eyeball maximal velocity
Max[ẋ(t )] obtained with the model is proportional to x1/2

m .
Then, the peak velocity of the pupil Max[ẋ(t ) + ẏ(t )], which
is essentially determined by this law [as shown in Fig. 1(c)],

(a) (b) (c)

(d) (e)

FIG. 1. Summary of previous results for saccades and PSO with β = 1 and μ = 2. (a) Eyeball [x(t )] and pupil [x(t ) + y(t )] motion for
the family of saccades with constant μ = 2, A = 0.06, γ = 0.15, k = 0.032 for varying xm. (b) Detail of eyeball and pupil positions during
saccades of sizes xm = 7 and xm = 15 calculated for A = 0.05, γ = 0.1, k = 0.035. The timescale for the saccade with xm = 7 is shifted
for the sake of clarity. The dotted rectangle indicates the PSO domain for the saccade with xm = 7. (c) Pupil’s peak velocity vs xm. The red
solid line, the blue dotted line and the black dashed one correspond to families of saccades with constant μ, β, A, γ , and k for the values
indicated. The dash-dot-dotted line shows the x1/2

m behavior for reference. (d) Amplitude of the PSO as a function of xm. The red solid line, the
blue dotted line and the green dash dotted line are for the same calculations in panel (c), with corresponding line types. The pink dashed line is
for A = 0.06, γ0 = 0.15, k0 = 0.05. (e) Period of the PSO as a function of xm for the same calculations in panel (d), with corresponding line
types. The inset sketches the method for calculation of amplitude and period of the PSO using the position of the first overshoot. The amplitude
is defined as z1 − z2, while the period is 2(t2 − t1). In all the panels, all calculations are for μ = 2, β = 1.
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results in close agreement with well known experiments
[6,22,23]. These results showed the convenience of consider-
ing xm as a relevant system parameter instead of τ . For μ = 2
and β = 1 we have the simple relation τ = √

2xm/A [9], while
the general relation is presented below in Eq. (6).

Then, it was found that, by keeping fixed values of A, k,

and γ and varying only xm (i.e., varying τ ), the model pro-
duces saccades of different sizes for which the dependence
of the PSO profiles on xm are in good qualitative agreement
with the experimental findings in Ref. [15] (in addition to
provide correct results for the peak velocity). As Figs. 1(a)
and 1(d) show, the PSO amplitude grows with xm for small xm,
then it attains a maximum at a value of xm in the range 5–8◦,
and finally it decreases with xm [15]. Eventually, the PSO can
be suppressed at large xm [15], depending on the parameters.
Meanwhile, the PSO period is essentially constant (or slightly
increasing) for xm � 5◦ and it decreases for larger values of
xm [see Fig. 1(e)], as observed in experiments in Ref. [15].
Note that the inset in Fig. 1(e) sketches the way in which
the PSO amplitude and period are calculated according to the
explanation given in the caption.

The fact that the model reproduces these behaviors clearly
supports the ansatz in Eq. (3) and the model as a whole, and
strongly suggests that the PSO are mainly ruled by inertial
effects. The results indicate that the dependence of the PSO
profiles on xm is intimately related to that of the peak velocity.
Note that, before the developments in Ref. [9], the experimen-
tal results for the amplitude and period of the PSO in Ref. [15]
could have been thought as completely independent of those
for the peak velocity obtained in Refs. [6,22,23].

To obtain the mentioned experimental findings concerning
PSO profiles and dependence on xm, the authors of Ref. [15]
analyzed saccades from various observers (and eyes) obtained
when performing the simple task of moving the gaze between
two points separated (horizontally or vertically) by a certain
angle. Importantly, as two saccades profiles obtained from
the same eye when performing the same task are in general
different each other [15], the experiments actually report fam-
ilies of averaged saccades. Each family corresponds to an eye
and to a fixed direction (e.g., upward, downward, left, etc.).
Meanwhile, each averaged saccade of the family corresponds
to a different saccade size [15]. As part of our work, we
investigate the role of the model parameters in determining the
saccade and PSO profiles within a family. On the base of the
mentioned previous theoretical findings, our first assumption
to generate a family of saccades will be to keep the parameters
A, μ, β, k, and γ fixed, and change only xm. However, we
also discuss other possibilities.

Although in this paper we focus on the general analysis
of the solutions of the model and not on fitting particular
experiments, it is important to mention that the PSO pro-
files can strongly depend on the eye tracker technique, and
the model parameters could need to be adapted to different
experiments. In particular, in Ref. [16] it was shown that
pupil-corneal reflection signals (p-CR) recorded in p-CR eye
trackers (conceived to compensate small motions of the head
of the observers) differ from pupil (p) signals. The amplitudes
of the PSO are considerably larger in p-CR signals. In the Sup-
plemental Material to Ref. [9], it was shown that if x(t ) + y(t )
models the p signal, the p-CR signal can be approximated as

x(t ) + λy(t ) with λ ∼ 2. This point requires, however, further
analysis and a detailed modeling of the corneal reflection
signal to be completely clarified. Nevertheless, although our
model is conceived to describe the p signal, the dynamics of
x(t ) + y(t ) could also be used to fit p-CR signals without the
inclusion of the factor λ [9]. As indicated in Ref. [9], in such
case, the parameters k and γ should not be interpreted as those
associated directly to the pupil motion.

IV. ANALYTICAL SOLUTIONS

The studies in Ref. [9] were based on numerical solutions.
The only analytical solution provided was the one for x(t )
considering μ = 2 and β = 1. Here we give the general
solution for x(t ) for arbitrary values of μ and β, and we
also present the complete solution for y(t ) for the model with
constant parameters.

