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The possible different phases of homogeneous cold quark matter in the presence of a finite magnetic
field and chemical potential are obtained within the SU(3) NJL model for two parameter sets often used in
the literature. Although the general pattern is the same in both cases, the number of intermediate phases is
parameter dependent. The chiral susceptibilities, as usually defined, are different not only for the s quark as
compared with the two light quarks, but also for the u and d quarks, yielding nonidentical crossover lines
for the light quark sector. The results for stellar matter, imposing charge neutrality and β equilibrium, are
also presented for the same sets of parameters. The corresponding phase diagrams show some differences
with respect to the symmetric cases. It is found that for stellar matter the inverse catalysis effect is less
pronounced and the transition to the fully chiral symmetry-restored phase occurs at higher chemical
potentials.
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I. INTRODUCTION

The study of the QCD phase diagram, when matter is
subject to intense external magnetic fields, has been
recently a topic of intense investigation. The fact that
magnetic fields can reach intensities of the order of
B ∼ 1019 G or higher in heavy-ion collisions [1] and up
to 1018 G in the center of magnetars [2,3] made theoretical
physicists consider matter subject to a magnetic field both at
high temperatures and low densities and low temperatures
and high densities. The majority of the effective models
foresee that at zero chemical potential a crossover transition
is obtained at a pseudocritical temperature, Tpc, that
increases with an increasing magnetic field, a behavior that
is contrary to the one found in lattice QCD (LQCD)
calculations [4–6]. Possible physical explanations for this
discrepancy have been recently given in Refs. [7–9]. The
physical arguments aremostly based on the fact that in quark
effective models some effects are missing due, for instance,
to the indirect interaction between the gluons and the
magnetic field via quark exchange. Such a backreaction
is naturally implemented in the so-called entangled
Polyakov-Nambu-Jona-Lasinio model (EPNJL) [10] in
which the four-quark coupling of the Nambu-Jona-
Lasinio model (NJL) [11] is considered to be dependent
on the Polyakov loop. Although such a model is also unable
[12] to produce inverse magnetic catalysis (IMC), a very
recent study [13] has shown the existence of such effect. In
those studies, the lattice data are fitted under the assumption

that the pure gauge-critical temperature T0 (a parameter in
the NJLmodel) is a function of the magnetic field. The four-
quark coupling of the NJL model has also been taken to
depend on B [14] in a way that mimics the asymptotic
behavior similar to the one displayed by the QCD coupling
[15]. In this case, themodel can also predict a decrease ofTpc
with B in accordance with the LQCD findings.
As LQCD calculations are not yet in position to describe

the whole T-μ plane, further investigations with effective
models have been developed toward a better understanding
of the behavior of the quark condensates [13], in the search
for coexistent chemical potentials at subcritical temper-
atures [16] as well as the existence and possible location of
the critical end point [16,17]. In the case of magnetized
quark matter, some interesting results were obtained from
these investigations. Namely, the first-order segment of the
transition line becomes longer as the field strength
increases so that a larger coexistence region for hadronic
and quark matter should be expected for strong magnetic
fields affecting the position of the (second-order) critical
point where the first-order transition line terminates.
In Ref. [16], it was observed that at subcritical temperatures

the coexistence chemical potential (μc) decreases with
increasing values of the magnetic fields in a manifestation
of the IMC effect described in Ref. [18] where it is argued that
this phenomenon should be generally observed at low
temperatures in a model-independent way. Therefore,
although the results of the extension of the NJL model at
high temperatures and vanishing density do not seem to agree
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with the lattice predictions unless one implements some of the
prescriptions given in Refs. [13,14], one feels more confident
about the correctness of the IMCobserved at low temperatures
and high densities with effective models where perhaps the
backreaction is less important.We refer the reader to Ref. [18]
for a physically intuitive discussion of the IMC phenomenon.
Note that the IMC can be reversed when extremely high

fields are considered so that μc oscillates around the B ¼ 0
value for magnetic fields within the 1017–1020 G range.
However, one has to bear in mind that these values are
above the cutoff scale [16]. Together, all of these effects
have interesting consequences for quantities that depend on
the details of the coexistence region such as the surface
tension, as recently discussed in Ref. [19]. It is also worth
remarking that other physical possibilities such as the
isospin and strangeness content of the system, the presence
of a vector interaction [20], and the adopted model
approximation within a particular parametrization may
influence these results mostly in a quantitative way.
As it is well known, in the absence of a magnetic field

