Langmuir

Article

pubs.acs.org/Langmuir

©2010 American Chemical Society

Frictional Forces between Strongly Compressed, Nonentangled Polymer
Brushes: Molecular Dynamics Simulations and Scaling Theory

A. Galuschko,” L. Spirin,i T. Kreer,*" A. Johner," C. Pastorino,’ J. Wittmer," and J. BaschnagelT

Institut Charles Sadron, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, Fr ame *Institute of Physics,
Johannes Gutenberg-University, Staudinger Weg 7, 55099 Mainz, Germany, and SPhysics Department
CAC—CNEA, Av. Gral. Paz 1499, Pcia. Buenos Aires (1650), Argentina

Received October 29, 2009. Revised Manuscript Received December 17, 2009

By means of molecular dynamics simulations and scaling theory we study the response of opposing polymer brushes
to constant shear motion under good solvent conditions. Model systems that contain explicit solvent molecules
(Lennard-Jones dimers) are compared to solvent-free systems while varying of the distance between the grafted layers
and their molecular parameters, chain length and grafting density. Our study reveals a power-law dependence of
macroscopic transport properties on the Weissenberg number, W, beyond linear response. For instance, we find that the
kinetic friction constant scales as u ~ W7 for large values of . We develop a scaling theory that describes our data and

previous numerical data including recent experiments.

1. Introduction

Polymers adsorbed on surfaces are important in many phe-
nomena and applications, such as adhesion,' stabilization of
colloidal dispersions,” protection against corrosion,” flotation of
minerals,* oil recovery,’ smart materials,® wetting and spreading
phenomena,”® biotechnology,” and so forth. Of specific interest
are polymers that are grafted onto a surface by one chain end, so-
called “polymer brushes”.” In a polymer brush, chains tend to
stretch away perpendicular from the substrate due to the steric
repulsion between the monomers. Opposing brush-covered sur-
faces can carry very high normal loads, whereas simultaneously
the resistance to lateral sliding motion can be extremely small. The
resulting friction coefficients may be orders of magnitude smaller
than those found in dry friction.'™"" Polymer brushes have thus
important applications as lubricants, e.g., in machine parts or
artificial joints.” Moreover, they are believed to play a crucial role
in biolubrication, e.g., in synovial joints.'?

While the extremely low friction forces between polymer
brushes are well established experimentally (see, e.g., refs 10—13),
the understanding of the underlying mechanism is still rather
incomplete. This difficulty is mainly related to the fact that, in
experiments, it is almost impossible to provide sufficiently
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detailed information about the molecular factors causing the
rheological response of the grafted layers to external stimuli. In
this respect, computer simulations provide a promising avenue
because the simulation can be employed as a “high-resolution
microscope” to explore structure—property relations of studied
(model) systems. This may account for much of the large activity
in this field over the past few decades (see, e.g., refs 13—31).
The vast majority of the numerical approaches have treated
solvent effects without explicitly including solvent molecules in
the simulation (implicit solvent simulation). For instance, in
molecular dynamics (MD) simulations,!#13:19:24:26:27.29.30 g
has been done via the application of thermostats and the adjust-
ment of the interaction potential between the monomers. Other
approaches have been made'*!%!72%2! by solving the Brinkman
equation™ for solvent- and monomer-flow field self-consistently.
Solvent effects as well can be considered implicitly via the
lattice—Boltzmann method (see ref 33 and references therein) or
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stochastic rotational dynamics.** Within the small number of
investigations that have been carried out with an explicit solvent
(see, e.g. refs 23, 25, 28, and 31), systematic studies of the effects
neglected in implicit solvent simulations are rare.*

In this paper, we study nanotribological aspects of polymer
brushes under shear using MD simulations of a classical coarse-
grained model. The systems under consideration consist of two
opposing polymer brushes under good solvent conditions. We
vary the degree of compression, density and length of grafted
chains and study static equilibrium properties and Couette flows
at various shear rates. The model systems are investigated with
and without the presence of explicit solvent molecules. We
compare the two cases and draw conclusions about the influence
of solvent effects. Using scaling theory, we demonstrate that
structural and macroscopic responses of strongly compressed,
nonentangled brushes to constant shear motion are characterized
by power laws beyond the linear response regime. The numerical
results provide reference points for further investigations con-
cerning the response of the here investigated systems to nonsta-
tionary shear.

In section II, we present the model and simulation parameters.
Section III contains the discussion of our results. First (section
IITA), we analyze the influence of solvent on density profiles, the
overlap between the brushes, and the kinetic friction coefficient.
We suggest a method to extract a characteristic time scale for a
given parameter combination of surface separation, grafting
density and chain length (section IIIB) and use the obtained
values to perform scaling plots for macroscopic transport proper-
ties (section ITIC). In section IV, we present a scaling theory that is
capable of explaining our numerical data. Section V shows a
comparison to experimental data and other simulations, where
solvent effects have been treated differently. We summarize our
results in section VI.