A. Analytical solution for the eyeball motion

Using the force given in Eq. (3) and the condition x(0) = 0,
the trajectory x(t ) can be integrated from Eq. (1) to get

x(t ) = A
tβ+1

β + 1
1F1

[
β + 1

μ
,
β + μ + 1

μ
; −

(
t

τ

)μ]
, (4)

where 1F1(a, b, z) is the Kummer function [25,26] (see the
Appendix for a definition of the Kummer function and of other
special functions used). For large t , the Kummer function
behaves as ∼�( β+μ+1

μ
)( τ

t )β+1. Thus, the long time limit of
x(t ), which corresponds to the saccade size xm, yields

xm ≡ lim
t→∞ x(t ) = A

τβ+1

β + 1
�

(
β + μ + 1

μ

)
. (5)

As explained in the previous section, it is convenient to
consider xm as a relevant system parameter instead of τ . The
explicit relation is obtained by inverting Eq. (5):

τ =
(

(β + 1)xm

A �
(

β+μ+1
μ

)
) 1

β+1

. (6)

Although in our analysis of the dynamics we will focus on
the role of xm, for the sake of shortness we keep on using the
parameter τ to present the solutions. Note, for instance, that
the solution for x(t ) in terms of the parameters A, μ, β and xm

is obtained by replacing τ from Eqs. (6) in (4).
The maximal eyeball velocity can be shown to occur at t =

τ (β/μ)1/μ and yields Max[ẋ] = Aτβ (β/μ)β/μe−β/μ. In terms
of xm this can be expressed as

Max[ẋ] = C(A, μ, β ) x
β

β+1
m , (7)

with

C(μ, β, A) = A

(
β + 1

A�
(

β+μ+1
μ

)
) β

β+1 (
β

μ

) β

μ

e− β

μ . (8)

Note that, for a family of saccades generated at fixed values
of A, μ, and β, Eq. (7) predicts a power-law dependence
for Max[ẋ] on the saccade size with an exponent β/(β + 1)
(i.e., independent of A and μ). This generalizes the findings in
Ref. [9] for β = 1, that led to an exponent 1/2. As mentioned
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before, the dependence of Max[ẋ(t )] on xm strongly influences
that of the peak velocity of the pupil Max[ẋ(t ) + ẏ(t )], which
is the relevant quantity to be compared with experiments.
In fact, although the exponent for Max[ẋ(t ) + ẏ(t )] results
smoothly dependent on xm [9], it is expected to be close
to that for Max[ẋ(t )] throughout the relevant range of xm

[9]. Meanwhile, the exponents found in the experiments of
Refs. [6,19,22,23] vary for different observers, directions of
the saccade, and also depend smoothly on xm, but they seem
to be always roughly in the range 0.4–0.75. This suggests that
values of β > 1 in the range 1–1.3 (approximately) may be of
interest. Finally, we recall that the results for β = 1 obtained
in Ref. [9] suggest 1.5 � μ � 4 and 0.02 � A � 0.06 as the
relevant ranges for the remaining parameters.

For the case β = 1, the solution in Eq. (4) has the following
alternative expression in terms of xm,

x(t ) = xm − At2

μ
Ei

⎡
⎣μ − 2

μ
, t μ

(
A�

(
μ+2
μ

)
2xm

)μ/2
⎤
⎦, (9)

where Ei(n, z) is the exponential integral function (see Ap-
pendix). For μ = 2, this reduces to the simple expression
x(t ) = xm(1 − exp[− At2

2xm
]) presented in Ref. [9].

B. Analytical solution for the pupil motion
with constant parameters

Here we present the exact solution for y(t ) for the case of
constant values of γ and k. The reader interested mainly in the
dynamical aspects of the model and not in the mathematical

details of the solution may skip this subsection, knowing,
however, that the analytical solution for y(t ) is given in
Eq. (15).

By combining Eqs. (1) and (2), the equation for y(t ) results
in a standard forced harmonic oscillator,

ÿ(t ) + γ ẏ(t ) + ky(t ) = −F ′(t ), (10)

with the forcing −F ′(t ) defined [according to Eq. (3)] through

F ′(t ) = Ae−(t/τ )μ
(

βtβ−1 − μ

τμ
tβ+μ−1

)
. (11)

Taking into account that, for β � 1, F ′(t ) is finite at t = 0,
the particular solution satisfying the initial conditions y(0) =
y′(0) = 0 can be written as

y(t ) = −
∫ t

0
dt ′G(t, t ′) F ′(t ′), (12)

where G(t, t ′) is the sinusoidal Green’s function

G(t, t ′) =
{

0, if t − t ′ < 0,

1
�

e−γ (t−t ′ )/2 sin[�(t − t ′)], if t − t ′ > 0.
(13)

Note that, considering the context of complex variables, the
formula in Eq. (12) holds (and gives a real number) regardless
of the sign of k − γ 2/4, and it is also valid in the limit � → 0.