dynamical chiral symmetry breaking (DCSB) occurs, within
four fermion theories, when the coupling (G) exceeds a
critical value (Gc), at least in the 2þ 1 d and 3þ 1 d cases.
However, when B ≠ 0, DCSB may occur even when the
coupling is smaller thanGc. This effect, which is related to a
dimensional reduction induced by B, is known as magnetic
catalysis (MC). It was first observed in Refs. [21,22] and then
explained in Ref. [23] (see Ref. [24] for recent reviews).
Following its discovery, Ebert et al. [25] recognized that MC
associated to the filling of Landau levels (LLs) could lead to
more exotic phase transition patterns as a consequence of the
induced magnetic oscillations. To confirm this assumption,
these authors have considered a wide range of coupling
values for the two flavorNJLmodel in the chiral case [11]. As
expected, they have observed many phase structures as a
function of the chemical potential: an infinite number of
massless chirally symmetric phases, a cascade of massive
phases with broken chiral invariance and tricritical points
were also obtained. Recently, these seminal works have been
extended by a more systematic and numerically accurate
analysis of the two flavor case considering different model
parametrizations identified by the vacuum value of the
dressed quarkmassM0 in the absence of an externalmagnetic
field [26]. In that reference, other relevant physical quantities,
such as susceptibilities, have been considered in order to
produce a phase diagram for cold magnetized quark matter.
Although the more complex transition patterns show up for
rather low values of the dressed quarkmassM0 ≃ 200 MeV,
even with more canonical values of the model parameters
leading to M0 ≃ 300–400 MeV, more than one first-order
phase transition, which is signaled when the thermodynam-
ical potential develops two degenerate minima at different
values of the coexistence chemical potential, is found. We
point out that this fact has also been recently observed to arise
within another effective four-fermion theory described by the

2þ 1 dGross-Neveumodel [27]. In general,weak first-order
transitions can be easilymissed in a numerical evaluation due
to the fact that the twodegenerateminimaappear almost at the
same location being separated by a tiny potential barrier so
that their study requires extra care. Physically, this corre-
sponds to a situation where two different (but almost
identical) densities coexist at the same chemical potential,
temperature, and pressure. Also, since these shallow minima
are separated by a low potential barrier, one may also expect
the surface tension to be small in this case [28].
At this point, it is important to recall that strangeness is

generally believed to be of great relevance for the physics
of quark stars and the heavy ion collisions and hence cannot
be disregarded. For instance, in astrophysical applications,
the magnetic oscillations studied in Refs. [25,26] may
influence the equation of state, which is the starting point as
far as the prediction of observables, such as the mass and
radius of a compact star, is concerned. Therefore, as a step
toward the full understanding of the role played by strange-
ness in these physical situations, in the present work, we
extend the detailed analysis of cold quark matter recently
performed with the two-flavor version to the three-flavor
version of theNJLmodel, which is described in terms of two
canonical sets of input parameters. At the same time, charge
neutrality and β equilibrium are essential conditions in
understanding the behavior of quarkmatter subject to strong
magnetic fields [3] in the study of magnetars. Moreover, the
existence and location of the critical end point are related to
the amount of different quark flavors in the system [17],
which influences thewhole phase diagram. Therefore, in the
present work, we also consider the effects of charge neutral-
ity and β equilibrium besides strangeness.
In the next section,we show the necessary formalismused

to describe quark matter under strong magnetic fields with
the three-flavor NJL, and in Sec. III, we present our
numerical results. Our final remarks are presented in Sec. IV.

II. FORMALISM

We consider the SU(3) NJL Lagrangian density, which
includes a scalar-pseudoscalar interaction and the t’Hooft
six-fermion interaction [29] in the presence of an external
magnetic field and chemical potential, and it is written as

L ¼ ψ̄ðiD − m̂c þ μ̂γ0Þψ

þ G
X8
a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2� − Kðdþ þ d−Þ; ð1Þ

where G and K are coupling constants, ψ ¼ ðu; d; sÞT
represents a quark field with three flavors, d� ¼
det½ψ̄ð1� γ5Þψ �, μ̂ ¼ diagðμu; μd; μsÞ the quark chemical
potentials, m̂c ¼ diagðmu;md;msÞ is the corresponding
(current) mass matrix, λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
I, where I is the unit

matrix in the three-flavor space, and 0 < λa ≤ 8 denote the
Gell-Mann matrices. The coupling of the quarks to the

GRUNFELD et al. PHYSICAL REVIEW D 90, 044024 (2014)

044024-2



electromagnetic fieldAμ is implemented through the covar-
iant derivative Dμ ¼ ∂μ − iq̂Aμ where q̂ represents the
quark electric charge matrix q̂ ¼ diagðqu; qd; qsÞ where
qu=2 ¼ −qd ¼ −qs ¼ e=3. In the present work, we con-
sider a static and constant magnetic field in the z direction,
Aμ ¼ δμ2x1B. In the mean-field approximation the
Lagrangian density [Eq. (1)] can be written as [3]

LMFA ¼ ψ̄ðiD − M̂ þ μ̂γ0Þψ − 2Gðϕ2
u þ ϕ2

d þ ϕ2
sÞ

þ 4Kϕuϕdϕs; ð2Þ
where M̂ ¼ diagðMu;Md;MsÞ is a matrix with elements
defined by the dressed quark masses which satisfy the set of
three coupled gap equations:

fuðMu;Md;MsÞ ¼ Mu −mu þ 4Gϕu − 2Kϕdϕs ¼ 0;

fdðMu;Md;MsÞ ¼ Md −md þ 4Gϕd − 2Kϕsϕu ¼ 0;

fsðMu;Md;MsÞ ¼ Ms −ms þ 4Gϕs − 2Kϕuϕd ¼ 0: ð3Þ

In Eqs. (2) and (3), ϕf is the quark condensate associated to
each flavor which contains three different terms: the vac-
uum, the magnetic, and the in-medium one. At vanishing
temperatures, these contributions read

