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A generalized Statistical Complexity Measure (SCM) is a functional that characterizes the prob-
ability distribution P associated to the time series generated by a given dynamical system. It
quantifies not only randomness but also the presence of correlational structures. We review
here several fundamental issues in such a respect, namely, (a) the selection of the information
measure I; (b) the choice of the probability metric space and associated distance D; (c) the
question of defining the so-called generalized disequilibrium Q; (d) the adequate way of picking
up the probability distribution P associated to a dynamical system or time series under study,
which is indeed a fundamental problem. In this communication we show (point d) that sensible
improvements in the final results can be expected if the underlying probability distribution is
“extracted” via appropriate consideration regarding causal effects in the system’s dynamics.
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1. Statistical Complexity Measures

An information measure I can primarily be viewed
as a quantity that characterizes a given probability
distribution. I[P ] is regarded as the measure of the

uncertainty associated to the physical processes
described by the probability distribution P =
{pj , j = 1, . . . , N}, with N the number of possi-
ble states of the system under study. If I[P ] = 0
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we are in a position to predict with certainty which
of the N possible outcomes will actually take place.
Our knowledge of the underlying process described
by the probability distribution is in this instance
maximal. On the other hand, we are ignorant of
what gets maximal if I[P ] = I[Pe] ≡ Imax; Pe

being the uniform distribution. These two extreme
circumstances of (i) maximum foreknowledge (“per-
fect order”) and (ii) maximum ignorance (or maxi-
mum “randomness”) can, in a sense, be regarded as
“trivial” ones. We define for a given probability dis-
tribution P and its associate information measure
I[P ], an amount of “disorder” H in the fashion

H[P ] = I[P ]/Imax. (1)

We have thus 0 ≤ H ≤ 1.
It follows that a definition of Statistical Com-

plexity Measure (SCM) must not be made in terms
of just “disorder” or “information”. A proper SCM
needs to adopt some kind of distance D of the given
P to the equilibrium distribution Pe of the accessi-
ble states of the system [Lopez-Ruiz et al., 1997;
Mart́ın et al., 2003; Lamberti et al., 2004]. This
motivates defining the “disequilibrium” as

Q[P ] = Q0 · D[P,Pe], (2)

where Q0 is a normalization constant and 0 ≤
Q ≤ 1. The disequilibrium Q would reflect on the
systems “architecture”, being different from zero
if there exist “privileged”, or “more likely” states
among the accessible ones. Consequently, we will
adopt the following functional product form for the
SCM introduced originally by Lopez-Ruiz, Mancini
and Calbet (LMC) [Lopez-Ruiz et al., 1997].

C[P ] = H[P ] · Q[P ]. (3)

This quantity reflects on the delicate interplay
extant between the amount of information stored
in the system and its disequilibrium.

Following the Shannon–Kinchin paradigm, we
define I in terms of entropies. H thus refers to dif-
ferent entropic functional forms [Mart́ın et al., 2006;
Rosso et al., 2006] and P ≡ {p1, . . . , pN} is a dis-
crete distribution:

(a) Shannon, H(S)
1 = S(S)

1 [P ]/S(S)
1 [Pe],

S(S)
1 [P ] = −

N∑
j=1

pj ln(pj); (4)

(b) Tsallis, H(T )
q = S(T )

q [P ]/S(T )
q [Pe],

S(T )
q [P ] =

1
(q − 1)

N∑
j=1

[pj − (pj)q]; (5)

(c) escort-Tsallis H(G)
q = S(G)

q [P ]/S(G)
q [Pe],

S(G)
q [P ] =

1
(q − 1)


1 −


 N∑

j=1

(pj)1/q



−q
 ;

(6)

(d) Renyi H(R)
q = S(R)

q [P ]/S(R)
q [Pe],

S(R)
q [P ] =

1
(1 − q)

ln




N∑
j=1

(pj)q


 . (7)

The quantity q is a so-called deformation parameter
(q = 1 for Shannon’s instance). In the q → 1 limit
all the above expressions coincide with that for the
Shannon-measure.