Now, setting α(±) = γ /2 ± i� and defining

Iμ(α(±), β, τ ; t ) =
∫ t

0
ds sβ eα(±)s e−(s/τ )μ , (14)

we obtain

y(t ) = − Aβ

2i�
[e−α(−)t Iμ(α(−), β − 1, τ ; t ) − e−α(+)t Iμ(α(+), β − 1, τ ; t )]

+ Aμ

2i�τμ
[e−α(−)t Iμ(α(−), β + μ − 1, τ ; t ) − e−α(+)

Iμ(α(+), β + μ − 1, τ ; t )]. (15)

By expanding the factor e−(s/τ )μ in Eq. (14) in power series and expressing the resulting integral in terms of Kummer functions
[25], the integral Iμ(α(±), β, τ ; t ) can be expressed as

Iμ(α(±), β, τ ; t ) = tβ+1 eα(±)t
∞∑

n=0

(−1)n

n!

(
t

τ

)μn 1

β + μn + 1
1F1(1, β + μn + 2; −α(±)t ). (16)

For μ = 2, the function Iμ(α, β, τ ; t ) has an alternative expression given by

I2(α, β, τ ; t ) = tβ+1

β + 1

∞∑
n=0

(β + 1)n

(β + 2)n

(αt )n

n!
1F1

(
β + 1 + n

2
,
β + 3 + n

2
; − t2

τ 2

)
. (17)

Here, (z)n = �(z + n)/�(z) is the Pochhammer symbol [25].
Equation (17) resulted useful for evaluating the solution y(t )
in the relevant case μ = 2 considered in most of our stud-
ies. The convergence properties of the series appearing in
Eqs. (16) and (17) can be obtained with relative ease. Al-
though the mathematical details are out of the scope of this pa-
per, we can mention some of the steps. First, the factor 1

β+μn+1
can be transformed into a quotient of Pochhammer symbols
as the one appearing on Eq. (17). Second, by expanding in
power series the Kummer function on any of the equations,
we can obtain a two-variable hypergemetric function. The

numbers of Pochhammer symbols in the numerator and in
the denominator allow us to ensure, taking into account the
developments in Ref. [27], that the series converges.

V. EYEBALL DYNAMICS

Here we analyze the model predictions for the eyeball
motion and the role of the parameters. In Fig. 2 we show
results for the eyeball saccade profile x(t ) calculated with
Eq. (4) for different values of the parameters. First, in Fig. 2(a)
we consider various values of xm at fixed A, μ, and β. Thus,
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(a) (b)

(c)

(d)

FIG. 2. Eyeball dynamics. (a) Eyeball position x(t ) for a family
of saccades with fixed μ = 2, β = 1, A = 0.04 and various values
of xm. These saccades satisfy the relation given in Eq. (7). Panels (b),
(c), and (d) show x(t ) calculated for xm = 15 considering different
values of A, μ, and β, respectively.

the set shown corresponds to what we have previously called a
family of saccades within the constant parameter approxima-
tion, and models a set of saccades that would be obtained from
a single eye in a fixed direction. Importantly, these saccades
satisfy Max[ẋ] ∝ x1/2

m , according to Eq. (7) with μ = 2 and
β = 1. Then, Figs. 2(b), 2(c) and 2(d) consider a fixed saccade
size xm = 15◦ and analyze the dependence on A, μ, and β,
respectively. In Fig. 2(b) we see that the saccade time (i.e.,
the time required to get to the saccade size) decreases with
the parameter A. Moreover, the initial acceleration (that for
β = 1 coincides with A) trivially grows with A. In Fig. 2(c) we
see that when μ grows at constant A and β the saccade time
also decreases, but the initial accelerations remains constant.
In this case, it is equal to A but it would be equal to zero
for β > 1. Finally, Fig. 2(d) shows that the saccade time also
decreases with growing β.

It is worth noting that the dynamics of x(t ) is always mono-
tonic. Neither oscillations nor eyeball overshooting occurs for
any value of the parameters.

VI. PUPIL DYNAMICS FOR THE MODEL
WITH CONSTANT PARAMETERS

Here we present the results for the pupil dynamics calcu-
lated with constant k and γ , and we analyze the influence
of each parameter. To calculate the pupil position x(t ) + y(t )
we use the formulas in Eqs. (4) and (15) and check them
with a standard high-precision numerical integrator [9]. The
analytical solutions result indistinguishable from the numeri-
cal ones when considering a large enough number of terms in
the expansion of y(t ). For practical purposes, between 20 and

400 terms are usually enough, depending on the parameters.
Further details on the convergence properties of the analytical
solutions are given in the Appendix.

To get a first insight about the role of each parameter it
is worth analyzing the physical mechanisms involved in a
saccade according to the model. The curves in Figs. 1(a) and
1(b) indicate that, at the beginning of the saccade the pupil
starts to move later than the eyeball, while at the end of the
saccade, when the eyeball decelerates, the pupil overcomes
it. This is due to the combined effect of the inertia and the
elastic force. Loosely speaking, at the beginning we have
y(t ) ∼ 0 and thus the elastic force −ky(t ) is small, so that
the pupil motion is delayed. At the middle of the saccade,
when the elastic force is large enough, the eyeball and pupil
move at similar velocities (the pupil is actually slightly faster).
Finally, at the end of the saccade, the eyeball decelerates
while the pupil keeps on moving fast due to its inertia, until
it is stopped and dragged back by the elastic force and it
begins to perform a damped oscillation. The whole process,
that was nicely described in Ref. [18], is similar to what
a person experiments inside a car when the car accelerates
and brakes. The PSO shape is determined by the competition
between the inertial and elastic forces. Regarding the role of
the parameters in this competition, it is worth noting that,
while k controls the stiffness of the elastic force, a growth of
any of the parameters A, μ, and β enhances the accelerations
(and decelerations) and thus leads to stronger inertial forces.
The parameter γ controls the way in which the relative motion
is damped. In particular, it regulates the damping of the PSO.
It is important to mention that, as far as we know, there is
still no experimental evidence of the existence of an initial
delay of the pupil with respect to the eyeball. Later we discuss
on possible modifications of the model if such an effect was
definitively ruled out by future experiments.