II. Model and Parameters

Polymer chains are represented by the Kremer-Grest (KG)
model*®, which is a generic coarse-grained model that has been
applied in many previous studies 3! 13:19:24:2627.30.29.35737 1y e
KG model, monomers interact via the Lennard-Jones (LJ)
potential,

Uni(ry) = 4el(o/ry)* =(0/ry)° —=(0/re)* +(0/r)"] (1)

where € and o define the units of energy and length, respectively. r;;
denotes the distance between monomer i and j, and r. is the cutoff
radius of the potential. We consider a purely repulsive polymer
model; ie., we choose r. = 2%, and shift Uy to avoid a
discontinuous force at the cutoff. The connectivity along the
chain backbone is assured via the FENE potential®

Upeng(r) = —;kroz In[1 —(r/ro)"]  (r < ro) )

where r is the distance between neighboring monomers in a chain,
k = 30¢/o, and ry = 1.50. The equilibrium bond length, b =
0.970, follows from the minimum of Uy j(r) + Uggng(r). The KG
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model prevents bond crossing and yields the characteristic prop-
erties of polymer solutions and melts.*>¢

The polymers are grafted onto a surface with one chain end.
The substrates are represented by rigid, face-centered cubic (fcc)
crystalline surfaces™ with area 4 = L.L, = 420 x 36.3730 =
1527.6660°. (L, and L, are respectively the extension of the
substrate in shear and neutral direction.) We mimic the interac-
tion of monomers and solvent with the wall atoms by eq 1 using
the same values for r., 0, and ¢ as for the monomer—monomer
interaction. The only exception concerns the interaction between
the grafted end-monomers and the wall atoms, where we increase
€ by a factor of 100 with respect to the monomer—monomer
interaction and make the LJ potential attractive by doubling r..*
The wall atoms remain at fixed relative positions and move
only with the given shear velocity. Using this approach, we
imply chemisorbed polymer chains on a substrate with infinite
mass. Periodic boundary conditions are applied parallel to the
surfaces.

In many previous simulations, the solvent
was treated implicitly; i.e., the kinetic energy dissipated to the
solvent is mimicked by the application of a thermostat. Alter-
natively, we introduce explicit solvent molecules as LJ dimers,
which are connected via eq 2 with the same interaction parameters
as for the monomer—monomer interaction. This means that
the Flory—Huggins parameter, y, is zero and hence the
excluded volume parameter reads v ~ a*(1 — 2y) ~ o’ (a the
effective monomer size). Since v is positive, we have good solvent
conditions, independent of the temperature.** We use LJ dimers
instead of (e.g.) monomers for the solvent in order to hamper
packing and to account for rotational and vibrational degrees
of freedom. However, our approach does not aim at describing
all features of a real solvent but rather attempts to reflect excluded
volume and finite inertia effects, as well as the momentum
transport of an explicit solvent. A snapshot of a simulated
system with explicit solvent at static equilibrium can be seen in
Figure 1.

We solve the classical equations of motion via the velocity—
Verlet algorithm“ using a time-step of Az = 2 x 107y, where
1y = o(m/e)'? represents the LJ time unit. The particle mass, 1,
is set to unity for all monomers and solvent particles. We
systematically checked that our results remain unchanged when
the time-step is reduced to At = 5 X 10 %75

Temperature is kept constant at 7 = 1.68¢/kg (kg the Boltz-
mann constant) using a dissipative particle dynamics (DPD)
thermostat.*'**~*” The thermostat adds to the total conservative
force on each particle 7 a dissipative force, FP, and a random force,
FR. Both forces are applied in a pairwise form, such that the sum
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Figure 1. Typical snapshot of two polymer brushes at static
equilibrium. The distance between the surfaces (light blue spheres)
is D' ~19.7, corresponding to a distance between grafting planes of
D = 17.5. Each brush consists of chains with N = 30 monomers
per chain. The grafting density is approximately twice the critical
grafting density, at which the chains overlap. Red and dark blue
spheres represent monomers, and white spheres are solvent mole-
cules. Their size has been scaled down for clarity.

of thermostatting forces acting on a particle pair vanishes. With I"
the friction constant, the dissipative force reads

FP = =T 0P () vty (3)
JE#)

where t; = (r;-1;)/r;;and v; = v; — v;. We choose the commonly
employed weight function

—_—p.. o 2 o o
CUD(”ij) _ (L=r/re)” (ry <re), (4)
0 (}’U‘ = I’C),
with the same cutoff range r. as for the LJ interaction. The
random force is given by

FR =2 of ()08 (5)
ror)

where 0;;is a random variable with zero mean, unit variance, and
0; =0, a)R(r,»j) denotes the weight function for the random force.
Friction and noise strengths, 4, define the temperature via 1* =
2kgTT. We choose I' = 5tp; ! for the friction constant. In ref 28,
a larger value (I' = 12.57 ;') was chosen. However, we want to
avoid overdamping of the dynamics by the thermostat. During
the simulation we monitor 7 and find isothermal conditions for all
shear velocities considered here.