ϕf ¼ hψ̄fψfi ¼ ϕvac
f þ ϕmag

f þ ϕmed
f ; ð4Þ

where

ϕvac
f ¼ −NcMf

2π2

2
64Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

f

q
−M2

f ln

0
B@Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

f

q
Mf

1
CA
3
75;

ϕmag
f ¼ −

NcMfjqfjB
2π2

�
lnΓðxfÞ − 1

2
lnð2πÞþxf − 1

2
ð2xf − 1Þ lnðxfÞ

�
;

ϕmed
f ¼ Nc

2π2
MfjqfjB

Xνmax
f

ν¼0

αν ln

0
B@μf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2f − sfðν; BÞ2

q
sfðν; BÞ

1
CA; ð5Þ

where sfðν; BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ 2jqfjBν
q

, Λ represents a non-

covariant ultraviolet cutoff [25], while xf ¼ M2
f=ð2jqfjBÞ

and μf are the quark chemical potentials for each flavor. We
note at this stage that when dealing with extensions of the
present model that include color pairing interactions it
has become customary [30] to introduce some soft
regulator function to avoid the unphysical oscillations
induced by the use of a sharp cutoff in the magnetic-
dependent terms. However, in the present situation, one
can follow the procedure discussed in Ref. [3] in which
only the vacuum term needs to be regularized. In this
way, the presence of the above-mentioned oscillations can
be avoided even when a noncovariant sharp cutoff term is
used to regulate it. In ϕmed

f , the sum is over the LLs

represented by ν, while αν ¼ 2 − δν0 is a degeneracy
factor and νmax

f is the largest integer that satisfies
νmax
f ≤ ðμ2f −M2

fÞ=ð2jqfjBÞ.
Then, within the mean-field approximation, the grand-

canonical thermodynamical potential for cold and dense
strange quark matter in the presence of an external
magnetic field can be written as

Ω ¼ −ðθu þ θd þ θsÞ þ 2Gðϕ2
u þ ϕ2

d þ ϕ2
sÞ − 4Kϕuϕdϕs;

ð6Þ

where θf gives the contribution from the gas of quasipar-
ticles and can be written as the sum of three contributions,

θvacf ¼ − Nc

8π2

2
64M4

f ln

0
B@Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

f

q
Mf

1
CA −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

f

q
Λð2Λ2 þM2

fÞ

3
75;

θmag
f ¼ Nc

2π2
ðjqfjBÞ2

�
ζð1;0Þð−1; xfÞ − 1

2
ðx2f − xfÞ ln xf þ

x2f
4

�
;

θmed
f ¼ Nc

4π2
jqfjB

Xνmax
f

ν¼0

αν

2
64μf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2f − sfðν; BÞ2

q
− sfðν; BÞ2 ln

0
B@μf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2f − sfðν; BÞ2

q
sfðν; BÞ

1
CA
3
75; ð7Þ
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where ζð1;0Þð−1; xfÞ ¼ dζðz; xfÞ=dzjz¼−1 with ζðz; xfÞ
being the Riemann-Hurwitz zeta function.
In our calculations, we first consider the simpler case of

symmetric matter where all three quarks carry the same
chemical potential μ. Afterward, we analyze the case of
stellar matter in which leptons are also present and β
equilibrium and charge neutrality are imposed. In this case,
the chemical potential for each quark, μf, is a function of μ
and the lepton chemical potentials which have to be self-
consistently determined. In addition, in order to analyze the
dependence of the results on the model parameters, we
consider two widely used SU(3) NJL model parametriza-
tions. Set 1 corresponds to that used in Ref. [31], while Set
2 corresponds to that of Ref. [32]. The corresponding
model parameters are listed in Table I.
We end this section by describing the procedure used to

identify the boundaries between the possible different
phases of the magnetized quark matter. Namely, to obtain
the critical chemical potential at given eB, we proceed as
follows. In the case of first-order phase transitions, we have
used the same prescription as in [16]; i.e., we have
calculated the thermodynamical potential as a function
of the dressed quark masses and then searched for two
degenerate minima. In the case of crossover transitions, its
position is identified by the peak of the chiral susceptibility.
However, different from the standard SU(2) NJL model
with maximum flavor mixing, within the present version of
the SU(3) NJL model, the u and d dressed quark masses, as
well as the corresponding condensates, are not necessarily
the same. For this reason, we have defined different
susceptibilities for each flavor χf ¼ dϕf=dmf. The peak
of these susceptibilities is used in the next sections to
identify possible crossover transitions.

