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Abstract In yeasts, several sensing systems localized to
the plasma membrane which transduce information
regarding the availability and quality of nitrogen and
carbon sources and work in parallel with the intracel-
lular nutrient-sensing systems, regulate the expression
and activity of proteins involved in nutrient uptake and
utilization. The aim of this work was to establish whe-
ther the cellular signals triggered by amino acids modify
the expression of the UGA4 gene which encodes the
d-aminolevulinic (ALA) and c-aminobutyric (GABA)
acids permease. In the present paper, we demonstrate
that extracellular amino acids regulate UGA4 expression
and that this effect seems to be mediated by the amino
acid sensor complex SPS (SSY1, PTR3, SSY5).
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Introduction

In Saccharomyces cerevisiae, d-aminolevulinic acid
(ALA) and c-aminobutyric acid (GABA) are imported
into the cells through the Uga4 permease (Grenson et al.
1987; Bermúdez Moretti et al. 1996). GABA is also
imported through the general amino acid permease
(Gap1p) and the proline-specific permease (Put4p)
(Grenson et al. 1987).

Expression of the UGA4 gene depends on the
GABA induction and nitrogen catabolite repression
(NCR). Induction of this permease requires at least two
positive acting proteins, the specific Uga3p factor and
the pleiotropic Dal81p/Uga35p factor (Bricmont et al.
1991; André et al. 1995). These factors act through
a 19-bp CG-rich upstream activating sequence,
UASGABA. The promoter region of UGA4 also contains
four adjacent repeats of the heptanucleotide 5¢-CGA-
T(A/T)AG-3¢, which constitute an UASGATA element.
This element can potentially confer high levels of
expression in the absence of inducer. Nevertheless, this
potential activity is inhibited in uninduced cells grown
under conditions of nitrogen derepression, by a strong
repression mechanism, involving Dal80p/Uga43p, a
pleiotropic regulatory factor (André et al. 1995;
Cunningham et al. 1994). Gln3p, another GATA
transcriptional factor, acts in the presence of inducer
up-regulating the expression of UGA4 by competing
with Dal80p/Uga43p for binding to the UASGATA se-
quence (Coffman et al. 1997; Soussi-Boudekou et al.
1997). The outcome of this competition influences basal
levels of transcription. NCR is superimposed on the
above regulation; availability of preferred nitrogen
sources mediates the ability of Ure2p, a preprionic
cytoplasmic protein, to prevent nuclear localization of
Gln3p, and consequently, its activity (Kulkarni et al.
2001). Tor1/2 signal transduction pathway is involved
in this regulation (Cooper 2002).
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Several sensing systems localized to the plasma
membrane transduce information regarding the avail-
ability and quality of nitrogen and carbon sources and
work in parallel with intracellular nutrient-sensing
systems regulating the expression and activity of pro-
teins involved in nutrient uptake and utilization.
Among the extracellular sensing complexes, there are
two glucose sensors, SNF3 and RGT2 (Özcan et al.
1996); a G-protein coupled receptor that is activated
by the presence of fermentable sugars, GPR1 (Kraak-
man et al. 1999; Lorenz et al. 2000); a high affinity
ammonium transporter, MEP2 (Marini et al. 1997),
that may function as an ammonium sensor (Lorenz
and Heitman 1998); a general amino acid permease,
GAP1, that may also act as an amino acid sensor
(Donaton et al. 2003); and a multicomponent amino
acid sensor complex known as SPS sensor (SSY1,
PTR3, SSY5), which contains a transmembrane Ssy1p
protein together with peripheral plasma membrane
Ptr3p and Ssy5p proteins (Didion et al. 1998; Iraqui
et al. 1999; Klasson et al. 1999; Forsberg and Ljung-
dahl 2001; Bernard and André 2001).

The aim of this work was to determine whether the
UGA4 gene, encoding the ALA and GABA permease,
could be included among the genes that are under the
control of amino acid-sensing systems.

Materials and methods

Strains and growth conditions

The Saccharomyces cerevisiae strains 23344c (ura3),
30629c (ura3 gap1D::kanMX2) and 30995b (ura3
ssy1D::kanMX2) used in this study are isogenic with
the wild type S1278b (Béchet et al. 1970) except for
the mutations mentioned. These strains were kindly
supplied by S. Vissers from the Université Libre de
Brussels, Belgium. Strains transformed with YEp357
plasmid (Myers et al. 1986) containing the UGA4::-
lacZ fusion gene were also used. The UGA4::lacZ
fusion gene was constructed by replacing the EcoRI-
HindIII fragment of plasmid YEp357 with a PCR
amplified fragment spanning nucleotides �583 to +15
with respect to the ATG initiation codon of UGA4
(YEp UGA4::lacZ) (Correa Garcı́a et al. 2000).
Selective medium was minimal medium without uracil.