A. Influence of the parameters on the families of saccades

In Fig. 3 we analyze the dependence on the parameters
of the profiles for families of saccades generated with con-
stant A, μ, β, k, and γ . First, Fig. 3(a) shows the effect
of varying the parameter μ. We see that the amplitude of
the PSO grows with μ, especially at large xm. This can be
understood by noting that, as Fig. 2(c) shows, a larger value
of μ produces a faster saccadic motion and consequently a
more sudden deceleration. In addition, we see that the time for
the first overshoot decreases with μ, as expected. The effect
of changing the parameter μ is relatively smooth at small
times. In particular, the initial acceleration remains invariant,
as previously mentioned.

The family of saccades for μ= 2, A = 0.06, k = 0.032,

γ = 0.15, shown in black dotted lines in Figs. 3(b), 3(c) and
3(d) is now taken as a reference to analyze the influence of
the parameters. Figure 3(b) shows the effect of changing A at
fixed μ, β, γ , and k. We see that the PSO amplitude grows
with A for all xm, clearly this is for the same reason as it does
with μ. However, a change in A affects not only the end of the
saccade and the main ascending slope, but also the beginning
of the saccade.

In Fig. 3(c) we show the effect of varying the parameter k,
i.e., the stiffness of the effective elastic link between the pupil
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(a) (b) (c) (d)

FIG. 3. Dependence of the pupil motion on the model parameters. (a) The curves show how the value of μ influences the saccade profiles
for a family obtained with constant A, μ, β, k, and γ . (b) Dependence on A of the saccade profiles from a family. (c) Dependence on k.
(d) Variations with A and γ . In panels (b), (c), and (d), the family of saccades plotted in dotted lines is the same as the one in Fig. 1(a).

and the eyeball. The amplitude of the PSO is found to decrease
with k, as could be expected. Moreover, a change on this
parameter affects mainly the end of the saccade. The effect of
increasing k is in fact similar to that of decreasing μ, although
for different (but perhaps complementary) reasons. While a
decrease in μ leads to a reduction of the inertial effects at the
end of the saccade, an enhancement of k increases the elastic
force which opposes to the inertial force.

Finally, in Fig. 3(d) we show the effect of a combined
change of A and γ . We see that the model is able to produce
saccadic profiles with the first overshoot below the level xm,
resembling qualitatively some experimental saccades which
share this property [15] (below we further discuss this is-
sue). The effect of decreasing γ (i.e., the damping), which
corresponds to an enhancement of the PSO amplitudes and
lifetimes, is apparent for small xm saccades. For large values
of xm it is hidden by the effect of reducing A.

Although the results in Fig. 3 do not attempt to fit particular
experiments but just to analyze the dynamical properties of the
model and the dependence on the parameters, it is worth ob-
serving the qualitative similarity between the generated curves
and the experimental saccades found in Ref. [15] and other
works. Moreover, when varying the parameters as in Fig. 3,
the solutions exhibit qualitative changes similar to those found
in experimental families in Ref. [15] when the direction of the
saccade is varied. For instance, in Ref. [15], the comparison
between upward and downward vertical saccades for the same
observer shows that, for each saccade size, upward saccades
have larger PSO amplitude than downward saccades in four

observers over five (Fig. 9 in Ref. [15]). Moreover, although
more data is needed for a confirmation, larger PSO amplitudes
seem to be correlated with larger peak velocities (Fig. 8 in
Ref. [15]). Within our model it is possible to enhance the
PSO amplitude together with the peak velocity by increasing
the parameter A, as shown in Fig. 3(b). This suggest that,
for a given eye, upward saccades should be modeled using a
larger value of A than the one used for downward saccades.
Certainly, an accurate fitting may require, in addition, to
change the parameter μ (or β as well), which also modulate
the PSO amplitude, although with smaller modifications on
the saccade velocities. These results lead us to interpret that
the muscles exert a larger force when moving upward than
when moving downward. Note that, although a change in the
parameter k may also lead to similar variations on the PSO
amplitudes, as a first approach, we do not expect that the
effective viscoelastic properties of the eye (characterized by
k and γ ) should vary with the direction.

The comparison of experimental horizontal saccades for
adduction and abduction (see Fig. 2 in Ref. [15]) leads to
similar but less clear conclusions. For three of the four eyes
studied in [15], the PSO amplitude is larger for abduction
than for adduction, although the differences are not as large as
in the comparison between upward and downward saccades.
Moreover, for the other eye (Obs 2 right eye in Fig. 2 in
Ref. [15]) there is no appreciable difference between adduc-
tion and abduction. This all also suggest a possible decrease
in A or μ when changing from abduction to adduction, but
this may depend strongly on the observer and more cases
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Dependence of the peak velocity and the PSO amplitude on the parameters of the eyeball dynamics. Panels (a), (b), and (c) show
the dependence of the pupil’s peak velocity on the parameters μ, A and β, respectively, considering the indicated values of saccade size. Panels
(d), (e), and (f) show the corresponding behavior of the PSO amplitude. In all the cases the curves correspond to k = 0.03 and γ = 0.1, while
the eyeball parameters are A = 0.04, μ = 2, and β = 1 except when each parameter varies.

should be analyzed to get clear conclusions. In any case, we
here observe that the different directions of motion should in
general be characterized by different values of A and μ.