The fluctuation—dissipation theorem demands that the weight
functions for dissipative and random forces satisfy

") =P (6)

The weight function does not necessarily have to be of the specific
form of eq 4. Instead one can choose a different function, as long
as eq 6 is fulfilled. The strengths and weaknesses of different
weight functions have been studied recently for the KG model
without explicit solvent® and a slightly different model with
solvent.”®

Our simulated chains each consist of N = 30 or N = 60
monomers. These degrees of polymerization are small enough to
avoid entanglements in the bulk.”® Reference 42 suggests that the
entanglement length increases with decreasing thickness of a
confined concentrated solution, such that we expect nonentangled
chains for all systems under consideration.

6420 DOI: 10.1021/1a904119¢
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Figure 2. Snapshot of two polymer brushes with the same para-
meters as in Figure 1, but now at constant relative shear velocity.

The shear rate, y = 2v/D, corresponds to a Weissenberg number of
W a2 13.5; i.e., the system is well beyond linear response.

As an additional parameter, we vary the density of grafted
chains, p,. Our smallest grafting density for N = 30is p, ~ 1.1p,
where the critical grafting density, pf = 1 /nRgz, can be extracted
from the mean square radius of gyration,

R = (R = %<Z (r; —rcm)2> (7)

1

of isolated chains in solution.** Here, r.,, denotes the chain’s
center-of-mass position vector and the average is taken over all
simulated chains. With p, & p¥, we consider a system just at the
mushroom-to-brush crossover. We systematically increase p, to a
maximum value of p, ~ 4.4pf, where we expect semidilute
polymer brushes.’” For N = 60 we consider two grafting
densities, which correspond to p, ~ 1.1p5(N = 30) and p, ~
2.2p%(N = 30), respectively.*®

Shear is performed at fixed distances between the surfaces, D'.
In the following, we characterize the compression of the bilayer by
the (mean) distance between the grafting planes, D = D' — 2r, =
D' —2 x 2"°. With D = 120, D = 14.750, and D = 17.50, we
consider three different degrees of compression. Depending on N
and p,, this corresponds to compressions between 24/D ~ 2 and
2h/D = 6.5 relative to the height 4 of a single, uncompressed brush
without explicit solvent.*” Upon varying the parameter D', we
adjust the number of solvent dimers such that the overall particle
number density remains at a constant value of p = 0.9.

III. Results and Discussion

In this section, we present data for two compressed, opposing
polymer brushes under lateral steady-state motion of the adsorb-
ing substrates. We consider stationary Couette flows, which are
applied by shearing the substrates with a constant relative velocity
of 2v at fixed distance D. The corresponding shear rate is defined
as y = 2v /D. All quantities are presented in LJ units.

A. The Influence of Solvent. A snapshot of a typical con-
figuration at constant shear velocity is depicted in Figure 2. We
observe that the brushes overlap and the solvent concentration is
high between the two brushes and, perhaps less clearly, also at the
surfaces. The majority of chains seems to incline along the shear
direction, although some chains tilt in the opposite direction due
to fluctuations. An analysis of monomer and solvent density
profiles (Figure 3) reveals that solvent molecules accumulate at
the substrates (seen also in a related model*") and in the interface
of the two brushes, even in static equilibrium. Under shear the

(48) For convenience, we express the grafting density for N = 60 in terms of p
for N = 30. Since p, & 1.1p#(N = 30) is much larger than the critical grafting
density for N = 60, we have semidilute polymer brushes at both grafting densities
of N = 60.
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Figure 3. Monomer and solvent density profiles at distance D =
12 between grafting planes for chains of length N = 30. The
grafting density is p, & 2.2p7 for all systems. We show data for a
solvent-free case (dotted lines) and the corresponding system with
explicit solvent molecules. Static equilibrium (black lines) is com-
pared to steady state motion at our largest shear velocity, v = 0.23
(green lines). The inset shows a semilogarithmic plot of the overlap
between the brushes, which can be quantified by the area under

P1(2)pa(2) (see text).

brushes become more dense and squeeze solvent molecules into
the interfacial region between the brushes. The total density (not
shown) of the confined liquid, however, remains constant. This
implies that shear does not induce density fluctuations; the system
keeps its low compressibility. When solvent molecules are ex-
plicitly considered, the overall density and hence the pressure
normal to the substrates (z-direction) is larger compared to the
solvent-free case of our model. The corresponding solvent-free
systems therefore exhibit a larger brush thickness, both in static
equilibrium and under shear, as already observed in ref 25.

The inset of Figure 3 demonstrates that the overlap between
brushes with explicit solvent is reduced compared to solvent-free
cases. Furthermore, we observe that, under sufficiently strong
shear, the layer thickness decreases and this leads to a reduced
interpenetration between the brushes. The latter can be quantified
by an overlap integral***

In(3)~ [ dz @l (s)

where p(z) represents the density profile of brush j (= 1,2). Note
that I,,(y) is proportional to the number of binary interactions
between monomers of different brushes, Ni,, as has been
demonstrated in a previous study.>* Various numerical inves-
tigations®*"*3% have shown that shear thinning coincides with
a reduced overlap between the grafted layers and indicated that
macroscopic transport properties, e.g., the shear viscosity, are
correlated to Ioy(}).

