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a b s t r a c t

We study the relationship between the vertices of an up-monotone polyhedron R and
those of the polytope P obtained by truncating R with the unit hypercube. When R has
binary vertices, we characterize the vertices of P in terms of the vertices of R, show their
integrality, and prove that the 1-skeleton of R is an induced subgraph of the 1-skeleton of
P . We conclude by applying our findings to settle a claim in the original paper.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In [1] we studied vertex adjacency in the (unbounded version of the) set covering polyhedron associated with a binary
matrix A:

Q ∗(A) = conv({x ∈ Zn
| Ax ≥ 1, x ≥ 0}), (1.1)

where 0 and 1 denote vectors of appropriate dimension with all zeros and all ones components respectively, and conv(X)
denotes the convex hull of the set X ⊂ Rn. This polyhedron is the dominant of the set covering polytope associated with A:

Q ∗(A) = conv({x ∈ Zn
| Ax ≥ 1, 1 ≥ x ≥ 0}), (1.2)

that is, Q ∗(A) = Q ∗(A) + {x ∈ Rn
| x ≥ 0} where + denotes the Minkowski sum of subsets of Rn.

Immediately after stating Theorem 2.1 in [1], we made the following claim:

Claim 1.1. It can be proved that for any binary matrix A two vertices of Q ∗(A) are adjacent if and only if they are adjacent in
Q ∗(A).

Although this result may seem quite natural, we would like to observe that it is no longer true if we replace Q ∗(A) by its
linear relaxation,

Q (A) = {x ∈ Rn
| Ax ≥ 1, x ≥ 0}, (1.3)
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and Q ∗(A) by the corresponding bounded version,

Q (A) = Q (A) ∩ [0, 1]n. (1.4)

This may be seen by considering the circulant matrix

A =

[1 1 0
0 1 1
1 0 1

]
. (1.5)

In this case, the vertices of Q (A) are

(1, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1), (1/2, 1/2, 1/2),

and ξ = (1, 1, 0) and η = (0, 1, 1) are adjacent in Q (A) but not in Q (A). Furthermore, as is readily verified, in this example
ξ and η are adjacent in Q ∗(A), which means that in general Q (A) does not have the Trubin propertywith respect to Q ∗(A).1

This is rather surprising since in the special case in which A has precisely two ones per row, i.e., the case in which A is the
edge-node incidence matrix of a graph G, Q (A) has the Trubin property with respect to Q ∗(A).2

One of the aims of this paper is to prove the validity of Claim 1.1. Along the road we will establish relationships between
the vertices of an up-monotone polyhedron R and those of a polyhedron Q ⊆ R such that the vertices of R belong to Q . The
results here do not depend on those in [1], and we think they are interesting by themselves.

This addendum is organized as follows. In Section 2 we introduce some notation and present basic results concerning
vertices and their adjacency in an up-monotone polyhedron. Section 3 is the core of the paper, where we study the effect of
cutting with the unit hypercube an up-monotone polyhedron having only binary vertices, first characterizing the vertices of
the new polytope (Corollary 3.5) and proving their integrality (Corollary 3.6), and then studying the adjacency of the vertices
of the larger polyhedron in the new polytope (Theorem 3.7). We conclude by relating our findings to the original article [1]
in Section 4.

2. Some properties of vertices in up-monotone polyhedra

In this section we introduce notation which perhaps is not quite established in the literature, and state a few basic results
that are either simple to prove or well-known, and so we will omit most of the proofs.

Let us start with the notation, part of which we have already used.
The set {1, . . . , n} is denoted by In, the family of subsets of In by P , the ith vector of the canonical base of Rn by ei, and

the scalar product in Rn by a dot: x · y =
∑n

i=1xiyi.
For x and y in Rn, [x, y] = conv({x, y}) represents the (closed) segment joining them, and we write x ≥ y (resp. x > y) if

xi ≥ yi (resp. xi > yi) for all i ∈ In (notice that x ≩ y, i.e., x ≥ y and x ̸= y, does not imply x > y).
Given a polyhedron S, the set of its vertices is denoted by V(S).
Throughout the paper we will assume that R ⊂ {x ∈ Rn

| x ≥ 0} is a non-empty polyhedron which is up-monotone,3 that
is, it satisfies any of the following equivalent conditions:

• x ∈ R and y ≥ x imply y ∈ R,
• x ∈ R if and only if x = y + µ with y ∈ conv(V(R)) and µ ≥ 0.

Our first result relates vertices and minimality in R.

