
Dynamics of algebras in quantum unstable systems

Marcelo Losada and Sebastian Fortin∗

Universidad de Buenos Aires - Consejo Nacional de Investigaciones Cient́ıficas y Técnicas,

Ciudad de Buenos Aires, Argentina

Manuel Gadella
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Abstract

We introduce a dynamical evolution operator for dealing with unstable physical process, such

as scattering resonances, photon emission, decoherence and particle decay. With that aim, we use

the formalism of rigged Hilbert space and represent the time evolution of quantum observables in

the Heisenberg picture, in such a way that time evolution is non-unitary. This allows to describe

observables that are initially non-commutative, but become commutative after time evolution. In

other words, a non-abelian algebra of relevant observables becomes abelian when times goes to

infinity. We finally present some relevant examples.

∗ All authors contributed equally to this manuscript.
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I. INTRODUCTION

In previous papers [1–3], we considered the quantum-to-classical transition from the point

of view of the algebra of quantum observables. If a quantum system undergoes a physical

process such that its behavior becomes classical, then its algebra of observables should

undergo a transition from a non-Abelian algebra to an Abelian one. In order to describe

this kind of time evolutions, we have proposed to use the Heisenberg picture, so we can

consider the time evolution of the whole algebra of observables. It is important to remark

that, in the standard formalism of quantum mechanics, a closed system always evolves

unitarily. So, even in the Heisenberg picture, if two observables are incompatible at one

time, they will remain incompatible for every time. Therefore, with the aim of describing

the quantum-to-classical transition of the algebra of observables, it is necessary to go beyond

unitary time evolutions.

In this paper, we continue with this approach by studying more general models. We

introduce a dynamical evolution operator for dealing with unstable physical process (such

as scattering resonances, photon emission, decoherence, relaxations and particle decay). In

order to study the time evolution of their algebras of observables, we use the formalism of

rigged Hilbert space (RHS), which is a natural choice for describing these kind of systems.

The RGS description of quantum mechanics is an alternative formalism to that of von

Neumann. It has several applications, particularly in particle physics and in the study of

scattering processes. It also provides a rigorous description of eigenstates of the position

and momentum operators, in fact, it serves as a rigorous mathematical basis for the Dirac

formulation of quantum mechanics [4–9].

As mentioned above, the use of the Heisenberg picture allows to study the classical limit

from a different point of view. We show that an initially non-abelian algebra of relevant

observables, becomes an abelian one when times goes to infinity. We refer to this non-

abelian/abelian transition as commutation process. The study of this process focuses on the

dynamics of the algebras of observables. In this work we provide an explicit representation

of the time evolution operator for an extensive family of models described by the RHS

formalism. We show that, under certain conditions, a commutation process (of the form

described in [1–3]) is obtained for them. This phenomenon could be of interest for the study

of quantum scattering resonances. It consists in a scattering process in which the scattered
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particle ends up in a quasi-stationary state. As a result of our work, it turns out that the

use of non-Hermitian Hamiltonians of the form H+λV , introduces a natural ground for the

study of the commutation process of algebras.

The paper is organized as follows. In Section II, we introduce the problem of the dynam-

ical evolution of algebras and the logical quantum-to-classical transition. We illustrate our

ideas by discussing a simple case: quantum operations and the quantum damping channel.

Next, in Section III, we discuss the fundamental aspects of the RHS formalism. In Section

IV, we introduce a time evolution operator for observables in the RHS formalism. This

allows us to describe the commutation process for a family of models of unstable systems in

Section V.

II. LOGICAL QUANTUM-TO-CLASSICAL TRANSITION

The sets of properties of classical and quantum systems have a logical structure, given

by their orthocomplemented lattice structure [10] (see also [11–13] for a recent discussion on

the subject). The propositional approach to quantum systems has been used in diverse areas

of the foundations of quantum mechanics, as for example, in the study of quantum histories

[14–20]. Due to this structure, logical operations and logical relations between properties

can be defined, such as disjunction (∨), conjunction (∧), negation (¬) and implication (≤).

All orthocomplemented lattices satisfy certain relations, called distributive inequalities [21]:

a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c), a ∨ (b ∧ c) ≥ (a ∨ b) ∧ (a ∨ c), (1)

where a, b, and c are arbitrary properties of the system. When the equalities hold, the lattice

is called distributive. An orthocomplemented and distributive lattice is called a Boolean

lattice. The distributive property is an essential feature which differentiates classical and

quantum lattices.