In addition, experiments show that the amplitudes of the
PSO for the same task vary between individuals [15], with
relevant effects of aging [19]. This could be due to variations
both in the parameters characterizing the forcing profiles
(μ, A, and β) and in those associated to the viscoelastic
properties (k and γ ).

B. Analysis at fixed saccade size: The onset of PSO

Now we focus on the dependence of the peak velocity
and the PSO amplitude on the system parameters at fixed
saccade size. For this, we consider two saccade sizes, namely,
xm = 5◦ and xm = 15◦, and then vary the rest of the parame-
ters around reference values given by A = 0.04, μ = 2, β =
1, k = 0.03, γ = 0.1. It should be remarked that the PSO
amplitude here considered is the one associated to the first
overshoot, as defined in Fig. 1(e).

In Fig. 4 we analyze the role of the eyeball parameters
A, μ, and β. Figures 4(a), 4(b), and 4(c) show that, as
anticipated, the peak velocity grows with these parameters.
Moreover, the growth is faster for xm = 15◦ than for xm = 5◦.
However, Figs. 4(d), 4(e), and 4(f) show that the PSO ampli-
tude increases with A, μ, and β as previously indicated, due
to the enhancement of the inertial effects mentioned before.
Two features are remarkable. First, at low values of A or μ, the

PSO amplitude is zero, while it becomes non zero in a critical-
like fashion at certain values of the parameters. The critical
values are larger for xm = 15◦ than for xm = 5◦. Hence, there
are regions of the parameters for which the PSO are nonzero
for xm = 5◦ and zero for xm = 15◦, in agreement with that
shown when analyzing the families of saccades. Second, at
large values of A, μ, or β, the PSO amplitude for xm = 5◦ is
smaller than that for xm = 15◦. This contrast the observations
of most of the experiments in Ref. [15] so that such re-
gions of parameters could be considered physically irrelevant.
For instance, μ > 3, A > 0.7, or β > 1.2 for the parameters
considered. However, it should be noted that experiments in
Ref. [19] (and also Ref. [15]) show exceptional behaviors for
a few particular observers for which the PSO amplitude seems
to grow at large xm. This deserves further research.

In Fig. 5 we analyze the dependence of the peak velocity
and the PSO on the parameters k and γ . The peak velocity is
found to depend smoothly on these parameters confirming that
it is essentially determined by the movement of the eyeball. In
contrast, as expected, the PSO amplitude depends strongly on
k and γ . In the relevant regions, the PSO amplitude decreases
with k and γ and becomes zero at a critical value that depends
on xm. For very low k, the PSO amplitude for xm = 15◦ equals
that for xm = 5◦ implying that such a region of parameters
would be of no relevance for most observers.

In Fig. 6 we analyze how the PSO profiles change when a
parameter passes through a critical value. First, we focus on
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(a) (b)

(c) (d)

FIG. 5. Dependence of the peak velocity and the PSO amplitude
on k and γ . Panels (a) and (b) show the dependence of the pupil’s
peak velocity on the parameters k and γ , respectively, considering
the indicated values of saccade size. Panels (c) and (d) show the
corresponding behavior of the PSO amplitude. In all the cases
the eyeball parameters are A = 0.04, μ = 2, and β = 1, while we
considered k = 0.03 and γ = 0.1 except when indicated.

what happens with the parameter k. We consider the example
illustrated in Fig. 5(c), for which the critical value is kc � 0.03.
In the main panel of Fig. 6(a) we show two saccade profiles.
The dashed curve corresponds to k = 0.023 (i.e., k < kc),
while the solid one is for k = 0.033 > kc. We see that the
first overshoot disappears for k > kc [this is why the PSO
amplitude vanishes according to our definition sketched in
Fig. 1(e)]; however, the second overshoot is still observable.
In the inset in Fig. 6(a) we show the detail of the PSO profiles
for the same two saccades and we also include a third profile
corresponding to an intermediate value of k. It is apparent that,
when k grows, the amplitude of the first overshot decreases
until it disappears, while the second peak moves to the left.
In Fig. 6(b) we show that a similar transition occurs when
the parameter A crosses the critical value, although in this
case the second overshoot remains fixed. According to our
results in Fig. 3(d), the same type of transition is found by
increasing xm, for some parameter sets. Other calculations
(not shown) confirm that the same occurs when decreasing
the value of μ below the critical value. Hence, the mechanism
for emergence (or vanishing) of the PSO when the parameters
are varied seems rather general. Importantly, as mentioned
before, the PSO profiles in which the first overshoot is rubbed
out while the second survives [like those shown in Figs. 3(d)
and 6] are frequently observed in experiments. For instance,
see Ref. [15]. Moreover, just before the complete vanishing
of the first overshoot, there is a small region in which the
first peak of the PSO is below the asymptotic level xm and
of smaller amplitude than the second peak [inset of Fig. 6(a),
red dotted curve]. These types of profiles are also observed in
the experiments of Ref. [15].

(a) (b)

FIG. 6. Dependence of the saccade profiles on the parameters
around the critical values (a) Saccades for k = 0.023 (<kc ) (black
dashed line) and k = 0.033 (>kc ) (blue solid line) corresponding to
the set with xm = 15◦ analyzed in Fig. 5(c). The inset shows details
of the same curves in a different scale and an additional profile for
k = 0.028 (dotted red line). (b) Saccades for A = 0.049 (>Ac ) (black
dashed line) and A = 0.039 (�Ac ) (red solid line), both correspond-
ing to the set with xm = 15◦ analyzed in Fig. 4(e).