Lemma 2.1. Assuming ξ and η are distinct vertices of R and x ∈ R, we have:

(a) If x ≤ ξ then x = ξ .
(b) If x ∈ [ξ, η] and µ ≥ 0 is such that x + µ ∈ [ξ, η], then µ = 0.

The following proposition is fundamental to our work.

Proposition 2.2. If V(R) = {ξ = ζ 1, η = ζ 2, . . ., ζ r
}, then the following are equivalent:

(a) ξ and η are adjacent in R, that is, there exist c ∈ Rn and b ∈ R such that c · x ≥ b for all x ∈ R, with equality if and only if
x ∈ [ξ, η].

(b) There exist c ∈ Rn and b ∈ R such that c > 0 and

c · x ≥ b for all x ∈ conv(V(R)), with equality if and only if x ∈ [ξ, η]. (2.1)

1 Let us recall that a polyhedron R has the Trubin property with respect to a polyhedron P contained in R if the 1-skeleton of P is an induced subgraph
of the 1-skeleton of R, see [3].

2 Since the linear relaxation FRAC(G) of the stable set polytope STAB(G) has the Trubin property with respect to STAB(G) (see [2]), and the function
x → 1 − x affinely maps Q (A) to FRAC(G).

3 Or upper comprehensive in the nomenclature of some authors.
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(c) If x + µ ∈ [ξ, η], where µ ≥ 0 and x is a convex combination of the form
∑r

k=1λkζ
k, then λk = 0 for k = 3, . . . , r (so

x ∈ [ξ, η] and µ = 0).

Proof. It is easy to show that (a) implies (b) and that (b) implies (c). Thus, we next show only that (c) implies (a). We do this
by contradiction, so assume (c) holds but ξ and η are not adjacent in R. Then, the minimal face of R containing ξ and η has
dimension at least 2. It follows that there exist two points y′, y′′

∈ R and λ ∈ R such that 0 < λ < 1, λy′
+ (1−λ) y′′

∈ [ξ, η]

and neither y′ nor y′′ belong to [ξ, η]. Since R is up-monotone, we can find x′ and x′′ in conv(V(R)) and µ′, µ′′
≥ 0 such that

y′
= x′

+ µ′ and y′′
= x′′

+ µ′′. Writing x = λx′
+ (1 − λ) x′′ and µ = λµ′

+ (1 − λ)µ′′, we have x ∈ conv(V(R)), µ ≥ 0, and
x + µ = λy′

+ (1 − λ) y′′
∈ [ξ, η], so by (c) we conclude that µ = 0 = µ′

= µ′′, that is, y′
= x′ and y′′

= x′′. Since x′ and x′′

are in conv(V(R)), it follows that

y′
= x′

=

r∑
k=1

τ ′

kζ
k, y′′

= x′′
=

r∑
k=1

τ ′′

k ζ k, x =

r∑
k=1

(
λτ ′

k + (1 − λ) τ ′′

k

)
ζ k,

and again by (c) we must have

λτ ′

k + (1 − λ) τ ′′

k = 0 for k ̸= 1, 2,

i.e., τ ′

k = τ ′′

k = 0 for k ̸= 1, 2. Hence, y′ and y′′ are convex combinations of ξ and η, that is, they are in [ξ, η], contradicting
the way they have been chosen above. □

3. Bounding with the unit hypercube

Wenow turn our attention to studying the relationship between the vertices of the up-monotone polyhedron R and those
of R ∩ [0, 1]n.

We omit the proof of the following simple result relating the vertices of two polyhedra in a somewhat more general
setting.

Lemma 3.1. Let S and T be polyhedra such that S ⊂ T . We have:

(a) If ξ ∈ V(T ) ∩ S then ξ ∈ V(S).
(b) If ξ and η are distinct points in V(T ) ∩ S which are adjacent in T , then they are also adjacent in S.

In the remainder of this section, we will assume that R is an up-monotone polyhedron satisfying

V(R) ⊂ [0, 1]n, (3.1a)

and P is defined by

P = R ∩ [0, 1]n, (3.1b)

so that V(R) ⊂ P .
We will find it convenient to consider the function ϕ : P × Rn

→ Rn defined component-wise by

ϕ(I, x)i =

{
1 if i ∈ I ,
xi otherwise, (3.2)

that is, a projection for each I ∈ P . Notice that ϕ(I, x) = x if I is empty, and that if x ∈ P = R ∩ [0, 1]n then x ≤ ϕ(I, x) and
ϕ(I, x) ∈ P because R is up-monotone.