III. RESULTS FOR SYMMETRIC
QUARK MATTER

In this section, we present and analyze the results of our
numerical investigations for the case of symmetric quark
matter. These were performed by solving the set of three
coupled gap equations given in Eq. (3) for different values
of the chemical potential μ ¼ μu ¼ μd ¼ μs and magnetic
fields.
It should be noticed that, contrary to what happens in the

case of the standard SU(2) NJL model with maximum
flavor mixing [11,26], for these parametrizations, the
difference between the u and d quark electric charges
induces a splitting between the u and d dressed quark
masses. Nonetheless, we have found that, in general, this

splitting is quite small. Of course, due to the larger value of
the associated current quark mass,Ms is always larger than
Mu and Md.
We stress that, for a given value of μ and B, the set of

coupled gap equations might have several solutions.
Obviously, the stable solution is the one that leads to the
lowest value of the thermodynamical potential Eq. (7).
Therefore, it is important to make sure that one does not
miss any relevant solution when solving Eq. (3). In order to
do that, we have proceeded as follows: given a value ofMu,
the set of equations ffd; fsg was used to numerically
determine the corresponding values of Md and Ms. These
values were then inserted in the remaining gap equation
that could be now considered as a function of the single
variable Mu, i.e., fu½ðMu;MdðMuÞ;MsðMuÞÞ�. By varying
Mu within a conveniently selected range of values, one
could at this point determine all of the solutions of the
coupled system of gap equations by finding all of the values
ofMu at which this function vanishes. Of course, one has to
be careful with a possible caveat that this method can have:
it could happen that for a given value of Mu, the set of
equations ffd; fsg might have more than one solution. We
have verified that, for the model parametrizations used in
this work, which imply a rather strong flavor mixing
leading to Mu ≈Md, this situation did not arise for any
of the values of μ and B considered.
We start by analyzing the behavior of the quark con-

stituent masses as functions of the chemical potential for
several representative values of the magnetic field shown as
in Fig. 1. Note that here and in what follows we use natural
units recalling the reader that eB ¼ 1 GeV2 corresponds to
B ¼ 1.69 × 1020 G. We consider first the situation for Set 1
(left panels) starting by the lowest chosen value of magnetic
field eB ¼ 0.01 GeV2 (full red line). As we increase μ, we
see that up to certain value μc1 ¼ 335.3 MeV the dressed
masses stay constant. At that point, we can observe a (tiny)
sudden drop in the masses corresponding to a first-order
phase transition which goes from the fully chirally broken
phase, where the masses are μ independent, to a less
massive one where the masses are μ dependent. As we
continue to increase the chemical potential, there is a
second tiny jump in the masses (somewhat more easily
observed in the plot for Md) at μc2 ¼ 342.3 MeV.
Increasing μ further we reach μc3 ¼ 345.4 MeV where a
new, in this case much larger, drop in the masses occur.
After this point, the dressed u- and d-quark masses are
much smaller than their vacuum values, indicating that light
quark sector is in the fully chirally restored phase, namely
that if we were to set mu ¼ md ¼ 0 (i.e., chiral case) the
associated dressed masses would vanish. To identify the
different phases, it is convenient to adopt the notation of
Refs. [11,26]. Thus, the fully chirally broken phase in
which the system is for μ < μc1 is denoted by B. The
massive phases in which Mf depends on μ are denoted Cα

phases, where α is a set of three integers each of which

TABLE I. Parameter sets for the NJL SU(3) model.

Parameter set Λ MeV GΛ2 KΛ5 mu;d MeV ms MeV

Set 1 [31] 631.4 1.835 9.29 5.5 135.7
Set 2 [32] 602.3 1.835 12.36 5.5 140.7
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corresponds to the higher LL, which is populated for a
given flavor. We note that within the range of values of the
chemical potential considered in this work no s-quark LL is
ever populated since this would require larger values of μ.
Thus, in what follows, only two integers will be given, the
first one corresponding to the u quark and the second to the
d quark. Hence, the system is in the C00 phase if μc1 < μc2
and in the C01 phase if μc2 < μc3. The difference between
these two phases is that in the C00 only the u-and d-quark
lowest LLs (LLLs) are populated, while in C01 the d-quark
first LL (1LL) also is populated. Moreover, the reason why
the d-quark 1LL is populated without a simultaneous
population of the u-quark 1LL is due to fact that
jqdj ¼ 2jquj. For μ > μc3, the system is in one of the chirally
restored phases Aα, where the difference between them-
selves is the number of light quark LLs that are populated.
The transitions between these phases correspond to small
jumps in the masses (i.e., first-order transitions), which in