While the overlap integral, in principle, may be measurable
experimentally, we can straightforwardly count the number of
binary interbrush interactions in our simulation, which is much
easier than the integration of the density profiles. Figure 4 shows
Nin as a function of shear rate for different parameter combina-
tions (p,, D, N).* Not only the equilibrium values (not shown)
but also the responses of N, to shear are very different for the
various systems under consideration. Systems with explicit sol-
vent and their solvent-free counterparts reveal distinct differences
in their responses, in particular at small grafting densities and
larger surface separations, where solvent effects are important.

(49) Ny has to be understood as the number of binary LJ interactions at a given
time step. We obtain a continuous value for Ny, after averaging.
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Figure 4. Number of binary interactions between brushes as a
function of shear rate on a double—logarithmic scale. For the
different systems under consideration, N, varies over almost 3
orders of magnitude in static equilibrium (not shown). Responses to
shear reach from almost constant Ny, to strongly decreasing over-
lap. Solvent (filled symbols) and solvent-free cases (open symbols)
behave very differently at small grafting density and larger dis-
tances. For our largest compression [D = 12, N = 60, p, = 2.2p,
(N = 30)], no differences between the two cases are observed.

When dragged through an explicit solvent, the chains feel stronger
forces than for the solvent-free case. The overlap therefore
reduces at smaller shear rates.

A qualitatively different behavior of solvent and solvent-free
systems can be observed for the kinetic friction coefficient, u. We
define u as the ratio between shear and normal forces

A
w0 =7

which we apply to the center-of-mass of the confining substrates
to maintain constant v and D. We verified that our results are
independent of whether we characterize the macroscopic response
by measuring forces at the substrate or by calculating elements of
the stress tensor, using the Irving—Kirkwood method.*

All systems keep their low compressibility even under strong
shear. Therefore, /. remains almost independent of y, and only at
our largest velocities we find (for some cases) a small increase of 1.
by approximately 4%.

The kinetic friction coefficient is shown in Figure 5 for D = 12
and N = 30. We observe an increase of u with shear rate that is
particularly strong for solvent-free systems, which exhibit larger
friction coefficients at all investigated grafting densities. This
observation, which is in agreement with the conclusions drawn
in ref 25, highlights the importance of solvent effects in polymer-
brush lubrication.

The presence of explicit solvent does not only lead to smaller
values of u. For solvent-free systems, « decreases for larger grafting
densities due to larger normal forces. Since solvent and solvent-free
cases merge at large values of p,, the kinetic friction coefficient has
to increase with grafting density for systems with solvent. The
arrows in Figure 5 indicate the behavior for both cases.

However, in the following we will demonstrate that it is
possible to describe both cases on the basis of the same analytical
concept. To this purpose we extract a characteristic time scale and
the related length scale, which determine the response of a given
system to shear. We suggest a method to obtain the time scale,

©)

(50) Irving, J. H.; Kirkwood, J. G. J. Chem. Phys. 1950, 18, 817.
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Figure 5. Kinetic friction coefficient, defined as the ratio between
shear and normal forces measured at the substrates, as a function of
shear rate (D = 12, N = 30). Note that systems without an explicit
solvent (open symbols) reveal a significantly larger friction coeffi-
cient than systems with solvent particles (filled symbols). For large
grafting densities, p,, the two cases have to merge, which means
that u decreases with p, for solvent-free systems, while it increases
for systems with solvent.

where we assume that the mean extension of a grafted chain in
shear direction represents a relevant length scale.

B. Determination of the Weissenberg Number Using
Shear-Induced Chain Deformation. The chain extension may
be characterized by the radius of gyration [eq 7] for different shear
rates 7. Figure 6 shows the ratio

Ry,d’(7)
Rgv (12 (0)

qo (10)

in shear (o = x) and gradient (oo = z) directions for various
degrees of compression, grafting densities, and two different chain
lengths as a function of the Weissenberg number, W= y/y*. Here,
y* denotes the critical shear rate, which can be regarded as an
inverse relaxation time of the bilayer.

The determination of W, i.e., of y*, is crucial for the discussion
of our results. Linear response should apply for small values of 17,
while nonlinear effects are important for large values. However,
the precise scale for I is somewhat arbitrary, because the bilayer
has a broad spectrum of relaxation times, and it is not clear which
of them is best suited. Therefore, it is convenient to use an
operational definition that sets the scale for . Here, we deter-
mine y* operationally by plotting the raw data for ¢, against 7
and shifting the data such that a master curve results. The fact that
this procedure yields an (almost) perfect data collapse (Figure 6) is
a nontrivial result because the raw data strongly differ from each
other. The values for y* and Rg,az(O) are compiled in Table 1 for
all considered parameter combinations.