As for the metrics and its induced distance
D entering in Q definition one faces a panoply of
choices. For Pi ≡ {p(i)

1 , . . . , p
(i)
N }, with i = 1, 2 dis-

crete distributions, we limit our considerations here
to [Mart́ın et al., 2006; Rosso et al., 2006]

(a) Euclidean norm DE in R
N [Lopez-Ruiz et al.,

1997],

DE [P1, P2] = ‖P1 − P2‖E =
N∑

j=1

{p(1)
j − p

(2)
j }2;

(8)

(b) Wootters’s distance DW [Mart́ın et al., 2003],

DW [P1, P2] = cos−1




N∑
j=1

(p(1)
j )1/2 · (p(2)

j )1/2


;

(9)

(c) relative Kullback entropies K(κ)
q [Rosso et al.,

2006],

K(S)
1 [P1|P2] =

N∑
j=1

p
(1)
j · ln

(
p
(1)
j

p
(2)
j

)
, (10)

K(T )
q [P1|P2] =

1
(q − 1)

N∑
j=1

(p(1)
j )q

· {(p(2)
j )1−q − (p(1)

j )1−q}, (11)
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K(G)
q [P1|P2] =

1
(q − 1)

N∑
j=1

p
(1)
j

(A[P1])q

·


[

(p(2)
j )1/q

A[P2]

]1−q

−
[

(p(1)
j )1/q

A[P1]

]1−q

 , (12)

K(R)
q [P1|P2] =

1
(q − 1)

ln




N∑
j=1

(p(1)
j )q(p(2)

j )1−q


,

(13)

for q �= 1 and A[P ] =
∑N

j=1(pj)1/q;

(d) Jensen divergences J (κ)
q [Rosso et al., 2006],

J (κ)
q [P1, P2] =

1
2
K(κ)

q

[
P1

∣∣∣∣(P1 + P2)
2

]

+
1
2
K(κ)

q

[
P2

∣∣∣∣(P1 + P2)
2

]
, (14)

with κ = Shannon (S) (q = 1), Tsallis (T), escort-
Tsallis (G) and Renyi (R).

On the basis of the LMC-functional product
form we obtain then a family of SCMs for each of
four distinct disorder measures and disequilibriums
just enumerated, namely,

C(κ)
ν,q[P ] = H(κ)

q [P ] · Q(ν)
q [P ], (15)

with κ = S, T, G, R for a fixed q. In Shannon’s
instance (ν = S) we have, of course, q = 1. The
index ν = DE,DW ,K(κ)

q ,J (κ)
q tells us that the dis-

equilibrium is to be evaluated with the appropriate
distance measure.

It is important that, for ν = K(κ)
q , the SCM

family becomes C(κ)
q [P ] = (1 − H(κ)

q [P ]) · H(κ)
q [P ],

which thus becomes the generalized functional form
proposed by Shiner et al. [1999] for the statistical
complexity measure. One could raise the objection
that in this case this complexity family becomes just
a set of comprising simple functions of the entropy,
implying that it might not contain new informa-
tion vis-a-vis the entropic measure of order. We
emphasize that the remaining members of the fam-
ily C(κ)

ν,q (with ν �= K(κ)
q ) are not just a function

of the entropy. On the contrary, for a given H(κ)
q -

value, an ample range of SCMs can be obtained,

from a minimum one Cmin up to a maximal value
Cmax. Evaluation of C(κ)

ν,q yields, consequently, new
information according to the peculiarities of the
pertinent probability distribution. A general pro-
cedure to obtain the bounds Cmin and Cmax corre-
sponding to the generalized C = H · Q -family is
given in [Mart́ın et al., 2006].

In statistical mechanics one is often interested
in isolated systems characterized by an initial, arbi-
trary, and discrete probability distribution. Evo-
lution towards equilibrium is to be described, as
the overriding goal. At equilibrium, the distribu-
tion is the equiprobability distribution Pe. In order
to study the time evolution of the SCM a diagram of
C versus time t can then be used. But, as we know,
the second law of thermodynamics states that in
isolated system entropy grows monotonically with
time (dH/dt ≥ 0). This implies that H can be
regarded as an arrow of time, so that an equiva-
lent way to study the time evolution of the SCM
is to plot C versus H. In this way, the normalized
entropy-axis substitutes for the time-axis.

If κ = S (q = 1) and ν = DE we recover the
statistical complexity measure definition given orig-
inally by Lopez-Ruiz, Mancini and Calbet (LMC)
[Lopez-Ruiz et al., 1997], CLMC = C(S)

E,1. It has been
pointed out by Crutchfield and co-workers [Feld-
man & Crutchfield, 1998] that the LMC measure
is marred by some troublesome characteristics that
we list below:

• it is neither an intensive nor an extensive quan-
tity.