Cells were grown in the minimal buffered (pH6.1)
medium previously described by Jacobs et al. (1980).
Carbon and nitrogen sources were 3% glucose and
10 mM proline, respectively. Medium was supplemented
with amino acids as described previously (Sherman
1991).

b-Galactosidase assay

An aliquot (10 ml) of a culture of exponentially
growing cells (A570 nm: 0.7–1.0) was collected by cen-

trifugation and resuspended in 2 ml buffer Z (Miller
1972). b-galactosidase activity measured according to
Miller (1972) was expressed as Miller units. At least
duplicate assays for each of the two independent
transformants were performed for each value reported.
The deviation of these values from the mean was less
than 15%.

Results and discussion

Since basal level of UGA4 expression is low and it is
induced in the presence of GABA, we decided to
examine whether GABA-dependent UGA4 induction
was modulated by amino acids. For this purpose, b-
galactosidase activity from cells under different condi-
tions and carrying YEp UGA4::lacZ was measured.
When GABA was added to wild type cells grown in the
presence of amino acids (Fig. 1a, up triangles), the
induction of UGA4 was significantly lower than when it
was added to cells grown without amino acids (Fig. 1a,
circles) or with amino acids but transferred to fresh
amino acid-free medium before the addition of GABA
(Fig. 1a, squares). Similar curves were obtained using
citrulline or leucine instead of all amino acids (data not
shown). These results clearly show that the presence of
amino acids affected induction of the UGA4 gene pro-
ducing a delay but not an abolishment of this induction.
Interestingly, the induction observed after adding
GABA was similar in cells grown without amino acids
(Fig. 1a, circles) or with amino acids but transferred to
fresh amino acid-free medium (Fig. 1a, squares), sug-
gesting that the amino acids present in the medium but
not intracellular amino acid pools were affecting UGA4
induction and that there was a very rapid response to
external amino acid depletion. The rapid recovery of the
induction rate implicates post-translational changes ra-
ther than de novo synthesis of proteins. This is in
agreement with the conformational changes of SPS
sensor previously reported (Forsberg and Ljungdahl
2001).

To establish which one of the two amino acid sensors
postulated so far was responsible for the observed effect
on UGA4 expression we carried out b-galactosidase as-
says using a gap1D strain (Fig. 1b) and an ssy1D strain
(Fig. 1c). The effect of amino acids on UGA4 induction
was identical in gap1D (Fig. 1b) and wild type (Fig. 1a)
cells. In contrast, the levels of UGA4 induction were
similar in ssy1D cells grown in the presence (Fig. 1c, up
triangles) or absence (Fig. 1c, circles, squares) of amino
acids. These results clearly indicate that in the absence of
a functional SPS sensor, the presence of amino acids did
not affect the GABA induction. All these results to-
gether prompted us to postulate that the effect of amino
acids on UGA4 expression would be mediated by SPS
sensor rather than GAP1.

In this work, we demonstrate that GABA-dependent
UGA4 expression is repressed by extracellular amino
acids and that the sensing system involved in this



response is SPS. Interestingly, unlike a number of other
genes regulated by SPS such as those encoding other
amino acid permeases (AGP1, BAP2, BAP3, GNP1,
TAT1 and TAT2), the peptide transporter PTR2 and
arginase (CAR1) (Forsberg and Ljungdahl 2001), SSY1
is not fully required for the induction of UGA4.

However, it does significantly contribute to the high
levels of expression seen in the wild type grown in the
absence of amino acids. Our results support the idea
postulated by Abdel-Sater et al. (2004) who predicted
that the addition of amino acids leads not only to the
induction of Ssy1-regulated genes but also to the down-
regulation of other genes under the regulation of Dal81p/
Uga35p such as allophanate-inducible DUR genes.

Genome-wide expression analysis reports, which
showed that SPS sensor regulates the transcription of
several amino acid permease genes as well as other
nitrogen metabolizing genes (Forsberg et al. 2001;
Kodama et al. 2002), did not include UGA4 among
those genes modulated by the SPS sensor. This is not a
discrepancy since in their working conditions the UGA4
inducer, GABA, was not present. Genome wide
expression analysis has revealed many genes affected by
SPS sensor, but many other genes apart from UGA4
might have failed to be detected although being under
this regulation. On the other hand, there is still a need
for further research to elucidate the transduction path-
way involved in the regulation of each particular gene.
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