In classical mechanics a physical system is represented by a phase space and the properties

of the system are represented by measurable subsets of its phase space. Therefore, the logical

structure of classical systems is given by the algebraic structure of sets [10]. The resulting

lattice is not only an orthocomplemented lattice, but also a distributive one, i.e., it is a

Boolean lattice. This logical structure is naturally related with classical logic.

The quantum case is very different. In quantum mechanics a physical system is rep-
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resented by a Hilbert space, observables are represented by self-adjoint operators on the

Hilbert space and physical properties are represented by orthogonal projectors [22]. The

logical structure of quantum systems is the algebraic structure of orthogonal projectors, and

it is known as quantum logic [23, 24].

Unlike classical logic, quantum logic is a non-distributive orthocomplemented lattice.

While in the classic lattice, all properties satisfy the distributive equalities, in the quantum

lattice, only distributive inequalities hold in general [10, 21]. However, for some subsets of

quantum properties the equalities hold. When a subset of properties satisfies the distributive

equalities, they are called compatible properties. It can be proved that properties associated

with different observables are compatible if the observables commute. If, on the contrary, two

observables do not commute, some of the properties associated with them are not compatible

[10, 24]. Therefore, by extension, commuting observables are called compatible observables.

The differences between classical and quantum logic are of fundamental importance for

describing the quantum-to-classical transition. If a quantum system undergoes a physical

process and as a consequence of this its behaviour becomes classic, then the logical structure

of its properties should undergo a transition from quantum logic to classical logic, i.e. its

lattice structure should become distributive. In order to give an adequate description of the

logical structure transition, we have proposed to describe the classical limit in terms of the

Heisenberg picture [1–3]. This perspective allows to consider the time evolution of the whole

lattice of properties, and to study the transition from classical to quantum logic.

It is important to remark that, when governed by the Schrödinger equation, the time evo-

lution of a closed system is always unitary. Even in the Heisenberg picture, if two observables

are incompatible at one time, they will remain incompatible at any time [3]. Therefore, for

describing the logical quantum-to-classical transition, it is necessary to consider more general

time evolutions.

In order to describe adequately the logical quantum-to-classical transition, let us consider

a quantum system with a general time evolution, and a time-dependent set of relevant

observables, O(t) = {Ôi(t)}i∈I (I an arbitrary set of indexes). Each set O(t) generates an

algebra of observables V(t), and each algebra has associated an orthocomplemented lattice

LV(t). We assume that initially some observables are incompatible, i.e., there are i, j ∈ I

such that
[
Ôi(0), Ôj(0)

]
6= 0. Therefore, the lattice LV(0) is a non-distributive lattice.

For quantum systems with only one characteristic time tc, the quantum-to-classical tran-

4



sition is given by the following process:[
Ôi(0), Ôj(0)

]
6= 0 −→

[
Ôi(tc), Ôj(tc)

]
= 0, ∀i, j. (2)

The logical classical limit is expressed by the fact that, while LV(0) is a non-distributive

lattice, LV(tc) is a Boolean one, i.e., it is a classical logic. In this way, we obtain an adequate

description of the logical evolution of a quantum system.

In order to illustrate the general idea of the logical classical limit, we are going to show

the logical transition of a physical with a quantum evolution given by a quantum channel.

A. A simple case: quantum operations

We consider a time evolution given by a quantum operation, and we define the corre-

sponding Heisenberg representation. Once we have defined the quantum operations on the

space of quantum observables, we study the logical quantum-to-classical transition of one

relevant example: the amplitude damping channel. We show that, when time goes to infinity,

the logical structure of the system becomes classical.

A quantum operation is a linear and completely positive map from the set of density

operators into itself [25]. For each time t, the quantum operation Et maps the initial state

ρ̂0 to the state at time t, i.e.,

Et(ρ̂0) = ρ̂(t), (3)

In terms of the sum representation, we can express Et as follows [25],

Et(ρ̂0) =
∑
µ

Êµ(t)ρ̂0Ê
†
µ(t), (4)

where Êµ(t) are the Kraus operators [26] associated with the map Et.