Fig. 1 are hardly seen in this case. Considering next case,
eB ¼ 0.03 GeV2 (blue dashed line), we see that at basically
the same value of μc1 as the one given above, there is a first-
order transition from the B phase to the C00 phase. However,
in this case, no sign of a transition to theC01 phase is found as
μ increases. In fact, the following transition corresponds to a
big jump in the light quark dressed masses, which is
associated to the transition between the C00 and one of
the chiral symmetry restored phases Aα. It should be noted
that this happens at a critical chemical potential which is
slightly smaller than the value of μc3 quoted above. As μ is
further increased, consecutive first-order transitions
between Aα occur. Note that the first of them can quite
clearly be observed in this case. Turning to the case eB ¼
0.10 GeV2 (magenta dotted lines), we see that the overall
behavior is similar to that of eB ¼ 0.01 GeV2, except for the
fact that in the present case the size of the first and second
jumps in the masses are quite similar and that they occur at

FIG. 1 (color online). Dressed quark masses as functions of chemical potential for different values of the magnetic field.
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lower values of μ. The situation for eB ¼ 0.17 GeV2 (green
dash dotted lines) is somewhat peculiar. After a first large
jump in the masses (occurring at an even lower value of μ
than the previous cases), they decrease continuously for a
rather wide interval of values of μ, which ends with a
transition that is characteristic of those between Aα phases.
Whether in that intermediate interval the system is always in
the same phase (of A-type type) or it stays first in the C00

phase performing at some point a crossover transition to a
A-type phase is a question that requires further analysis and
is addressed below. Finally, for eB ¼ 0.45 GeV2 (orange
dash dot dotted lines), the behavior of the system as μ
increases becomes much simpler. There is one single first-
order phase transition that connects the B and A00 phases.
Note, however, that this transition occurs at a higher
chemical potential as compared to that required in the
previous case to induce a transition from the B phase.
Turning our attention to the results concerning Set 2 (right
panels in Fig. 1), we observe that although for eB ¼
0.45 GeV2 (orange dash dot dotted lines) the behavior is
very similar as the corresponding one for Set 1, at low values
of eB there are significant differences. For example, for
eB ¼ 0.02 GeV2 (full red lines), the first transition already
connects the B phase with one of the A-type ones; i.e., there
is no sign of an intermediate C00 here. As it turns out, such a
phase only exists for a narrow interval of values of eB of
which we take eB ¼ 0.085 GeV2 (dashed blue line) as a
typical example.
In Fig. 2, we show the eB-μ phase diagrams obtained

with both parameter sets. Note that in order to simplify the
figure, we have introduced a compact notation to indicate
the phases. In this way, the pair of integers mn corresponds
to the Cmn phase and the pair m̄ n̄ to the Amn phase.
Accordingly, the case to be discussed below in which one
quark is in a C-type phase and the other in the A-type phase
is indicated by putting a bar on top of the integer associated
with the A-type phase. Thus, for example, 0̄0 corresponds
to a region in which the u-quark sector is in the A-type
phase and d-quark sector in the C-type phase. Note that in
all of the casesm ¼ Int½n=2�. This follows from the relation
between the light quark electric charges and the fact that we
are dealing with symmetric matter with a rather strong
flavor mixing. The full lines correspond to first-order phase
transitions, while the dashed and dotted ones to smooth
crossovers. As mentioned above, the later typically connect
some of the C-type phases to a A-type one, and their
determination requires a detailed analysis. In the first place,
we should stress that, as well known, there is not a unique
way to define a crossover transition. In the case of SU(2)
cold quark matter under strong magnetic fields, this issue
was discussed in some detail in Ref. [26]. Following that
reference, we base our analysis on the chiral susceptibilities
introduced at the end of the previous section. In particular,
we define the crossover transition line as the ridge occur-
ring in the chiral susceptibility when regarded as a two

dimensional function of eB and μ. Mathematically, it can be
defined by using for each value of the susceptibility
(starting from its maximum value in the given region)
the location of the points at which the gradient in the eB-μ
plane is smaller. As remarked in Ref. [26], this definition
must be complemented with the condition that on each side
of the curve there should exist at least one region such that
there is a maximum in the susceptibility for an arbitrary
path connecting both regions. It is important to note that,
different from the SUð2Þ case discussed in that reference
where one single chiral susceptibility can be defined for the
two light flavors, the values of χu and χd at a given point in
the eB-μ plane are in general different in the present case
[33]. Therefore, there is no reason why there should be
identical crossover lines for the two light quark sectors. In
fact and in contrast to what happens with the first-order
transitions which always coincide, the results of our
analysis indicate that for the parametrizations considered
this is never the case. As a consequence of this, there might
be regions in the eB-μ plane where the u-quark sector is in a
C-type phase and the d-quark sector in a A-type one or vice
versa. For example, our results indicate the existence of a