• it vanishes exponentially in the thermodynamic
limit for all one-dimensional, finite-range sys-
tems. The above authors forcefully argue that a
reasonable SCM should

• be able to distinguish among different degrees of
periodicity;

• vanish only for periodicity unity.

Finally, and with reference to the ability of
the LMC measure to adequately capture essen-
tial dynamical aspects, some difficulties have also
been encountered [Anteneodo & Plastino, 1996]. For
example, use of the product functional form for
the generalized SCM makes it impossible to over-
come the second deficiency mentioned above. In
previous works we have shown that, after perform-
ing some suitable changes in the definition of the
disequilibrium (utilization of either Wootters’ dis-
tance [Mart́ın et al., 2003] or Jensen’s divergence
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[Lamberti et al., 2004] one is in a position to obtain
a generalized SCM that is:

(i) able to grasp essential details of the dynamics,
(ii) an intensive quantity, and
(iii) capable of discerning among different degrees

of periodicity.

An important point in the evaluation of the
generalized SCM is that of properly determining the
underlying probability distribution function (PDF)
P (associated to a given dynamical system or time
series). This is an often neglected issue that indeed
deserves detailed consideration. Why? Because the
probability distribution P and the sample space Ω
are inextricably linked. Many schemes have been
proposed for a proper selection of the probabil-
ity space (Ω, P ). We can mention, among others:
(a) procedures based on amplitude statistics [De
Micco et al., 2008], (b) binary symbolic dynam-
ics [Mischaikow et al., 1999], (c) Fourier analysis
[Powell & Percival, 1979] and, (d) wavelet trans-
form [Rosso & Mairal, 2002]. Their applicability
depends on particular characteristics of the data
such as stationarity, length of the time series, vari-
ation of the parameters, level of noise contamina-
tion, etc. In all these cases the global aspects of the
dynamics can be somehow captured, but the dif-
ferent approaches are not equivalent in their abil-
ity to discern all the relevant physical details. One
must also acknowledge the fact that the above tech-
niques are introduced in a rather ad hoc fashion
and are not directly derived from the dynamical
properties themselves of the system under study,
as can be adequately achieved, for instance, by
recourse to the Bandt–Pompe methodology [Bandt
& Pompe, 2002]. This requires suitable partitions
of a D-dimensional embedding space that will, it
is hoped, reveal important details concerning the
ordinal structure of a given one-dimensional time
series.

The Bandt–Pompe method for evaluating the
probability distribution P is based on the details
of the system’s attractors-reconstruction proce-
dure. Causal information is, consequently, properly
incorporated into the “building-up” process that
yields (Ω, P ). The Bandt–Pompe probability dis-
tribution is the only one among those in popular
use that takes into account the temporal struc-
ture of the time series generated by the physi-
cal process under study. A notable result from the
Bandt–Pompe approach is a notorious improvement
in the performance of the information quantifiers,

like entropy and statistical complexity measures,
obtained using the probability distribution P gen-
erated by their algorithm [Rosso et al., 2007]. Of
course, one must assume with Bandt and Pompe
that (i) our system is weakly stationary and (ii)
enough data are available for a correct attractor
reconstruction.

2. Application to Logistic Map

The logistic map constitutes a paradigmatic exam-
ple, often employed as a testing-ground in order
to illustrate new concepts in the treatment of
dynamical systems. In such a vein we discuss here
the application of the generalized statistical com-
plexity measures (see Eq. (15)).

We deal then with the map F : xn → xn+1

[Sprott, 2004; Ott et al., 1994], described by the
ecologically motivated, dissipative system described
by the first order difference equation

xn+1 = r · xn · (1 − xn) (16)

with 0 ≤ xn ≤ 1 and 0 < r ≤ 4. Figure 1(a) depicts
the well-known bifurcation diagram for the logistic
map for 3.4 ≤ r ≤ 4.0 while, in Fig. 1(b), the cor-
responding Lyapunov exponent, λ, is also shown.