Figure 6 shows that ¢. decreases only weakly for W > 1. The
chain extension in the gradient direction saturates at different
values of W, depending on the chosen parameters (o,, D, N), due
to the finite compressibility of the grafted layers.

In agreement with early studies of Murat and Grest,'* we find a
pronounced stretching of the chains along the shear direction
beyond the linear response regime. The data do not reach the limit
of fully extended chains, where ¢, should become constant.
Instead, we obtain a universal power law

qx ~ we (11)

for Weissenberg numbers W > 1. The exponent ¢ ~ 0.5 (indicated
by straight lines) is derived analytically in section IV.
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Figure 6. Double—logarithmic scaling plot for the chain extension
in shear (x) and gradient (z) directions as a function of the
Weissenberg number for D = 12, D = 14.75, and D = 17.5
(from above). Data is shown for N = 30 at three grafting densities
and for N = 60 at two similar values of p,. We obtain no chain
deformation for W < 1. Upon increasing W, the grafted layers
shrink slightly and remain at constant height for larger shear rates.
The chains stretch in shear direction, following a universal power-
law (indicated by straight lines). Solvent (filled symbols) and
solvent-free cases (open symbols) can be brought onto the same
master curve, as data for different values of D (not shown).

Table 1. Mean Square Radius of Gyration, Rg,m2 (0), in Shear (a. = x)
and Gradient (o. = z) Directions, Critical Shear Rate, y*, and Critical
Force, f.(7%)"

D N po/pE(N =30) solvent R,.” Ry.> y*x10* f(%)

12 30 1.1 + 278  3.17 10.5 25.5
30 2.2 + 2.58  3.28 8.70 40.2
30 4.4 + 237 3.42 5.00 69.4
60 1.1 + 5.41 488 0.83 11.8
60 2.2 + 426 4.69 0.57 153
30 1.1 - 342 3.80 133 18.6
30 2.2 - 298 3.68 40.0 37.3
30 4.4 - 244 348 6.90 72.7
60 1.1 - 6.58 5.19 6.25 12.7
60 2.2 - 492 477 0.87 21.8
14.75 30 1.1 + 271 3.56 12.5 24.2
30 2.2 + 2.51  3.96 10.5 39.2
30 4.4 + 226 4.50 6.90 66.4
60 1.1 + 511 5.59 0.85 10.5
60 22 + 422 543 0.63 18.0
30 1.1 - 337 459 182 13.9
30 2.2 - 297 4.67 66.7 31.2
30 4.4 - 249  4.66 143 72.8
60 1.1 - 7.16  6.49 10.3 12.7
60 22 - 5.17 5.83 1.82 21.8
17.5 30 1.1 + 2.56  3.61 15.4 24.6
30 2.2 + 248 444 16.7 41.3
30 4.4 + 2,12 5.57 8.51 66.4
60 1.1 + 540 6.69 1.18 21.8
60 2.2 + 4.44  6.55 0.74 15.6
30 1.1 - 321 544 500 9.6
30 22 - 285 594 118 27.8
30 4.4 - 249 6.13 25.0 69.4
60 1.1 - 7.16  7.53 14.8 12.7
60 2.2 - 5.50  7.02 2.86 21.8

“See Figure 9 for the different parameter combinations under con-
sideration: distance D between grafting planes, chain length N, and ratio
between grafting density and (approximate) critical grafting density for
chains of length N = 30 (4 and — respectively denote systems with and
without explicit solvent).
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Inspection of Table 1 shows that the lateral chain extension at
equilibrium decreases upon increasing grafting density. The
opposite behavior is observed for the direction perpendicular to
the surfaces. As expected, the brush thickness decreases under
compression.

Larger values of ¢* are obtained for solvent-free systems
compared to systems with explicit solvent, which indicates that
the latter leave linear response earlier due to the additional
monomer—solvent friction.

A similar observation can be made for the surface separation.
With decreasing compression, i.e., larger values of D, we system-
atically find larger critical shear rates. The force that drives the
system out of the linear-response regime increases with compres-
sion. This observation agrees with previous simulations® and
experiments.'?

Increasing the chain length at fixed D and grafting density leads
to a larger frictional force per chain. Moreover, larger chains need
more time to relax. Systems with N = 60 thus leave the regime of
linear response earlier than those with N = 30.

Interestingly, the structural response in shear direction is
universal, independent of whether the solvent is explicitly in-
cluded or not. We attribute this finding to the fact that the DPD
thermostat fulfills Newton’s third law and thus accounts for
hydrodynamic correlations, at least at large polymer concentra-
tions. For semidilute polymer solutions, Zimm dynamics has been
observed on small time scales.”!

Finally, we point out that the same results are obtained when
we define ¢, via the mean square end-to-end distance instead of
using Rg,az.

C. Viscosity and Shear Force. To perform scaling plots for
the transport properties, it is not sufficient to know the critical
shear rate. For instance, to plot the ratio

.:(7)
1::(0)

where 7. (y) represents the shear viscosity, we need 7,.(0) for
each examined system. The (collective) zero-shear viscosity is
difficult to compute numerically. The measurements have to be
performed at small shear rates and this is related to a bad signal-
to-noise ratio.