Now, we define the Heisenberg representation of a quantum operation Et as an operator

Ẽt which maps each observable Ô to another observable Ô(t) = Ẽt(Ô). We interpret Ô(t) as

the time evolved observable of Ô under the quantum operation. The map Ẽt must preserve

the mean values of all the observables, i.e.,

Tr
(
ρ̂(t)Ô

)
= Tr

(∑
µ

Êµ(t)ρ̂0Ê
†
µ(t)Ô

)
=

= Tr

(
ρ̂0

∑
µ

Ê†µ(t)ÔÊµ(t)

)
= Tr

(
ρ̂0Ô(t)

)
. (5)
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Therefore, the map Ẽt is given by

Ẽt(Ô) = Ô(t) =
∑
µ

Ê†µ(t)ÔÊµ(t). (6)

It easy to check that, if Ẽt(Ô) is a self-adjoint operator, then Ẽt maps the space of observables

into itself.

Once we have defined quantum operations in the Heisenberg picture, we can study the

logical classical limit of the system. Let us illustrate this process with a simple example: the

amplitude damping channel [25]. The amplitude damping channel is useful for describing the

energy dissipation of a quantum system due to the effects of an environment. It has many

applications in quantum information processing, because it is appropriate for modelling the

effects of quantum noise. This quantum map can be used to describe the decay of an excited

state of a two-level atom due to the spontaneous emission of a photon. If the atom is in the

ground state there is no photon emission, and the atom continues in the ground state. But,

if the atom is in the excited state, after an interval of time τ , there is a probability p that

the state has decayed to the ground state and a photon has been emitted [25].

The quantum map which represents the amplitude damping channel can be expressed in

term of two Kraus operators [25],

Eτ (ρ̂0) = Ê0ρ̂0Ê
†
0 + Ê1ρ̂0Ê

†
1, (7)

with the Kraus operators given by

Ê0 =

 1 0

0
√

(1− p)

 , Ê1 =

 0
√
p

0 0

 . (8)

In the Heisenberg picture, we have an associated quantum map Ẽτ acting on the space of

observables, given by Ẽτ (Ô) = Ê†0ÔÊ0 + Ê†1ÔÊ1. In matrix form, we have the following

expression,

Ẽτ (Ô) =

 O00

√
1− pO01

√
1− pO10 pO00 + (1− p)O11

 . (9)

If we apply the amplitude damping channel n times, we obtain the quantum map Ẽnτ (Ô)

given by

Ẽnτ (Ô) =

 O00

√
(1− p)nO01√

(1− p)nO10

∑n−1
i=0 p(1− p)iO00 + (1− p)nO11

 . (10)

6



This can be reduced to

Ẽnτ (Ô) =

 O00

√
(1− p)nO01√

(1− p)nO10 (1− p)nO11 +O00 [1− (1− p)n]

 . (11)

Considering the limit n −→∞, we obtain

Ẽ∞(Ô) =

 O00 0

0 O00

 . (12)

Thus, when t −→∞, all observables become multiples of the identity. This means that the

whole algebra of observables becomes trivially commutative, and therefore, the associated

lattice becomes Boolean.

The quantum-to-classical transition was extensively studied in the physics literature from

the point of view of the quantum state evolution. However, from this perspective observables

do not evolve on time. In previous papers, we argued that this kind of descriptions of the

classical limit based on the Schrödinger picture is not adequate for explaining the quantum-

to-classical transition of the logical structure of a system. Instead, the description in terms of

the Heisenberg picture allows to describe how the quantum structure of properties becomes

a Boolean.

III. UNSTABLE SYSTEMS AND RIGGED HILBERT SPACE

In the previous section we have studied the commutation process for a simple case. From

a more general perspective, this phenomenon can appear when the evolution of the system

is non-unitary [27–29]. A natural way of describing this kind of processes has been largely

studied in the literature of resonances and unstable quantum systems [30–36]. In most of

these models, resonances appear associated with poles of the scattering matrix and give

place to decay times, which can be related with relaxation and decoherence processes [37–

41]. The formalism of rigged Hilbert space is a natural choice for describing these kind of

physical processes. In what follows, we will study the commutation process in the context

of this formalism.

The study of unstable physical systems usually appeals to a master equation or a non-

Hermitian Hamiltonian, giving place to a non-unitary evolution in the Hilbert space [35, 36,

42–44]. In this paper we explore a different approach: we change the Hilbert space for a
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rigged Hilbert space, in which we obtain an evolution that is suitable for describing unstable

systems, and we construct a time evolution operator which is formally Hermitian although

not unitary. This non-unitarity will allow the evolution from a non-commutative algebra of

observables to a commutative one.