Let us briefly review, with reference to
Figs. 1(a) and 1(b), some exceedingly well known
results for this map that we need in order to put
into an appropriate perspective the properties of
our family of generalized statistical complexity mea-
sures. For values of the control parameter 1 < r < 3
there exists only a single steady-state solution.
Increasing the control parameter past r = 3 forces
the system to undergo a period-doubling bifurca-
tion. Cycles of period 8, 16, 32, . . . occur and, if rn

denotes the value of r where a 2n cycle first appears,
the rn converge to a limiting value r∞ ∼= 3.5699456
[Sprott, 2004; Ott et al., 1994]. As r grows some
more, a quite rich, and well-known structure arises.
In order to be in a position to better appreciate at
once the long-term behavior for all values of r lying
between 3.4 and 4.0, we plot the pertinent bifur-
cation diagram in Fig. 1(a). We immediately note
there the cascade of further period-doubling that
occurs as r increases, until, at r∞, the maps become
chaotic and the attractors change from comprising
a finite set of points to becoming an infinite set. For
r > r∞ the orbit-diagram reveals an “strange” mix-
ture of order and chaos. The large window begin-
ning near r = 3.8284 contains a stable period-3
cycle. In Fig. 1(b) we see that the nonzero Lya-
punov characteristic exponent λ remains negative
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Fig. 1. (a) Bifurcation diagram and (b) Lyapunov exponent (λ), for the logistic map as function of parameter r with step
∆r = 0.0003. Time series with total length M = 107 data.

for r < r∞. We notice that λ approaches zero at
the period-doubling bifurcation. The onset of chaos
is apparent near r ∼= 3.5699, where λ first becomes
positive. As stated above, for r > r∞ the Lyapunov
exponent increases globally, except for the dips one
sees in the windows of periodic behavior. Notice the
particularly large dip due to the period-3 window
near r = 3.8284.

3. Temporal Information and
Methodologies for Getting the
Pertinent PDFs

In the present work, we compare the results of using
Information Theory quantifiers (Entropy and Gen-
eralized Statistical Complexity) after a proper eval-
uation of the all important probability distribu-
tion function (PDF) is made by recourse to one of
the three distinct approaches in coordinate space,
namely, (i) histograms of the xi-values, (ii) binary
representations, and (iii) the Bandt–Pompe tech-
nique; the temporal information-content of each
being discussed. Note also, that if the PDF evalua-
tion is made in the frequency space, similar results
are obtained (not shown). If the PDF is obtained by
recourse of the Fast Fourier Transform (FFT), no
temporal information is included. Contrary, in the
case of Discrete Wavelet Transform used for deter-
mination of the PDF, frequency and temporal infor-
mation are included in the standard way (for details
see [Rosso et al., 2006; Rosso & Mairal, 2002]).

3.1. PDF based on histograms

In order to extract a PDF via amplitude-
statistics, divide first the interval [0, 1] into a
finite number nbin of nonoverlapping subintervals

Ai: [0, 1] =
⋃nbin

i=1 Ai and Ai
⋂

Aj = ∅ ∀ i �= j. One
then employs the usual histogram-method, based on
counting the relative frequencies of the time series
values within each subinterval. It should be clear
that the resulting PDF lacks information regarding
temporal evolution. The only pieces of information
we have here are the xi-values that allow one to
assign inclusion within a given bin, ignoring just
where they are located (this is, the subindex i).

3.2. PDF based on binary
representation

Following the original work of Lopez-Ruiz et al.
[1997], for each parameter value, r, the dynamics of
the logistic map was reduced to a binary sequence
(0 if x ≤ (1/2); 1 if x > (1/2)) and binary strings of
length L = 12 without overlap were considered as
states of the system. The concomitant probabilities
are assigned according to the frequency of occur-
rence after running over 107 iterations.

In this case some temporal information is, on
average, retained. Why? Because we face a two-step
procedure in this approach. In making the binary
assignment (1st step), part of the temporal informa-
tion is lost by averaging, but, in considering words
of length L (without overlap) in a second step we are
indeed respecting such “averaged” temporal infor-
mation.