FIG. 2 (color online). Phase diagrams in the eB-μ for the set of
parameters defined in Table I. As explained in the text, the pair of
integers mn corresponds to the Cmn phase and the pair m̄ n̄ to the
Amn phase. The case in which one quark is in a C-type phase and
the other in the A-type phase is indicated by putting a bar on top
of the integer associated with the A-type phase.
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0̄0 phase for both model parametrizations. From Fig. 2 it is
clear that the most remarkable difference between the phase
diagrams associated to the two parametrizations considered
concerns the regions in which the phases Cα exist. For Set
1, the C00 phase covers a rather large area of the plane,
which in the eB direction extends from very low values up
to eB≃ 0.15 GeV2 where it has a smooth crossover
boundary with the phase A00. Note that such a boundary
is somewhat different for the two light quark sectors giving
rise to an intermediate 0̄0 region. Moreover, for this
parameter set, a small region of C01 phase exists for low
values of eB. In the case of Set 2, however, the phase C00

only exists in a small triangular region surrounded by first-
order transition lines, although a small 0̄0 region is also

present. Another point that it is interesting to address regards
the similarities between the present phase diagrams and
those reported inRef. [26] for the SU(2) casewithmaximum
flavor mixing. In fact, the phase diagram obtained for Set 1
has strong similarities to that shown for M0 ¼ 340 MeV
shown in Fig. 12 of that reference. Moreover, that of Set 2
appears to correspond to one somewhere in between those
of M0 ¼ 360 MeV and M0 ¼ 380 MeV of that figure.
Interestingly, the vacuum values of the u- and d-dressed
quarkmasses in thevacuumand in the absence of amagnetic
field are Mu ¼ Md ¼ 336ð368Þ MeV for Set 1 (Set 2).
Thus, it appears that even in the SUð3Þ case under consid-
eration, the general features of the eB-μ diagram are
dictated to a great extent by the values of light quark dressed

FIG. 3 (color online). Dressed quark masses as functions of magnetic field for different values of the chemical potential.
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quark masses in the vacuum and in the absence of a
magnetic field.
We end this section by analyzing in the context of the

present SU(3) NJL model the MC effect mentioned in the
Introduction and how this effect is modified by the presence
of finite chemical potential leading, for example, to the
existence of the so-called IMC. The later is usually related
to a decrease of the critical chemical potential at inter-
mediate values of the magnetic fields, an effect that can be
understood in terms of extra cost in free energy to form a
fermion-antifermion condensate at finite μ [18]. This extra
cost originates in the LLL contribution to θmed

f in Eq. (7)
which is linear in B and tends to decrease the difference in
free energy between the vacuum phase and the finite
density phase. Such a phenomenon is clearly observed
in the phase diagrams displayed in Fig. 2. In fact, we see
that after staying fairly constant up to eB≃ 0.05 GeV2 the
lowest first-order transition line bends down, reaching a
minimum at eB≃ 0.2–0.3 GeV2 after which it rises
indefinitely with the magnetic field. This implies that, in
general, there is some interval of values of the chemical
potential for which an increase of the magnetic field at
constant μ causes first a transition from the B-type phase to
a one in which the light quarks are in a less massive phase
(which could be either of C or A type) and afterward from
the phase A00 back to massive phase B. To address these
issues, we display in Fig. 3 the behavior of the masses as a
function of magnetic fields for several chemical potentials
and our two parameter sets. In particular, the complex
phase structure for Set 1 (left panels) accounts for the
different possible behaviors depending on the chemical
potential. For μ ¼ 300 MeV (red full line), the system is in
the B phase for the whole range of magnetic fields, and the
MC effect is clearly seen. For μ ¼ 325 MeV (magenta
dashed line), a similar behavior is seen, except for a middle
section where the system passes through a C00 phase and an
A00 phase before returning to the vacuum phase again. Note

that when masses are plotted as functions of eB, the
existence of a crossover transition from a C-type phase to
A-type one becomes more noticeable. As already discussed,
a detailed analysis shows that the associated critical mag-
netic field for u-quark sector is somewhat lower than that for
d-quark sector. In this region of the curve, as well as in the
rest of the following curves, the effect of IMC is also present.
In fact, as already remarked in Ref. [26], we can conclude
that within the C- and A-type phases the dressed light quark
masses are basically decreasing functions of the magnetic
field. This decrease has the same physical origin as the
decrease of the critical chemical potential at intermediate
values of the magnetic fields. In fact, it follows from the
same contribution to the free energy. On the other hand, in
the B phase, this contribution is not present, and thus, the
usualMC effect takes place. In particular, for μ ¼ 340 MeV
(blue dot dotted lines), the phase remains in C00 for a
significant range of magnetic fields and the mass decreases
continuously. Finally, for μ ¼ 360 MeV (green dash dotted
lines) at low and medium magnetic fields, the system goes
from aAmn phase to anotherwithn0 ¼ n − 1 as themagnetic
fields increases, the transition between them being signaled
by the peaks in the dressed masses. Recall that in the present
case m ¼ Int½n=2�. Eventually, for sufficiently large mag-
netic fields, it has a first-order transition to the B phase. As
shown in the right panels of Fig. 3, for Set 2, the situation is
somewhat simpler. This is, of course, related to the absence
of extended Cα regions in the associated phase diagram.