However, in principle we can calculate #,.(0) from the data
presented in Table 1: In the linear response regime, the Weissen-
berg number may be expressed via the acquired energy per chain,

AL ()
WA TTQT (13)

s =

(12)

where f,(y) denotes the shear force acting on the substrate, N, is
the number of grafted chains and R, (0) = R, ,*(0)"*. The critical
shear rate can be found from the requirement that the acquired
energy is comparable to kg7, i.e. when W is of order unity. The
shear force is proportional to y in linear response. With the zero-
shear viscosity

00 =200 =) (19

one thus may write
~ png T
nx: (O)Rg,\'(o)

where we have used p; = N,/A.

‘}'/*

(51) Ahlrichs, P.; Everaers, R.; Duenweg, B. Phys. Rev. E 2001, 64, 040501.
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Figure 7. Double—logarithmic scaling plot for the shear viscosity
as a function of the Weissenberg number. We show examples for
systems with explicit solvent (filled symbols) and their solvent-free
counterparts (open symbols). The normalization constant, 1,.(0),
follows from shifting the data along the ordinate, such that s — 1
for W< 1.
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Figure 8. Numerical test of eq 15. The chain extension in static
equilibrium, R, (0), has directly been measured in the simulation
and the zero-shear viscosity is identified as the plateau value of
77.-(y) at small shear rates (or by extrapolation of the data, where a
plateau was not clearly visible). The critical shear rate, y*, is taken
from Table 1.

Equation 15 provides the possibility to compute 7,.(0) for a
given critical shear rate up to a (constant) numerical factor.
Unfortunately, when plotting the ratio s, we find strong statistical
fluctuations. Therefore, we use a different way of presentation by
shifting the data along the ordinate to obtain an estimate for the
zero-shear viscosity. Figure 7 shows an example for some cases.>>

Using the values we obtained for y* in the previous paragraph,
it is possible to achieve a reasonable data collapse. This again is a
nontrivial result, which indicates a strong correlation between the
deformation of chains and the macroscopic response. Beyond
linear response the data follow a power-law,

s~WE (W > 1) (16)

The exponent { = —0.43 (indicated by a straight line) can be
derived analytically, as we will demonstrate in section IV.

The values for 77,.(0) used in Figure 7 can be cross-checked with
eq 15. Taking y* and R, (0) from Table 1, we find a reasonable

(52) .-(p) is determined from 7,..(y) = o..(7)/( '2, where the shear stress, 0..(y),
is calculated from the Irving—Kirkwood formula.>®
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Figure 9. Double—logarithmic scaling plot for the shear force as a
function of the Weissenberg number (same legend as in Figure 6).
Data is shown for two chain lengths and different surface coverage
at distances D = 12, D = 14.75, and D = 17.5 between grafting
planes. Filled symbols represent systems with explicit solvent, open
symbols are solvent-free systems. The normalization constant,
f(7*), is obtained by shifting the data along the ordinate such that
u = 1 for W = 1. The values are compiled in Table 1.

agreement with eq 15 up to a numerical factor of about 2, as can
be seen from Figure 8. However, the data reveal strong fluctua-
tions, which explains why it is almost impossible to produce a
successful scaling plot for s from the direct calculation of #..(0).

Plotting the shear viscosity always reveals strong fluctuations
at small shear rates. A somewhat clearer picture is obtained from
the analysis of the shear force. Here, we measure f,(y) at the
substrates. Figure 9 shows the ratio

Jx(7)
f:(7%)

as a function of W for all considered parameter combinations.
The data collapse is even better than for the viscosity. As expected,
u scales linearly with W for W < 1. Beyond linear response we
obtain a power-law,

u

(17)

u~wew >1) (18)

The dashed-dotted lines represent an exponent of k = 1 + § =
0.57, which follows from

Sx(7)
5~
Jx(7%)
The values for f,(y*) are obtained by shifting the data along the

ordinate, such that u(W = 1) = 1. For the same reason as before,
we do not get a satisfying scaling plot when using the relation

W l=u~sw (19)

 NpkyT
Rgs X (0)

J(7%) (20)

which follows from eq 13 for W = 1.

So far we have shown that the lateral extension of the grafted
chains (g,) and the macroscopic response (viscosity s and shear
force u) are characterized by the same time scale, 1/y*. Beyond
linear response we find that ¢,, s, and u are power-laws of the
Weissenberg number. In the following, we present a theoretical
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approach to determine the critical shear rate as a function of N, pg,
and D, which allows us to calculate the exponents ¢ and «.

IV. Scaling Theory

The data previously presented in this paper correspond to
brushes with compressions 24/D > 2 (see section IT). We verified
furthermore, from equivalent plots as shown in Figure 3, that the
sum of the monomer density profiles, p;(z) + p2(2), is constant in
the center between the substrates for (almost) all considered shear
rates. Therefore, in the following, we assume strongly compressed
brushes (24/D = 2) with a uniform monomer concentration, ¢ ~
Np,/D, in the overlap region. We will use this feature below for the
linear response regime.