3.3. PDF based on Bandt and
Pompe methodology

To use the Bandt and Pompe [2002] methodol-
ogy for evaluating the probability distribution P
associated to the time series (dynamical system)
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under study, one starts by considering partitions
of the pertinent D-dimensional space that will
hopefully “reveal” relevant details of the ordinal-
structure of a given one-dimensional time series
{xt : t = 1, . . . ,M} with embedding dimension
D > 1. We are interested in “ordinal patterns”
of order D [Bandt & Pompe, 2002; Keller & Sinn,
2005] generated by

(s) 
→ (
xs−(D−1), xs−(D−2), . . . , xs−1, xs

)
, (17)

which assign to each time s the D-dimensional vec-
tor of values at times s, s − 1, . . . , s − (D − 1).
Clearly, the greater the D-value, the more infor-
mation on the past is incorporated into our vectors.
By the “ordinal pattern” related to the time (s)
we mean the permutation π = (r0, r1, . . . , rD−1) of
(0, 1, . . . ,D − 1) defined by

xs−rD−1
≤ xs−rD−2

≤ · · · ≤ xs−r1 ≤ xs−r0. (18)

In order to get a unique result we set ri < ri−1 if
xs−ri = xs−ri−1. Thus, for all D! possible permu-
tations π of order D, the probability distribution
P = {p(π)} is defined by

p(π) =
�{s|s ≤ M − D + 1; (s), has type π}

M − D + 1
.

(19)

In this expression, the symbol � stands for
“number”.

The Bandt–Pompes methodology is not re-
stricted to time series representative of low-
dimensional dynamical systems but can be applied
to any type of time series (regular, chaotic, noisy, or
reality based), with a very weak stationary assump-
tion (for k = D, the probability for xt < xt+k

should not depend on t [Bandt & Pompe, 2002]).
One also assumes that enough data are available
for a correct attractor-reconstruction. Of course,
the embedding dimension D plays an important
role in the evaluation of the appropriate proba-
bility distribution because D determines the num-
ber of accessible states D! Also, it conditions the
minimum acceptable length M � D! of the time
series that one needs in order to work with reliable
statistics.

4. Results and Discussion

Time series with total length M = 107 data were
generated for the logistic map for parameter value
r in the range 3.4 ≤ r ≤ 4.0 with step of ∆r =
0.0003. For the evaluation of PDF-histogram we

consider N = nbin = 212 bins [De Micco et al.,
2008]. In the case of PDF-binary the word length
was fixed to L = 12 bits (N = 212) and for the case
of PDF-Bandt and Pompe, the embedding dimen-
sion was fixed to D = 6 (N = 6! = 720).

The behavior (“degree of chaoticity”) of the
Lyapunov exponent λ as a function of the parame-
ter r is displayed in Fig. 1(b). From this figure, we
see that λ and, as a result, the associated degree
of chaoticity grows globally with r (since there are
many periodic windows where λ drops to nega-
tive values) , reaching a maximum at r = 4. One
would expect that a sensible statistical complexity
measure should accompany such a global growth.
In other words, a reasonable statistical complexity
measure should take very small values for r < r∞
and then grow globally together with the degree of
chaoticity.

In Fig. 2 we depict the normalized Shan-
non entropy, H(S)

1 evaluated for the logistic map
as a function of the parameter r considering
either (i) an histogram-determined PDF (Hhist ≡
H(S)

1 |histogram), (ii) a binary (Hbin ≡ H(S)
1 |binary)

one or, (iii) a Bandt–Pompe PDF (HBP ≡
H(S)

1 |Bandt−Pompe). We observe in all instances an
abrupt entropy growth around r > r∞ ∼= 3.5699.
After we pass this point, the entropy displays a
trend to increase, taking its maximum value at
r = 4. The several “drops” in entropic values in the
interval r∞ < r < 4 correspond to the periodic win-
dows, as can be easily confirmed comparing with the
bifurcation diagram and with the Lyapunov expo-
nent depicted in Fig. 1.

It is interesting to observe that, in the PDF-
histogram-instance, the entropy for r = 4 is almost
unity (Hhist � 0.983). The reason is that the invari-
ant measure of the logistic map is in this case given
by an almost constant function, namely,

ρ(x) =




1
π
√

x(1 − x)
0 < x < 1

0 other x

. (20)

Results with a PDF-binary are even worse (Hbin =
1), because the invariant measure of Eq. (20) is sym-
metric around x = 0.5. Only the PDF-Bandt and
Pompe leads to the realistic value HBP � 0.6. Fur-
thermore, the doubling period-cascade is lost if a
PDF-binary is used.