IV. RESULTS FOR STELLAR MATTER

In this section, we analyze the case of stellar matter, i.e.,
matter where β equilibrium and charge neutrality are
imposed. In this case, electrons and muons are introduced
into the system so that the thermodynamical potential
receives an extra contribution [3]

Ωlep ¼
X
l¼e;μ

Xνmax
l

ν¼0

jqljBαν
4π2

2
64μl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2l − slðν; BÞ2

q
− slðν; BÞ2 ln

0
B@μl þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2l − slðν; BÞ2

q
slðν; BÞ

1
CA
3
75; ð8Þ

where νmax
l ¼Int½ðμ2l −m2

l Þ=ð2jqljBÞ� and slðν; BÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l þ 2jqljBν
q

. We take me ¼ 0.511 MeV and

mμ ¼ 105.66 MeV.
β equilibrium and charge neutrality conditions are

required and they are respectively given by

μs ¼ μd ¼ μu þ μe; μe ¼ μμ ð9Þ
and

ρe þ ρμ ¼
1

3
ð2ρu − ρd − ρsÞ: ð10Þ

The quark and lepton densities appearing in the last
equation can be easily obtained from the derivatives of
the total thermodynamical potential with respect to the
corresponding chemical potentials.
The stellar matter phase diagrams associated with the

sets of parameters under consideration are shown in Fig. 4.
Comparing them with those corresponding to the symmet-
ric matter case we observe that, in spite of an overall
similarity, some differences arise. The first one is related to
fact that the IMC is less pronounced in the present case. To
understand why this is expected to be the case, let us start
by reminding that this effect leads to a minimum critical
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chemical potential at eB≃ 0.2 GeV2. As in the case of
symmetric matter discussed in the previous section, in that
region, the transition occurs between the B phase and an
A-type phase in which the lowest LLL dominates.
Generalizing to stellar matter the result found in
Ref. [18]. one can show that, within the chiral limit
approximation, the extra cost in free energy to form a
fermion-antifermion pair at finite μ is proportional to Bμ̄2

with μ̄2 ¼ P
fjqfjμ2f þ μ2e=3 and where an small muonic

contribution has been neglected. Note that for the values of μ
we are interested in, only the light flavors have to be taken
into account. Thus, in what follows, f ¼ u; d. Using the
relations obtained from the β-equilibrium conditions,
μf ¼ μ − qfμe, we get μ̄ ¼ μð1 − 2x=3þ 2x2=3Þ1=2, where
x ¼ μe=μ. The minus sign in the (dominant) linear term
follows from the fact that jquj ¼ 2jqdj. The relevant value of
x follows from the neutrality condition Eq. (10). Assuming
as before that in the A-phase we are dealing with massless
quarks one obtains x≃ 0.38 for μ≃ 350 MeV. Using this
result, we get μ̄≃ 0.92 μ. This implies that the extra cost in
free energy is smaller than that required in the symmetric
matter case for the samevalue of eB andμ. Consequently, for

a given eB, one needs a larger value of the chemical potential
to induce the phase transition. In fact, we have
μstc =μ

sym
c ≃ 1.09, a value that is in good agreement with

our full numerical results μstc =μ
sym
c ¼ 1.08ð1.07Þ for Set 1

(Set 2), where the superindex st stands for stellar. Now, in
order to determine which is the effect of the β equilibrium
and charge neutrality conditions on the IMC effect, we have
to analyze what happens at small values of eB. In fact, our
numerical results indicate that in that region μstc =μ

sym
c is

smaller than the value obtained at eB≃ 0.2 GeV. To obtain
an estimate of μstc =μ

sym
c at small values of eB, we can

consider the limiting case B ¼ 0. It is not difficult to show
that the neutrality condition for massless particles in the
chirally restored phase leads, in this case, to a third-order
equation in x whose only real solution is x ¼ 0.22. On the
other hand, the extra cost in free energy induced by
the chemical potentials is proportional to μ̄04 where
μ̄04 ¼ P

fμ
4
f=2þ μ4e=6. Expressing as before μf in terms

of μ and x, we get μ̄=μ ¼ 0.98 for x ¼ 0.22. Therefore,
although we also expect that for small values of eB the
critical chemical potential for stellar matter has to be larger
than the one for symmetric matter (a feature confirmed by
our numerical results), the estimated ratio μnc=μsc ≃ 1.02 is
smaller than the one at eB≃ 0.2 GeV, leading to a quench-
ing of the IMCeffect. From this discussion,we see that this is
basically due to the smaller value of x as well as to the
different form of the finite chemical potential free energy
cost to create fermion-antifermion pairs at low magnetic
fields as compared to that at values of eB where the LLL
dominates.
The other significant difference between the symmetric

and stellar matter phase diagrams concerns the Aα and Cα

phases that can appear in each case. As discussed in the
previous section, the relation between the light quark
charges implies that for the rather strong flavor mixing
considered in this work only phases with m ¼ Int½n=2� are
allowed. We see that for stellar matter this does not need to
be the case. Again, this a consequence of the β equilibrium
and charge neutrality conditions that lead to μu < μd. To
see this more clearly, let us consider as an example the
situation in which the system is the A01 phase and we
increase the chemical potential keeping eB at a fixed value.
For simplicity, we assume in what follows that the dressed
quark masses are negligible. In the symmetric case, as one
increases the chemical potential, at some point, there is a
simultaneous population of the ν ¼ 1 u-quark and the
ν ¼ 2 d-quark LLs leading to the transition from A01 phase
to the A12 one. On the other hand, in the case of stellar
matter the presence of a finite isospin chemical potential in
the A-type phases opens the possibility of a sequential
population of these LLs. Namely, since μu < μd, the ν ¼ 2

d-quark LL can be populated before that ν ¼ 1 u-quark LL,
and thus, the transition from the A01 phase to the A02 one is
possible.