Resonance scattering is produced by a Hamiltonian pair {H0, H} with H = H0 + V .

Here, H0 is the so called free Hamiltonian and V is an interaction. If we consider a three

dimensional system, usually H0 = p2/2m and V is given by a spherically symmetric function

of the position r, V (r). For simplicity, we also assume that V (r) is short range (vanishes

at the infinity faster than the Coulomb interaction) or even of compact support (it is zero

outside a finite region).

Quasi stationary states are produced when an incoming particle enters into the interacting

region, where the potential V is non-zero, and stays in this region for a much longer period

of time than it would have been if the interaction were absent.

Quasi stationary states are usually identified with resonances [45]. Resonances are con-

ceptually defined in two ways. We may always assume that the continuous spectrum of both

H0 and H is given by R+ ≡ [0,∞). For simplicity, we also may assume that both Hamil-

tonians do not have bound states (which implies a restriction to the continuous subspace),

singular spectrum or even that the absolutely continuous spectrum is not degenerate (which

in the case of three dimensional spherically symmetric potentials is equivalent to choose the

subspace with ` = 0). Although none of these simplifications is essential, we will restrict

our considerations to Hamiltonians with a non-singular continuous spectrum.

Definition 1.- For any pure state ψ ∈ H in the Hilbert space H, let us consider the

following pair of complex functions

F0(z) := 〈ψ|(H0 − z)−1|ψ〉, F (z) := 〈ψ|(H − z)−1|ψ〉. (13)

These functions are meromorphic having the positive semi-axis R+ as branch cut. Then, if

for some ψ ∈ H, F (z) has a pole at ZR and F0(z) does not, then we say that the Hamiltonian

pair {H0, H} has a resonance at zR [46].

Definition 2.- Take the S matrix in the momentum representation, so that S is a function

of the modulus, p := |p| of the momentum p, so that S ≡ S(p). Under some hypothesis

related with causality, S(p) is analytically continuable to the complex plane as a meromor-

phic function (that may have additionally branch cuts). The isolated singularities of this
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extension are poles (never essential singularities). Poles on the imaginary axis are always

simple. Poles on the positive imaginary axis represent bound states, poles on the negative

imaginary axis are linked to the existence of antibound or virtual states. Finally, resonances

are given by pair of poles on the lower half plane, equidistant with respect to the imaginary

axis. Each of these poles represent a single resonance. In principle, there is no restriction

with respect to the order of resonance poles.

It is customary to represent the S matrix in terms of the energy under the transformation

p =
√

2mE. Since the square root is a multiform function supported on a two sheeted

Riemann surface, the same property is shared by the function S(E) [47]. On this Riemann

surface, resonance poles appear in complex conjugate pairs and lie on the second sheet.

The equivalence of both definitions has not been thoroughly investigated, although it

goes well for some simple models. In addition, there are some other definitions based on

physical notions, which are only equivalent under additional assumptions [47, 48]. We may

add that, although the first definition we give here is widely accepted by mathematicians,

the second one is more popular among physicists. We are using this definition in the sequel.

In a high number of previous articles, we have discussed the construction of Gamow

vectors in an abstract setting when the potential satisfies the above mentioned conditions.

Let us summarize the main properties of these Gamow vectors.

• Let us consider a resonance defined as a pair of complex conjugate poles of the analytic

continuation of the S(E) matrix in the energy representation. These poles are located

at the points zR = ER− iΓ/2 and z∗R = ER+ iΓ/2. Let us assume that these resonance

poles are simple, otherwise unnecessary complications will emerge in the model. The

general theory shows that one may define two vectors, |ψG〉 and |ψD〉, related to z∗R

and zR, respectively, with some properties that we mention in the sequel.

• Both Gamow vectors, |ψG〉 and |ψD〉, are eigenvectors of the total Hamiltonian H with

respective eigenvalues given by z∗R and zR, so that

H|ψG〉 = z∗R |ψG〉 , H|ψD〉 = zR |ψD〉. (14)

These relations define both Gamow vectors.

• However, H is a self adjoint Hamiltonian and a self adjoint Hamiltonian cannot have

complex eigenvectors. The situation is saved if we extend H to the anti-dual space
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Φ× of a rigged Hilbert space (RHS in the sequel) Φ ⊂ H ⊂ Φ×. In general, one may

construct two RHS Φ± ⊂ H ⊂ Φ×± such that H|ψG〉 = z∗R |ψG〉 is valid in Φ×− and

H|ψD〉 = zR |ψD〉 is valid in Φ×+.