VII. FITTING FAMILIES OF SACCADES: BEYOND
THE CONSTANT PARAMETERS ASSUMPTION

The model with constant parameters allows to describe
most of the phenomenology of the saccadic and PSO’s dynam-
ics, including the qualitative dependence of the PSO profiles
on xm. In this way, it provides a simple explanation for the
emergence of the PSO in terms of elastic and inertial forces.
However, as discussed in Ref. [9], an accurate fitting of a
family of averaged saccades (or a set of families from different
individuals) may require more complex formulations. It has to
be noted that the model is an effective description that cannot
encompass all the details of the PSO dynamics, probably
involving complex viscoelastic processes, three dimensional
deformations and strong variations among individuals.

In Ref. [9] an example of fitting of a particular family of
saccades taken from experiments was provided by considering
a force-dependent parameters model. Such a formulation as-
sumes that the parameters k and γ depend on the forcing F (t )
as γ [F (t )] = γ0 exp[−cF (t )] and k[F (t )] = k0 exp[−dF (t )],
with c, d > 0. This represents a loosening of the eyeball-iris
link with the force, which enables larger PSO amplitudes at
large xm. The idea beyond the approximation is that the forces
exerted on the eyeball may not only rotate it but also produce
smooth deformations which can change the viscoelastic prop-
erties. Within this model, a family of saccades is generated
by keeping A, μ, β, k0, γ0, c, and d constant, and varying
only the saccade size xm. The family presented in Ref. [9],
that fits accurately averaged saccades from a single observer in
Ref. [15], is reproduced in Fig. 7(a). Then, in Figs. 7(b), 7(c)
and 7(d) is reproduced again in gray lines in order to compare
with other models.
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(a) (b) (c) (d)

FIG. 7. Families of saccades beyond the constant parameter approach. (a) Family of saccades calculated with the model with force
dependent parameters for A = 0.036, k0 = 0.04, γ0 = 0.14, c = 0.5, and d = 3 that was shown in Ref. [9] to match a particular experimental
family taken from Ref. [15]. This calculated family is repeated in panels (b–d) in gray lines. (b) The red dashed curves correspond to a
family calculated with constant parameters A = 0.04, k = 0.032, γ = 0.15. (c) The red dashed curves correspond to a model with constant
parameters for each saccade, but with A dependent on xm, considering A = 0.36 + 0.0012xm, and fixed k = 0.032, γ = 0.14. (d) The red
circles show a family computed with the inhomogeneous viscosity model considering A = 0.05, k = 0.035, g0 = 0.07, a = 1, b = 5. All
the calculations are for μ = 2, β = 1.

The model with force dependent parameters was proposed
because the constant parameter version produces a decay of
the PSO amplitude with xm faster than that observed in the
experiments. This is shown in Fig. 7(b), where we depict a
family of saccades generated with constant parameters at fixed
A, μ, β, k, and γ and varying xm. The results correctly fits
the xm = 4◦ of the experimental family, while fail at fitting
the saccades with large xm. Note that, for simplicity, we
compare with the force-dependent model (that approximates
the experiments for all xm [9]) instead of with the experiments
themselves.

The assumption of force-dependent parameters is certainly
a reasonable one to moderate the decay of the PSO amplitude
with xm, but it is not the only possible one. Here we propose
and discuss other two formulations that may also be sound.
First, we note that, to generate a family of saccades, we can
keep on using the dynamics with constant parameters for
each saccade, but considering that one or more parameters
depend on xm. The results in the previous section indicate
that the PSO amplitude grows with A, μ, and β. Thus, one
possibility is to consider that one or more of these parameters
grows smoothly with xm. This could be reasonable since the
muscles that rotate the eyeball may act in different ways for
each saccade size. Note that, in contrast, a dependence of
the parameters k or γ on xm would be meaningless. As an
example, in Fig. 7(c) we show a family of saccades generated

with the model with constant parameters assuming that A
grows with xm as A = 0.36 + 0.0012xm, while μ, β, γ , and
k are kept fixed. The dependence of A on xm was chosen in
such a way that the PSO amplitude matches that from the
experiments for every xm. The approach, however, fails at
predicting the saccade velocities, which at large xm results
larger than the experimental ones. This could be expected,
since a change on A with xm affects the relation between
the peak velocity and xm. The effect is shown in Fig. 8
where we plot the peak velocity as a function of xm for the
various models considered in Fig. 7. The fact that, for our
example, the model with A = A(xm) overestimates the peak
velocity at large xm is apparent. However, we have to take into
account that this is just the analysis of a family of saccades
arbitrarily chosen from a particular individual. In general,
the consideration of a smooth dependence of the parameters
A, μ, or β on xm may not necessary affect considerably
the behavior of the peak velocity (depending on the whole
set of the parameters) and could be of relevance. A final
answer to this feature should come from experiments that
measure the peak velocity of the eyeball (not the pupil) as
a function of the saccade size. In case that such experiments
found a pure power law with a single exponent, the parameters
should be kept independent of xm. In contrast, if the exponent
depends on xm, non constant values of A, μ, or β may be
relevant.
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FIG. 8. Peak velocity beyond the constant parameter approach.
Pupil’s peak velocity as a function of the saccade size calculated for
the models and parameters indicated in the caption of Fig. 7.