The starting point of our scaling approach is the interpenetra-
tion depth, 0, i.e. the overlap thickness of the bilayer. We first
consider molten brushes. The overlap thickness can be derived
from the change in free energy, AF, when a chain segment of
length 0 is pushed into the opposing layer. Witten et al>®
demonstrated that AF can be written as

1/2
N (_53;@(2)) o)

a? 9z

where the molecular field, ®(z), may be of the classical parabolic
form>*

®(2) = By —% (;;;)2 (22)

with @ constant. In equilibrium, AF'is of the order kg T. We take
the derivative of ®(z) at the middle of the bilayer, z = D/2, and

obtain from eq 21
1/3
N2g
o~ | —— 23
(%) )

for the interpenetration depth of strongly compressed, molten
bilayers.>

A. Semidilute Brushes with Zimm Dynamics. Let us now
consider semidilute brushes. In this case, a brush may be con-
sidered as a dense melt of concentration blobs.*® Therefore, eq 23
still holds with the replacements

N—N/g,, a—§& (24)
where

&~ afea’) T (25)

(53) Witten, T. A.; Leibler, L.; Pincus, P. A. Macromolecules 1990, 23, 824.

(54) Milner, S. T.; Witten, T. A.; Cates, M. E. Macromolecules 1988, 21, 2610.
Europhys. Lett. 1988, 5, 413. )

(55) Equation (23) is similar to the expression found by Witten et al.*®

; (N2a4) B
O~
h

where D is replaced by the unperturbed brush height. The difference occurs because
in ref 53 the derivative of ®(z) is taken at z = h, which hence characterizes the
behavior of two brushes just coming into contact.

(56) De Gennes, P. G. Scaling Concepts in Polymer Physics; Cornell University
Press: New York, 1979.
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represents the size of the concentration blob consisting of g, ~
(€./a)""” monomers and v ~ 0.588 is the Flory-exponent. With the
uniform concentration ¢ ~ Np,/D, eq 23 yields

1/3(3v—1)

1—v
5~ a| N¥(p )10 (%) (26)

for the interpenetration depth of strongly compressed, semidilute
brushes. Under melt conditions, the lateral extension of a chain is
given by R, (0) ~ N 124, With eq 24 we get

i 5y _17 1/203v 1)
Ry, <(0) (N) / 3 w2 (27)
J(0)~ [ = ~a =
& e pga3

for semidilute brushes.

In the next step, we estimate the friction force per unit area
(f/A) in the linear response regime by assuming Zimm dynamics
in the blob.*® Since there are ¢d/g. blobs (per unit area) in the
overlap region, each having a friction coefficient #.&. (s the
solvent viscosity), and a typical velocity is D, we may write

B eyp (s (29
8e

With egs 25 and 26 this leads to’

Sx(7) ~

o e (a2 o)
o (5) nd ()

in the linear response regime.

We anticipate that thermal fluctuations allow the chains of a
brush to exchange between the overlap region and deeper layers.™
Hence, the shear stress should be sustained by more chains than
only those that are in the overlap region at a given time. For the
sake of simplicity we do not discuss the structure of the sheared
layer in details here. We rather characterize the lateral chain
extension averaged over the whole layer. This is formally equiva-
lent to the assumption that all chains sustain the stress equally. We
will come back to this point later.

In the following, we determine the critical shear rate by
requiring W = 1. Let us recall that in the linear regime the

(57) This result is different from the original calculation by Klein,'! who obtains

. o 23
.A(V)thg/‘<5) nyA (W<1)

Note that this expression can be transformed into
571/3Gv-1)

Sx(7) ~ 1574

9y -1 2(Tv=1)/2v [ 4
N (Pga ) (B)

when the relation 1 ~ aN (pgaz)”*")‘sz" 37 s used. A comparison with eq 29 reveals
an almost identical exponent for N, but different scaling-laws for p, and D. We
attribute these deviations to the fact that Klein starts out from

N A
0~ py 1/“<B>

which rather describes the interpenetration for weakly compressed, molten
brushes, and to a different estimate of the number of blobs in the interpenetration
zone. However, since we base the following scaling argument on the N-dependence
of the shear force, Klein’s approach would lead to minor differences.

(58) Clement, F.; Charitat, T.; Johner, A.; Joanny, J.-F. Europhys. Lett. 2001,
54,65.
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transverse free end fluctuations are equilibrium fluctuations. For
increasing shear force there is a spontaneous symmetry breaking
when the work of the shear force over the typical fluctuations
exceeds the thermal energy. At higher shear rates the chains are
deflected in the shear direction (only). Our definition of I follows
from this criterion.