• The spaces Φ+ and Φ− are unitarily equivalent to spaces of complex analytic functions

on the upper and lower half planes, respectively. This construction permits the use of

complex analytic function techniques to obtain our results. In particular, the use of

Hardy functions on a half plane permits a formulation for time asymmetric quantum

mechanics valid for scattering processes.

• We may extend the evolution operator to the antidual spaces Φ×− and Φ×+, so that this

operator may be applied to the Gamow vectors. The result is given by the following

pair of relations

e−itH |ψG〉 = e−itER etΓ/2 |ψG〉, e−itH |ψD〉 = e−itER e−tΓ/2 |ψD〉. (15)

Note that |ψG〉 grows and |ψD〉 decays as time increases in the positive direction.

Consequently, |ψG〉 and |ψD〉 are named the growing and the decaying Gamow vector,

respectively.

• When the spaces Φ± are constructed using Hardy functions, the first relation in (15) is

valid for t ≤ 0 only. Analogously, the second relation in (15) is valid for t ≥ 0 only. In

this formalism, the unitary group of time evolution splits into two semigroups, one for

t ≤ 0 and the other for t ≥ 0. Thus, these RHS supports a semigroup representation

of time evolution.

• Thus, we have two apparently different processes, one for t ≤ 0 and the other for

t ≥ 0. However, the time reversal operator T transforms a process into the other, so

that both are essentially equivalent. In particular,

T |ψG〉 = |ψD〉 , T |ψD〉 = |ψG〉. (16)

• Nevertheless, the basis for time asymmetric quantum mechanics consists in giving

a completely different interpretation to both processes. Roughly speaking, the RHS

Φ− ⊂ H ⊂ Φ×− contains the system observables, while Φ− ⊂ H ⊂ Φ×− the states. Then,

both are different and, thus, time asymmetry acquires a sense.
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In this s ection we have presented the standard formalism of Rigged Hilbert spaces. Our

aim is to introduce a time evolution operator in order to describe the evolution of operator

algebras in this setting. Thus, we need to write first the non-Hermitian Hamiltonian in a

spectral decomposition-like expression. This is the subject of the next section.

IV. GENERALIZED TIME EVOLUTION OPERATOR IN THE RIGGED

HILBERT SPACE FORMALISM

In the usual approach to rigged Hilbert space, the dynamical description is focused on the

time evolution of mean values of observables. However, the expression of a time evolution

operator for states (or operators, as seen from the perspective of the Heisenberg picture)

was not present in the literature. Here we introduce such a time evolution operator. This

will allow us to map non-Abelian algebras into Abelian ones.

A. Non-Hermitian Hamiltonian

It was shown that any vector ϕ+ ∈ Φ+ can be expanded as

ϕ+ =
∑
i

αi|ψDi 〉+ |ψB〉, (17)

where the sum extends to all resonances, αi are complex numbers and |ψB〉 is the background

term. This term is added in order to avoid a purely exponential decay of normalizable vectors

in Hilbert space. Since Φ+ ⊂ Φ×+, equation (17) is valid in Φ×+. Since ϕ+ is normalizable

and the Gamow vectors are not, we conclude that the background term |ψB〉 cannot be

normalizable either.

Analogously, for any ϕ− ∈ Φ−, we have the following expansion:

ϕ− =
∑
i

βi|ψGi 〉+ |φB〉. (18)

Correspondingly, in [49], we have shown that there are two possible expansions for the

total Hamiltonian H given by the following expressions,

H =
∑
i

zRi
|ψDi 〉〈ψGi |+BGR (19)

H† =
∑
i

z∗Ri
|ψGi 〉〈ψDi |+BGR∗ . (20)
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Both expressions are the formal adjoint of each other. This is why we add the dagger in

the second expansion. They act on different spaces:

H ∈ L(Φ−,Φ
×
+), H† ∈ L(Φ+,Φ

×
−), (21)

where L(Φ±,Φ
×
∓) is the space of continuous linear mappings from Φ± to Φ×∓. Expressions

like BGR or BGR∗ denote the projection onto the background subspace.