The next result says that any vertex of P can be obtained by ‘‘lifting’’ a vertex of R via ϕ.

Theorem 3.2. If ϕ is defined by (3.2), then

V(P) ⊂ {ϕ(I, ζ ) | I ∈ P, ζ ∈ V(R)}. (3.3)

Proof. Observe that P = R ∩ {x ∈ Rn
| x ≤ 1} because we have assumed R ⊂ {x ∈ Rn

| x ≥ 0}. Then, to prove the
theorem it is enough to show that any polyhedron in the sequence: P0 = R and Pk = Pk−1 ∩ {x ∈ Rn

| xk ≤ 1} for k ∈ In,
satisfies (3.3). We do this by induction. Since ϕ(I, x) = x if I is empty, it is obvious that P0 satisfies (3.3). So assume now
that Pk−1 satisfies (3.3). Note that the vertices of Pk which are not vertices of Pk−1 coincide with the intersections consisting
of a single point of the hyperplane {x ∈ Rn

| xk = 1} with the relative interior of edges of Pk−1. Besides, observe that the
relative interior of no bounded edge of Pk−1 can intersect {x ∈ Rn

| xk = 1} in a single point because that would imply
ξk > 1 for some vertex ξ of Pk−1, contradicting that V (Pk−1) ⊂ [0, 1]n (which follows from the fact that Pk−1 satisfies (3.3)
and R satisfies (3.1a)). Thus, any vertex of Pk which is not a vertex of Pk−1 is given by the intersection of the relative interior
of an unbounded edge of Pk−1 with {x ∈ Rn

| xk = 1}. Since R is up-monotone, any unbounded edge of Pk−1 is of the form
{ξ + γ eh | γ ≥ 0}, where ξ is a vertex of Pk−1 and h ∈ {k, . . . , n}. This completes the proof, because when the intersection
of {ξ + γ eh | γ ≥ 0} with {x ∈ Rn

| xk = 1} is not empty (i.e., when h = k), it consists of a point which can be obtained
replacing the hth component of ξ by a one. □
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The following is an immediate consequence of Theorem 3.2.

Corollary 3.3. Suppose R and P verify (3.1) and S is a polyhedron verifying V(R) ⊂ S ⊂ R and

ϕ(I, ζ ) ∈ S for all I ∈ P and ζ ∈ V(R).

Then V(P) ⊂ S, that is, P = R ∩ [0, 1]n ⊂ S.

So far we have not assumed the integrality of the vertices of R, and, for instance, Theorem 3.2 may be applied to R = Q (A)
(defined in (1.3)) and P = Q (A) (defined in (1.4)).

Before studying the case V(R) ⊂ Bn, where B = {0, 1} denotes the set of binary numbers, let us state without proof some
simple properties relating ϕ, binary points and vertices of R and P = R ∩ [0, 1]n.

Lemma 3.4. In the following we assume I ∈ P .

(a) If x ∈ Bn then ϕ(I, x) ∈ Bn.
(b) If x ∈ P ∩ Bn then x ∈ V(P).
(c) If x ∈ R ∩ Bn then ϕ(I, x) ∈ V(P).

The following result characterizes the vertices of P when the vertices of R are binary.

Corollary 3.5. If V(R) ⊂ Bn, P = R ∩ [0, 1]n, and ϕ is defined by (3.2), then

V(P) = {ϕ(I, ζ ) | I ∈ P, ζ ∈ V(R)}.

Proof. One inclusion is given by Lemma 3.4(c), and the other one by Theorem 3.2. □

Using Lemma 3.4, it is easy to see now that all vertices of R ∩ [0, 1]n are binary.

Corollary 3.6. If V(R) ⊂ Bn and P = R ∩ [0, 1]n, then V(P) ⊂ Bn.

We come now to the main result of this work.

Theorem 3.7. Assume V(R) ⊂ Bn, P = R ∩ [0, 1]n, and ξ and η are distinct vertices of R.
Then, ξ and η are adjacent in P if and only if they are adjacent in R.

Proof. Since V(R) ⊂ R ∩ Bn
⊂ R ∩ [0, 1]n = P ⊂ R, one implication is given by Lemma 3.1(b).