Finally, we consider a model in which the viscosity γ

depends on the position of the pupil along the direction
of the saccade. We assume the simple form γ = γ [y(t )] =
γ0{1 + a exp[−by(t )]}. Note that this represents a decay of the
viscosity with the distance to the equilibrium position y = 0
measured along the direction of the saccade (y > 0), and an
enhancement of the viscosity in the opposite direction (y < 0).
This means that the inhomogeneity is activated when the sac-
cade starts. As in the force dependent model, here we are also
assuming that, during the saccade, the eyeball suffer defor-
mations that change the viscoelastic properties. For simplicity
the approach is referred to as model with inhomogeneous
viscosity. In Fig. 7(d) we show a family of saccades generated
with this model at fixed A, μ, β, k, γ0, a, and b that results
almost coincident with the family generated with the force
dependent model. As can be seen in Fig. 8, excepting for low
values of xm, the peak velocity of the two models are very
similar. Still, there is a subtle detail that differences the two
generated families of saccades. As shown in Fig. 9, the time
delay between the motion of the eyeball and that of the
pupil is much larger for the force dependent model than for
the model with inhomogeneous viscosity. Note that such a
delay is associated to a larger displacement |y(t )| of the pupil
with respect to the eyeball at small times. As mentioned, there
is no experimental evidence of such a delay, that is a natural
prediction of the model. In the case that the delay was ruled
out by experiments, the effect in the model dynamics could
be moderated by introducing an inhomogeneous viscosity (as
shown) or possible by introducing a static friction force acting
at the beginning of the saccade.

The particular example studied in Figs. 7, 8, and 9 serves to
show how the different versions of the models could work in
extensive analyses of experiments. It is important to indicate,
however, that the experiment here analyzed correspond to
p-Cr signals [15,16], so that the curves may not reflect exactly
the pupil motion [16], and thus the fitted parameters k and γ

may not correspond to the effective elasticity and viscosity for

(a) (b)

FIG. 9. Force dependent vs. space dependent parameters. (a) De-
tail of the 10◦ saccade for the model with force dependent parame-
ters shown in Figs. 7(a)–7(d) exhibiting pupil and eyeball motion.
(b) Detail of the 10◦ saccade shown in Fig. 7(d) for the model with
inhomogeneous viscosity.

the relative motion of the pupil. According to the preliminary
studies in Ref. [9], to recover the original meaning of these pa-
rameters, the P-Cr signal should be fitted by x(t ) + λy(t ), with
λ ∼ 2 but possible dependent on xm and on the eye tracking
technique. Although this subject requires further research (and
ideally a separate modeling of the dynamics of the corneal re-
flection), the parameter λ could be considered as an additional
variable to fit when attempting to reproduce P-Cr signals. Note
that throughout this paper we have considered λ = 1.

VIII. SUMMARY, FINAL COMMENTS,
AND CONCLUSIONS

In this paper we have provided analytical solutions for the
model for eyeball and pupil motion developed in Ref. [9]
and studied its dynamical properties, as well as the role of
the system parameters. Moreover, we have discussed various
alternative versions of the model and generalizations that may
serve to obtain better descriptions of the experiments, and
to perform a step forward in the understanding of saccadic
motion and PSO. Our approach enables an analysis of the
saccadic motion in the time domain, which is relevant to gain
insight concerning the results from experiments such as those
in Refs. [15,16]. However, it is important to mention that,
within the fields of bioengineering and neuroscience, the eye
motion is usually analyzed in the frequency domain since it
is more natural from the view point of many experiments
[24,28,29].

The model developed has two key ingredients. On the
one hand, the particular function F (t ) defined in Eq. (3) that
approximates the velocity of the eyeball along the saccade.
On the other hand, the consideration of the pupil as a massive
particle subject to the competition between inertial forces
produced by the eyeball rotation and viscoelastic forces inside
the eyeball. Altogether, these assumptions provide a unified
description for the findings of independent experiments con-
cerning (i) the peak velocity as a function of the saccade size
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xm and (ii) the PSO amplitude and period as functions of
xm. To obtain the qualitative behaviors found in experiments
it is enough to consider the constant parameter version of
the model, in which μ, β, A, k, and γ are constant and
independent of the saccade size xm, while only the parameter
τ in Eq. (3) is adapted to get the desired value of xm, according
to Eq. (6). In this approach, the parameters μ, A, and β could
be varied to reproduce saccades on different directions for the
same eye. Meanwhile, the parameters k and γ could be kept
invariant for the different directions, but should change among
observers.

The search for accurate fittings of families of saccades
from particular observers would require to go beyond the
constant parameter approach. For instance, we may consider
parameters that depend on xm (but still constant for each
saccade), or include a dynamical dependence of some pa-
rameters on F (t ) or on the relative position of the pupil.
Even more, we may think on proposing a different function
F (t ), taking care that the alternative should ensure a suitable
relation between the peak velocity and the saccade size.
However, the most important deviations from the constant
parameter approach seem to occur for relatively large values
of the saccade size, for which the decreasing of the PSO
amplitude with xm observed seems to be sensibly slower
than the prediction of the model [9]. The constant parameter
approach may thus be a reasonably option at relatively small
saccade sizes, such as xm < 10◦. Nevertheless, it should be
remarked that the PSO amplitude depends on the eye tracking
technique and, nowadays, the experimental data concerning
the characterization of the PSO is limited, noisy and show
strong variations among individuals. More experimental ef-
forts, particularly concerning statistics on the PSO behavior
for different saccade sizes and directions would be needed in
order to be able to refine a model. Ideally, it would be desirable
to perform experiments such as those in Ref. [15], where the
observers are asked to make saccades between the two dots
separated either horizontally or vertically, but varying both the
initial and final position of the dots systematically throughout
the screen and with many observers. In this way we could
perform statistics on saccades of different sizes, directions and
also varying the initial position with respect to the center.