In general, the leading term corresponds to the resonance contribution and the back-

ground in (19) is usually small. As a matter of fact, deviations of the exponential law occur

for very small and for very large times and are difficult to be observed. This is why we

may omit the background term for most of observational times. In consequence, a good

approximation for expansions (19) and (20) is given if we omit the background, so that

H =
∑
i

zRi
|ψDi 〉〈ψGi | , H† =

∑
i

z∗Ri
|ψGi 〉〈ψDi |. (22)

Let us insist that the distinction between H and H† is purely conventional so that we could

have called H or H† to any of them.

Now, we have the mathematical tools to analyze decoherence produced by resonances.

We show that the above described time evolution gives place to a commutation process.

B. Time evolution operator

In order to avoid possible convergence problems, we may assume that the number of

resonances is finite. From the purely mathematical point of view, this assumption is not

fulfilled for most quantum models, but it is still valid in some useful toy models, such as

Friedrichs’s one. It is nevertheless true that resonances with large imaginary terms are not

observable, as the inverse of the imaginary part is related with the mean life. Also, in the

context of a non relativistic theory, large values for the resonance energy ER are meaningless.

In this way, the approximation having a finite number of resonances is a reasonable one.

In [49], we have defined a pseudometrics for Gamow vectors. The idea of using pseudo-

metrics was discussed heuristically in previous articles [50, 51]. As mentioned before, let

us assume that the number of resonance poles is finite {z1, z
∗
1 , z2, z

∗
2 , . . . , zN , z

∗
N}. Let us

consider the 2N dimensional space, HG, spanned by the Gamow vectors corresponding to

these resonances,

{|ψD1 〉, |ψG1 〉, |ψD2 〉, |ψG2 〉, . . . , |ψDN〉, |ψGN〉}. (23)
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Notice that HG ⊂ Φ×∓. We define a pseudometrics in HG by appealing to a matrix:

A :=



0 1 . . . . . . . . . . . . . . .

1 0 . . . . . . . . . . . . . . .

. . . . . . 0 1 . . . . . . . . .

. . . . . . 1 0 . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . 0 1

. . . . . . . . . . . . . . . 1 0


. (24)

All entries of A which are not explicitly given are zero. Then, the pseudoscalar product of

two vectors |ψ〉, |ϕ〉 ∈ HG, (ψ|ϕ), is (ψ|ϕ) = 〈ψ|A|ϕ〉. For the basis (23), the pseudoscalar

products are given by

(ψDi |ψDj ) = (ψGi |ψGj ) = 0, (ψDi |ψGj ) = (ψGi |ψDj ) = δij, (25)

where δij is the Kronecker delta.

In order to define a sort of time evolution on the space HG, we need to use this pseudo-

metrics. First, let us replace the Hamiltonian (22) by

H =
N∑
i=1

zi |ψDi )(ψGi |. (26)

More details are discussed in the Appendix. Using the pseudometrics, the square of H

should be

H2 =
N∑
i=1

zi |ψDi )(ψGi |
N∑
j=1

zj |ψDj )(ψGj | =
N∑
i=1

N∑
j=1

zi zj |ψDi )(ψGi |ψDj )(ψGj |

=
N∑
i=1

N∑
j=1

zi zj |ψDi )δij(ψ
G
j | =

N∑
i=1

z2
i |ψDi )(ψGi |, (27)

so that

Hn =
N∑
i=1

zni |ψDi )(ψGi |. (28)

This allows us to define an expression of the type e−itH as follows

U := e−itH =
N∑
j=1

e−itzj |ψDj )(ψGj |. (29)

The above expression can be used as time evolution operator on the space of Gamow vectors.

Notice that, in principle, the expression is valid for any value of t. Furthermore, we have

e−itH ∈ L(Φ−,Φ
×
+).
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V. COMMUTATORS

In this section, we finally deal with the Fort́ın, Holik, Vanni approach for the decoherence

of observables [2]. In the first term, we discuss the simplest case in which a single resonance

is present, like in the basic Friedrichs model. We show that the difference between the

existence of one or more resonances goes beyond the actual complication on the notation.

We recall that we are studying a resonance scattering process in which the background

term is neglected. Then, our construction is restricted to the space spanned by the Gamow

vectors. In addition, we use the approximation of having a finite number of resonances

(this approximation was motivated in the previous sections). In this way, the observables

under our consideration are operators acting on the finite dimensional space spanned by the

Gamow vectors.