For the other, if ξ and η are adjacent in P there exist c ∈ Rn and b ∈ R such that

c · x ≥ b for all x ∈ P , with equality if and only if x ∈ [ξ, η]. (3.4)

If c > 0 the result follows by Proposition 2.2(b) because conv(V(R)) ⊂ P . So let us assume that the set

I = {i ∈ In | ci ≤ 0} (3.5)

is not empty. In this case, to prove that ξ and η are adjacent in R, we show that Proposition 2.2(c) is satisfied. Then, setting

V(R) = {ξ = ζ 1, η = ζ 2, . . ., ζ r
},

let a convex combination of the vertices of R of the form

z =

r∑
k=1

λkζ
k (3.6)

and µ ≥ 0 be such that

z + µ ∈ [ξ, η]. (3.7)

Notice that for any x ∈ [ξ, η] ⊂ P , since ϕ(I, x) ∈ P for such x and ci ≤ 0 for i ∈ I , by (3.4) we have

b = c · x =

∑
i̸∈I

cixi +
∑
i∈I

cixi ≥

∑
i̸∈I

cixi +
∑
i∈I

ci = c · ϕ(I, x) ≥ b,

and so c · ϕ(I, x) = b. It follows that ϕ(I, x) ∈ [ξ, η] by (3.4), and then that x = ϕ(I, x) by Lemma 2.1(b). In particular, we
conclude that

xi = 1 for all x ∈ [ξ, η] and all i ∈ I . (3.8)
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Letting

y =

r∑
k=1

λkϕ(I, ζ k), (3.9)

and defining τ component-wise by

τi =

{
0 if i ∈ I ,
µi otherwise, (3.10)

by checking the components and using (3.8) and (3.7), we see that y + τ = z + µ. Moreover, as τi = 0 for i ∈ I and ci > 0
for i ̸∈ I , by (3.4) we obtain

b = c · (z + µ) = c · (y + τ ) ≥ c · y ≥ b,

and therefore τi = 0 for i ̸∈ I , that is, τ = 0. Thus, we have y = z + µ ∈ [ξ, η].
By Lemma 3.4(c), ϕ(I, ζ k) ∈ V(P) for all k, and since y ∈ [ξ, η], (3.9) and the adjacency of ξ and η in P imply now that

for each k = 1, . . . , r , either ϕ(I, ζ k) ∈ {ξ, η} or λk = 0. Using Lemma 2.1(a) and the fact that ζ k
≤ ϕ(I, ζ k), we see that

ϕ(I, ζ k) ∈ {ξ, η} implies ζ k
∈ {ξ, η}. Thus, in (3.6) we must have either ζ k

∈ {ξ, η} or λk = 0, that is, Proposition 2.2(c) is
satisfied. □

Corollary 3.8. Suppose V(R) ⊂ Bn, S is a polyhedron such that V(R) ⊂ S ⊂ R and ϕ(I, ζ ) ∈ S for all I ∈ P and ζ ∈ V(R), and ξ

and η are distinct vertices of R (and hence of S by Lemma 3.1(a)).
Then ξ and η are adjacent in S if and only if they are adjacent in R.

Proof. Let us start by assuming that ξ and η are adjacent in S. By Corollary 3.3, P = R ∩ [0, 1]n ⊂ S, and adjacency in S
implies adjacency in P by Lemma 3.1(b) because {ξ, η} ⊂ V(S) ∩ P and P ⊂ S. So, by Theorem 3.7, ξ and η are adjacent in R.

On the other hand, if ξ and η are adjacent in R, their adjacency in S follows again from Lemma 3.1(b), as V(R) ⊂ S ⊂ R. □

The conclusion of relevance in Theorem 3.7 is that vertices in the up-monotone polyhedron R which are adjacent in
P = R ∩ [0, 1]n are also adjacent in R, provided that V(R) ⊂ Bn. As we have seen in the Introduction, we cannot discard
this hypothesis: if A is given by (1.5), then R = Q (A) has just one fractional vertex, and the vertices (1, 1, 0) and (0, 1, 1) are
adjacent in P = Q (A) but not in R.

4. The claim in the original article

The polyhedron

R = Q ∗(A) = conv({x ∈ Zn
| Ax ≥ 1, x ≥ 0}),

is up-monotone and V(R) ⊂ Bn, and it is simple to see that

S = Q ∗(A) = conv({x ∈ Zn
| Ax ≥ 1, 1 ≥ x ≥ 0})

satisfies the hypothesis in Corollary 3.8, proving Claim 1.1.
Notice that Corollary 3.3 implies Q ∗(A) ∩ [0, 1]n ⊂ Q ∗(A). On the other hand, clearly {x ∈ Zn

| Ax ≥ 1, 1 ≥ x ≥ 0} is
contained in both Q ∗(A) and [0, 1]n, so

Q ∗(A) = Q ∗(A) ∩ [0, 1]n,

and actually Theorem 3.7 may be applied directly.
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