We depict in Fig. 3 the statistical complexity
measure C(S)

J ,1 as evaluated with the three different
PDF-methodologies outlined above. In all cases
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Fig. 2. Normalized Shannon entropy for the logistic map as function of parameter r with step ∆r = 0.0003 (time series with
total length M = 107 data) evaluated in the following instances: (a) PDF-histogram (Nbin = 212), (b) PDF-binary (L = 12),
(c) PDF-Bandt and Pompe (D = 6).

we note an abrupt statistical complexity growth
around r > r∞. After we pass this point, the cor-
responding complexity measure behaves in quite
different fashion. Notwithstanding the fact that
in all instances the complexity measure decreases,
it remains constant within the periodic windows
(consider for example the period three window
r ∈ [3.8284, 3.8570]). Also, for different periodic
windows the complexity values differ according to
the kind of periodicity-degree of that window. For
the statistical complexity evaluated using PDF-
histograms one sees that, after r > r∞, an overall
decreasing tendency becomes evident. A minimum
value exists at Chist ≡ C(S)

J ,1|histogram
∼= 0 for r = 4.

The several peaks observed in the region r∞ <
r < 4 signal a local complexity growth. Compar-
ison with the bifurcation diagram (see Fig. 1) indi-
cates that these peaks are correlated with periodic
windows. As a consequence, they signal the tran-
sition between different dynamical behaviors, i.e.
from chaotic to periodic ones.

The statistical complexity evaluated with a
PDF-binary exhibits a parabolic behavior accord-
ing to the variation of the parameter r∞ < r < 4,
with a value Cbin ≡ C(S)

J ,1|binary
∼= 0 for r = 4. Glob-

ally, the decay of Cbin is more swift the closer we
approach the value r = 4. Note also that for this
region the statistical complexity grows in the inter-
windows region and rapidly falls within the periodic
windows.

In the instance of a PDF evaluated with the
Bandt and Pompe methodology, the statistical com-
plexity measure CBP ≡ C(S)

J ,1|Bandt−Pompe exhibits
overall increasing values as a function of the param-
eter r, adopting its maximum value for r = 4,
which corresponds to the case of totally devel-
oped chaos. Also we observe drops in its values,
that are associated with periodic windows. The
behavior of the normalized Shannon entropy (HBP)
and of the statistical complexity measure (CBP)
take into account in a natural way, as emphasized
above, “time causality”, which allows in fact for the



April 8, 2010 14:41 WSPC/S0218-1274 02606

782 O. A. Rosso et al.

3.4 3.5 3.6 3.7 3.8 3.9 4
0

0.2

0.4

0.6

r

C
h

is
t

3.4 3.5 3.6 3.7 3.8 3.9 4
0

0.2

0.4

0.6

r

C
b

in

(a) (b)

3.4 3.5 3.6 3.7 3.8 3.9 4
0

0.2

0.4

0.6

r

C
B

P

(c)

Fig. 3. Statistical complexity for the logistic map as function of parameter r with step ∆r = 0.0003 (time series with total
length M = 107 data) evaluated in the following instances: (a) PDF-histogram (Nbin = 212), (b) PDF-binary (L = 12),
(c) PDF-Bandt and Pompe (D = 6).

ability to distinguish between chaotic and stochas-
tic dynamics [Rosso et al., 2007]. Indeed, if the
time causality is not totally taken into account,
as is the case of both the PDF-histogram and the
PDF-binary, one has H ∼= 1 and C ∼= 0 for both
kinds of dynamics, in contradiction to what hap-
pens using the Bandt and Pompe methodology to
determine the PDF, for which the situation H ∼= 1
together with C ∼= 0 is only reached for the stochas-
tic (noise) dynamics [Rosso et al., 2007]. In plain
words, “chaos is not noise” even if they share some
common characteristics. In fact, chaos is represen-
tative of deterministic processes, and thus time-
causality constitutes an important facet that must
be taken into account for a proper characterization.

The above described special characteristics
of the PDF obtained using Bandt and Pompe’s
methodology can provide deeper insight if we con-
sider the emergence of the so-called “forbidden pat-
terns” [Amigó et al., 2007; Zanin, 2008]. When
dealing with random time series, every permuta-
tion pattern should have the same probability of