A. One resonance

Let O be an observable on the space of Gamow states. Assume that O evolves with time.

In this case, we have to define what we understand by time evolution of an observable. In the

case of having just one resonance, we propose to use the “complete” Hermitian Hamiltonian

defined as

H = zR|ψD)(ψG|+ z∗R|ψG)(ψD|. (30)

With the aid of the pseudo-metrics (25), we obtain the following expressions

Hn = znR|ψD)(ψG|+ (z∗R)n|ψG)(ψD| (31)

and

U(t) := e−itH = e−itzR |ψD)(ψG|+ e−itz
∗
R |ψG)(ψD|. (32)

To find the formal inverse of e−itH , we need to know an expression for the identity. Since

{|ψD), |ψG)} is a basis in HG, let us write

I := |ψD)(ψG|+ |ψG)(ψD|. (33)

This is the identity on HG. Indeed,

I|ψD) = |ψD)(ψG|ψD) + |ψG)(ψD|ψD) = |ψD). (34)

14



Analogously, I|ψG) = |ψG). Then, the linearity of I shows that this is indeed the identity

on HG. Then, the inverse of U(t) is

U(t)−1 = eitzR |ψD)(ψG|+ eitz
∗
R |ψG)(ψD| = U(−t), (35)

since, using the pseudometric relations (25), we have that U(t) = U(−t) = I.

Next, the time evolution of the operator, which at time t = 0 is O is now

O(t) = U(t)OU(−t). (36)

We have just one resonance with resonance pole at zR = ER − iΓ/2, so that the above

equation reads

O(t) =
[
e−itzR |ψD)(ψG|+ e−itz

∗
R |ψG)(ψD|

]
O
[
eitzR |ψD)(ψG|+ eitz

∗
R |ψG)(ψD|

]
=

= |ψD)(ψG|O|ψD)(ψG|+ e−tΓ|ψD)(ψG|O|ψG)(ψD|+

+ etΓ|ψG)(ψD|O|ψD)(ψG|+ |ψG)(ψD|O|ψG)(ψD|, (37)

where the “averages” (ψG|O|ψG), etc are in principle well defined, since we work on a finite

dimensional space. In fact, the dimension is 2 in this case.

This provides undesirable terms in etΓ with t > 0, so that we have to give up the condition

U(t)U(−t) = I. A second choice for the time evolution of the observables will include the

following ingredients:

U(t) = e−itzR |ψD)(ψG|+ eitz
∗
R |ψG)(ψD|. (38)

The point is that this operator is formally Hermitic. Clearly, its square is not the identity,

instead

U(t)U †(t) = U2(t) = e−tΓI. (39)

This choice provides more desirable results. The standard definition of the time evolution

for an observable states that the value of the observable O after a time t is given by O(t) :=

U †(t)OU(t). In our case, U †(t) = U(t). Note that the commutator

[O1(t), O2(t)] = U(t)O1U(t)U(t)O2U(t)− U(t)O2U(t)U(t)O1U(t) =

= e−tΓ[U(t)O1O2U(t)− U(t)O2O1U(t)] =

= e−tΓU(t)[O1, O2]U(t). (40)
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Using the above machinery, we may calculate U(t)[O1, O2]U(t). It is a sum of four terms:

e−2iER e−tΓ |ψD)(ψG|[O1, O2]|ψD)(ψG|,

e2iER e−tΓ |ψG)(ψD|[O1, O2]|ψG)(ψD|,

e−tΓ |ψD)(ψG|[O1, O2]|ψD)(ψG|,

e−tΓ |ψG)(ψD|[O1, O2]|ψG)(ψD|.

The terms of the form (ψG|[O1, O2]|ψD) and (ψD|[O1, O2]|ψG) should be well defined as they

are “averages” of linear operators on finite dimensional spaces. We realize that (40) is of

the form:

[O1(t), O2(t)] = e−2tΓ {α(t)|ψD)(ψG|+ β(t)|ψG)(ψD|}, (41)

where α(t) and β(t) are constants for which the dependence on t is just a phase of the form

e±2itER with ER real. We have obtained the result given in [2].

B. More than one resonance

Here, the procedure is the same, although calculations are more cumbersome. In general,

one should obtain

[O1(t), O2(t)] =
N∑
j=1

e−2tΓj {αj(t)|ψDj )(ψGj |+ βj(t)|ψGj )(ψDj |}, (42)

where the resonance poles are located at the points zj = Ej − iΓj/2, j = 1, 2, . . . , N .