FIG. 4 (color online). Phase diagrams for stellar matter in the
eB-μ for the set of parameters defined in Table I. As explained
in the text, the pair of integers mn corresponds to the Cmn phase
and the pair m̄ n̄ to the Amn phase. The case in which one quark
is in a C-type phase and the other in the A-type phase is indicated
by putting a bar on top of the integer associated with the
A-type phase.
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Finally, one can see that, as in the case of symmetric
matter, Set 1 leads to a richer phase structure than Set 2.
In fact, the C-type phases are even more extended in the
present case. Note as well, that in the case of Set 2, the
crossover lines are not present in the phase diagram for
stellar matter.

V. FINAL REMARKS

In the present work, we have revisited the phase structure
of the magnetized cold quark matter within the framework
of the SU(3) NJL model for two parameter sets often used
in the literature [34]. We include in our analysis both
symmetric and stellar quark matter.
For the symmetric case, although the general pattern is

similar, the quantitative results are certainly parameter
dependent, as in the case of the SU(2) NJL [25,26]. We
have checked that Set 1, i.e., the one leading to lower
vacuum values for the dressed quark masses in the absence
of a magnetic field, presents a richer phase diagram, with
more intermediate phases than Set 2. This is a reflex of the
number of small jumps appearing in the quark dressed
masses, which are related to the number of filled LLs. It is
worth emphasizing that, different from the case of standard
SU(2) NJL model with maximum flavor mixing studied in
Ref. [26], within the present version of the SU(3) NJL
model, the u- and d-dressed quark masses, as well as the
corresponding condensates, are not necessarily equal for
the same chemical potential μ and magnetic field B. As a
consequence, three different susceptibilities (one for each
flavor) can be defined that, in principle, might bear peaks at
different points. This points toward the possibility of
having a different crossover transition line for each of
three quark flavors. In fact and in contrast to what happens
with the first-order transitions which are always found to
coincide, the results of our analysis indicate that for the
parametrizations considered this is always the case. Hence,
the corresponding phase diagrams turn out to have some
(small) regions where the quarks of different flavor are in
different phases.
The phenomenon of IMC as defined in Ref. [18]; i.e., the

decrease of the critical chemical potential at specific values
of the magnetic field intensity is clearly observed within the
present choice of parameters for the SU(3) NJL model. In
connection with this, we also note that the response of light
quark dressed masses to an increase of the magnetic at fixed
μ depends on the region of eB-μ phase diagram considered.
On the one hand, the increase in light quark dressed masses

with magnetic field, known as magnetic catalysis, is
principally seen in the vacuum phase B, where chiral
symmetry is fully broken. On the other hand, phases where
some light quark levels are populated (Ci and Ai) show a
dominant decrease in the corresponding masses as mag-
netic field increased.
Analyzing the case of the stellar quark matter, we found

some differences respect to the symmetric one. First, when
considering charge neutrality and β equilibrium we
observed, as an overall effect, that in the corresponding
phase diagrams, for both sets of parameters, the first-order
phase transitions to the fully chiral restored phase are
moved to higher chemical potentials. In particular, we
found that this effect is larger for eB≃ 0.2 GeV2. As a
consequence, the IMC phenomenon is less pronounced for
the stellar matter case.
There is still another difference between the symmetric

and stellar matter: we found that in the case of symmetric
matter only phases with m ¼ Int½n=2� are allowed, but
when imposing charge neutrality and β equilibrium, the
structure is somewhat different because in stellar matter
the finite isospin chemical potential plays a role in the
population of the LLs.
We conclude by pointing out that, in matter subject to

magnetic fields, spatially inhomogeneous condensate con-
figurations may be favored [35]. An important consequence
of the possible existence of spatially inhomogeneous
phases may considerably alter the currently most accepted
picture of the QCD phase diagram at finite densities when,
e.g., the critical end point would be replaced by a Lifschitz
point as discussed recently in the literature [36]. In this
sense, a detailed study of these phases in the context of the
present SUð3Þ NJL model would be of great interest. We
should keep in mind, however, that even in the simpler case
of the SU(2) model at B ¼ 0 the effect of the finite current
quark masses, which tends to reduce the size of these
phases, has been only approximately taken into account so
far [37]. In addition, the role played by the stellar matter
conditions on the stability of these inhomogeneous phases
also requires further clarification.
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