appearance. Therefore, when N → ∞, the pertinent
PDF should be a uniform distribution. However,
as shown by Amigó et al. [2007] not all ordering
patterns can be effectively materialized into orbits
for a given one-dimensional map, which, in a sense,
makes these “virtual” patterns “forbidden”. Even
worse, the existence of these “forbidden” ordering
patterns is a persistent dynamical feature (always!).
Since a truly random dynamics cannot, obviously,
have forbidden patterns, one can draw the inter-
esting conclusion that their existence is indeed an
indicator of deterministic orbit generation [Amigó
et al., 2007; Zanin, 2008]. In Fig. 4, we depict the
number of forbidden patterns (D = 6) for the logis-
tic map as a function of the parameter r within the
range 3.4 ≤ r ≤ 4. See the decreasing tendency in
the number of forbidden patterns as a function of
r, with a minimum value at r = 4. The fluctuation
in the values of forbidden patterns for the different
periodic windows and chaotic zones can be associ-
ated with the numerical precision attained in the
evaluation of Eq. (18), which defines not only the
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Fig. 4. Forbidden patterns for the logistic map as function of parameter r with step ∆r = 0.0003 (time series with total
length M = 107 data) as function of parameter r. Embedding dimension D = 6.

patterns but also the finite number of realization-
data one considers.

Finally, we display in Fig. 5 the H × C-plane
for the three different instances of PDF-evaluation
under consideration, in the r-range 3.4 ≤ r ≤ 4
(the control parameter does not explicitly appear
in the graph, of course). The two continuous
curves represent, respectively, the maximum, Cmax,
and minimum Cmin, statistical complexity values

evaluated as explained in [Mart́ın et al., 2006] for
the corresponding N (number of degrees of free-
dom). Note that, for the case of periodic windows,
if H < H∗ (H∗

hist ≈ 0.4, H∗
bin ≈ 0.3 and H∗

BP ≈ 0.25)
we can ascertain that the Lyapunov exponent λ < 0,
while for H > H∗ we observed that λ > 0, which
entails chaotic behavior. As evidenced by Fig. 5,
in all the instances of PDF-evaluation, periodic
behaviors exhibit lower values than chaotic ones,
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Fig. 5. Entropy-complexity plane for the logistic map (parameter r with step ∆r = 0.0003, time series with total length
M = 107 data) for: (a) PDF-histogram (Nbin = 212), (b) PDF-binary (L = 12), (c) PDF-Bandt and Pompe (D = 6). We also
display the maximum and minimum possible values of the statistical complexity (segmented lines).
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as demanded in [Feldman & Crutchfield, 1998].
The “Lyapunov”-based criteria mentioned above is
satisfied by the three PDF evaluation instances as
well. For a physicist, the Jensen–Shannon statisti-
cal complexity measure evaluated with the Bandt
and Pompe PDF is the best one because it is an
intensive quantity (which is not the case when the
disequilibrium is evaluated in terms of Wootters
distance) and also clearly distinguishes determin-
istic (chaos) from stochastic process [Rosso et al.,
2007]. The importance of the H × C-plane [Mart́ın
et al., 2006] resides in the fact that this kind of dia-
grams yield information of a system independently
of the values that the different control parame-
ters may adopt. The bounds yield also information
that depends on the particular characteristics of a
given system (for instance, the existence of global
extrema), or on the peculiarities of the system’s
internal configuration for which such extrema can
be obtained.

Similar results, to the previously described are
obtained when the other functional forms of entropy
and generalized statistical complexity are consid-
ered. Results for the logistic map considering PDF-
binary as function of the variation of the parameter
r for Tsallis and Renyi were presented in [Mart́ın
et al., 2006].

5. Conclusions

We conclude that the following remarks are in order
when a statistical complexity measure (SCM) is
going to be used for characterizing a time series:

• Special care is required in the selection of the
probability distribution function (PDF). If deter-
minism is an important feature to be taken into
account, the Bandt and Pompe prescription has
advantages over other choices.

• A statistical complexity measure depends also on
the selection of an appropriate disequilibrium Q.
A complete discussion of this issue is not given in
this paper, but previous works support the choice
of the Jensen Shannon Divergence as that having
the best properties [Lamberti et al., 2004].

• Chaotic time series are located near the Cmax

curve in any of the H×C representations planes.
But the Bandt and Pompe prescription locates
chaos very near from the top, with high complex-
ity and H-values near 0.5. The other “noncausal”
prescriptions place deterministic systems close to
truly random ones (near C = 0 and H = 1).

• The number of forbidden ordering patterns
is another quantifier that yields deterministic
behavior in the full chaos case r = 4. However,
it does not exhibit the bifurcation diagram in as
good a fashion as CBP does.
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