C. Compatibility with TAQM

It is important to remark that the formalism presented in this work can be applied to

a wide family of physical models of interest. As an example, we show in this section the

compatibility with the TAQM formalism [52, 53], which finds applications in scattering

resonances and more recently in classical and quantum optics [54, 55].

Let us go to (38) and observe the coefficients e−itzR for |ψG)(ψD| and eitz
∗
R for |ψD)(ψG|.

Also note that, in the standard formulation of TAQM using RHS of Hardy functions on a

half plane, we have the following evolution rules:

e−itH |ψD) = e−itzR |ψD) , t ≥ 0, (43)

16



and

e−itH |ψG) = e−itz
∗
R |ψG) = ei(−t)z

∗
R |ψG) , t ≤ 0. (44)

If we want to have a forward time evolution, we use the conversion −t 7−→ t in (44). Thus,

for t ≥ 0, the expression eitzR |ψG) has full sense. Contrary, for t ≤ 0 time evolution for these

Gamow vectors does not exist in the context of TAQM. Therefore, equations (43,44) are

valid for t ≥ 0 only from this point of view.

VI. CONCLUSIONS

In previous works [1–3], we have studied the quantum-to-classical transition from the

point of view of the algebra of observables of the system. If a quantum system undergoes

a physical process such that its behavior becomes classical, then its algebra of observables

should undergo a process from a non-Abelian algebra to an Abelian one.

In this paper, we continue this approach. We introduce a dynamical evolution operator

for dealing with unstable physical process (such as scattering resonances, photon emission,

decoherence and particle decay). In order to do this, we use the formalism of rigged Hilbert

space and we represent the time evolution of quantum observables in the Heisenberg picture,

in such a way that time evolution is non-unitary. This allows us to describe observables that

are initially non-commutative, but become commutative after time evolution. Therefore, we

show that the quantum-to-classical transition based in dynamical algebras, occurs in a rich

family of models of unstable systems.

Appendix

The replacement of (22) by (26) is the change of H given by (22) by BHB, where B is a

square root of A. As a matter of fact, this means the use of a new operator H of the form:

H =
N∑
i=1

ziB|ψDj 〉〈ψGj |B, (45)

where B is not uniquely defined. We may choose the following definition for B: replace the

2× 2 dimensional nonvanishing boxes in A by

(−i)1/2

 i
√

2/2
√

2/2

√
2/2 i

√
2/2

 . (46)
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Note that B|ψDi 〉 = |ψDi ) and 〈ψGi |B = (ψGi |. The square of H as in (45) is given by

H2 =
N∑
i=1

N∑
j=1

zizjB|ψDi 〉〈ψGi |BB|ψDj 〉〈ψGj |B =

=
N∑
i=1

N∑
j=1

zizjB|ψDi 〉〈ψGi |A|ψDj 〉〈ψGj |B =

=
N∑
i=1

N∑
j=1

zizjB|ψDi 〉 δij 〈ψGj |B = B

[
N∑
i=1

z2
i |ψDi 〉〈ψGj |

]
B. (47)

Thus,

e−itH = B

[
N∑
i=j

e−itzj |ψDj 〉〈ψGj |

]
B. (48)

In relation with the formal adjoint H†, it seems convenient to use another square root of

A, that we call C. Formally, C is the adjoint of B, C := B†. It is a square root of A since

B†B† = (BB)† = A† = A. Then, the new H† would be

H† = C

[
N∑
i=1

z∗i |ψGi 〉〈ψDi |

]
C =

N∑
i=1

z∗i |ψGi )(ψDi |. (49)

Then, |ψGi ) = C|ψGi 〉 and (ψDi |C = 〈ψDi |.

This choice has an interest by its own. In fact, note that the following expression is

formally Hermitian:

H =
N∑
i=1

zi|ψDi 〉〈ψGi |+
N∑
j=1

z∗j |ψGj 〉〈ψDj |. (50)

Then, the formal hermiticity of

H =
N∑
i=1

zi|ψDi )(ψGi |+
N∑
j=1

z∗j |ψGj )(ψDj | (51)

requires that (51) be equal to

H = B

[
N∑
i=1

zi|ψDi 〉〈ψGi |

]
B + C

[
N∑
j=1

z∗j |ψGj 〉〈ψDj |

]
C. (52)
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