Within our model, the action of the nervous system is
included through the function F (t ), which describes the ac-
tivity (governed by neural signals) of the muscles that rotate
the eyeball during a single saccade. The profiles proposed
for F (t ) are such that the motion of the eyeball within an
individual saccade is unidirectional, with no oscillations and
no feedback mechanism. This assumption is enough to obtain
all the results shown concerning PSO. Hence, our develop-
ments strongly suggest that PSO are mainly consequences of
mechanical reactions inside the eyeball prompted by inertial
and viscoelastic forces. This agrees with recent suggestions
from experimentalists [16] and with the fact that eye wob-
bling is a well established phenomenon. According to our
vision, feedback mechanisms and oscillations of the eyeball
governed by the nervous system may be negligible within
single saccades and PSO, although they are essential for ruling
successions of saccades and other types of eye motion such as
smooth pursuit.

In this paper we extended the original proposal for F (t ) by
including the parameter β, which has an interesting role. The
initial acceleration of the eyeball vanishes for β > 1 while it is
given by the parameter A for β = 1. Hence, the determination
of the initial acceleration of the eyeball would directly provide
an estimation for β and possible for A. However, such a
determination may not be straightforward since it perhaps
should involve an analysis of the position of the pupil (the
usual output of the eye trackers). For this, one may consider
small time expansions of the analytical solutions of the model.

The analytical solutions presented may be useful for study-
ing limit cases and performing expansions not only at small
times, but also at large times or, for instance, around the
time of maximal velocity. Moreover, it is possible to think
of performing series expansions in terms of the parameters
around values of particular relevance. Such types of studies,
which are beyond the scope of this paper, could contribute to
find additional relations between parameters and dynamical
properties, and to develop easier ways for fitting the parame-
ters to experimental data.

The analysis in Figs. 4 and 5 reveals that the PSO emerge
(or are suppressed) in critical-like ways when some of the pa-
rameters variate. The proximity to criticality is characterized
by PSO profiles in which the amplitude of the first overshoot
is smaller than that of the second. This type of patterns are
usually observed in eye tracking signals. Detailed studies of
these phenomena are desirable from a theoretical point of
view and could enrich the understanding of the PSO behavior.
The analytical solutions may be useful for identifying the
critical values of the parameters and studying the PSO onset.

Very generally, the fact that the model correctly reproduces
the different type of PSO patterns observed in experiments as
well as the dependence on xm of the PSO amplitude and period
(and the peak velocity as well) strongly suggests that the basic
mechanism ruling the PSO is the one considered in the model.
This means the competition between inertial and viscoelastic
forces within the eyeball.

Experiments show that the PSO’s characteristics vary
among observers [15] and change with aging [19]. Moreover,
PSO may be suppressed in patients with cataract surgery [19].
These facts indicate that the PSO dynamics is likely related
to anatomical or physiological conditions of the eye, that may
be eventually affected by diseases. Our model can certainly be
used as a simple but powerful tool for interpreting experiments
concerning these relevant features.
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APPENDIX

In this Appendix we give the definitions of the special func-
tions used in the main text and we explain the convergence
properties of the analytical solutions provided.
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1. Definitions of the special functions
used in the analytical solutions

The Kummer [25,26] function is a confluent hypergemetric
function [25,26]. One of its multiple definitions is

1F1(a, b; z) =
∑

n

(a)n

(b)n

zn

n!
, (A1)

where the Pochhammer symbol [26] (γ )n = �(γ + n)/�(γ )
is defined in terms of the � function [25],

�(z) =
∫ ∞

0
t z−1 e−t dt . (A2)

The power series of Eq. (A1) converges absolutely for all
value of the variable z.

The exponential integral function Ei(ν, z) is an analytical
function of ν and z which is defined in whole complex plane
of both variables. This function can be expressed in terms of
the Kummer function as follows [26]:

Ei(ν, z) = �(1 − ν)zν−1 − 1

1 − ν
1F1(1 − ν, 2 − ν,−z).

(A3)

2. Convergence of the analytical solutions

As indicated in the main text, the analytical solutions are
indistinguishable from the numerical ones when we consider
a large enough number N of terms in the expansion of y(t )
given in Eq. (16) or Eq. (17) (the latter only for μ = 2). In
Fig. 10 we show how the analytical solution converges to the
numerical one as N grows. It can be seen that a very small
N is enough for reproducing the solution at small times (in
this particular example, even N = 1 is suitable for t < 20 ms),
while an increasing number of terms is needed at large times.
Note that expansions with an even number of terms tend to

FIG. 10. Convergence of the analytical solution. The solid black
curve shows the numerical solution for x(t ) + y(t ) for a saccade
generated with the model with parameters A = 0.03, μ = 2.1, β =
1, γ = 0.1, k = 0.03, and xm = 7. The blue lines show the an-
alytical results calculated from Eqs. (4) and (16) considering an
increasing number (N) of terms for approximating the expansion
in Eq. (16). For this particular set of parameters, the solution for
N = 150 (not shown) is indistinguishable from the numerical one
in the scale of the plot up to t = 130.

+∞ at large times, while expansion with odd N diverge to
negative values. Our analysis of various cases indicate that
the convergence at large t becomes slower (i.e., more terms
are needed) for relatively small values of xm, large values of μ

or A, or small values of k.
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