The critical shear rate follows from eq 13 with W = 1. Using
pe = Ng/A with eqs 27 and 29, we find

2\ Wl 1/6Gv=1)
N719v(pg02)201/—13 <B) :| (30)

or, with v~ 0.588, y* ~ N~ 2'449‘;0‘27D0'6. For the shear force at
W =1, eqs 20 and 27 yield

kpT
nya

* ~

1/2(3v—1)

2v—1
o NJgT| . (pd?
*) ~ 8 v(Te
Sp)~—=—|N (1)) (31)

Note that care has to be taken if one wishes to compare eqs 30
and 31 to the data presented in Table 1. We expect deviations that
stem from a dependence of the effective solvent viscosity and
monomer size upon a variation of compression and molecular
parameters, because 7, and a depend on solvent and monomer
density, hence implicitly on N, p,, and D.

We now address the regime beyond linear response. At large
shear rates, the chains stretch in the shear direction, such that
R, (y) ~ N. With eq 27 we obtain [see eq 10]

G~ N(Z =5v)/(1-3v) (W > 1) (32)

On the other hand, eq 30 yields

W ~ ,}‘/**1 NN19V/6(3V*1) (33)
such that
G~ W6(5V—2)/19v (W > 1) (34)

With v~ 0.588 we obtain ¢ ~ 0.5 [see eq 1 1], which is in very good
agreement with our numerical data in Figure 6.

For strongly stretched chains, we expect the shear force to be
proportional to the total number of monomers (~N,N) and the
typical velocity, i.e.

Js(7) ~ NeNyD~N (W >1) (39)
Hence, upon inserting eqs 31 and 35 into eq 17, one finds
U~ N(Z =v)/2(1=3v) (36)

for the regime beyond linear response. In combination with eq 33,
this yields

U~ W3(7v—2)/19v (W > 1) (37)

and with eq 19

5~ W—2(3—v)/19v (38)

Using v & 0.588 we obtain « ~ 0.57 [eq 18] and ¢ ~ —0.43 [eq 16],
which agrees well with the data in Figures 7 and 9.

B. Dry Brushes. So far we have demonstrated that our data
can be described by scaling theory, where we assumed strongly
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compressed, semidilute brushes and included hydrodynamic
interactions. Since the simulated systems are fairly dense, another
plausible model assumption could have been that hydrodynamic
interactions are fully screened and that the monomers obey Rouse
dynamics instead of Zimm dynamics. It is therefore important to
verify that this assumption of “dry” brushes yields values for the
exponents ¢, k, and ¢ which are in worse agreement with the
simulation data in order to lend further credence to the analysis of
section IVA. This is what we want to show here.

In the following, we distinguish two cases, a molten brush,
where in addition to hydrodynamic interactions also the excluded
volume interactions are screened (v = 1/2), and a semidilute
brush consisting of excluded volume blobs as in Sec. IV A.

For brushes without hydrodynamic interactions, the friction
force reads [instead of eq 28]

Js(7) ~ copy DA (W=1) (39)

where 1 is a friction coefficient.
We first consider molten brushes. In this regime, eqs 23 and 39
yield

L)~ N (ws1) (40)

Since Ry, (0) ~ N' under melt conditions, we find with R, (7)
~ Nandeq 13

; ke T ~136( D v
¥~ ——N — 41
Tl . (41)

In the nonlinear regime, this yields

G~ N~WIB (> 1) (42)

for the chain extension, i.e. ¢ ~ 0.46. With £ ™!() ~ N at large
shear rates and f(y*) ~ 1/R, . (0) [eq 13], we find

u~ N2~ w1 (> 1) (43)

for the shear force, i.e. k & 0.69. Both predictions for ¢ and « are
not well compatible with our simulation data (Figures 7 and 9), as
anticipated above.

Finally, we consider semidilute brushes without hydrodynamic
interactions. Although this case appears awkward from an
experimental point of view, it can be compared to numerical
approaches where hydrodynamic interactions are not taken into
account, e.g., due to specific thermostat implementations. We will
address one example in the next section.

When the chains are swollen, the interpenetration length is
given by eq 26. With eq 39, the shear force for dry, semidilute
brushes in linear response scales as

Sy~ NOIBE 0 <) (#4)

The critical shear rate follows from eqs 13 and 27, such that

kaT I qy_s71/60v=1)
. 6-25 2 v —
')/* NW N V(pga ) (B) :| (45)

Beyond linear response this yields, together with eq 32

g~ W6(51/—2)/(25v—6) (W > 1) (46)

6426 DOI: 10.1021/1a904119¢

Galuschko et al.

for the lateral chain extension, i.e., ¢ & 0.65. The scaling of u with
W follows from eqs 36 and 45, such that

U~ W3(7V-2)/(251/—6) (W > 1) (47)

ie., k ~0.73.

We expect deviations from our approach for weaker compres-
sion, when the distance between the grafting planes exceeds /,
such that the assumption of a uniform concentration is no longer
valid. This regime was considered in ref 59 for molten brushes,
where a disentanglement instability is predicted for a critical shear
rate. This points in the same direction as the shear thinning we
observe. Itis to be noted that extrapolating from the strong to the
weak overlap regime reveals a minimum in the interpenetration
depth.

The above results are built on the chain deformation averaged
over the entire layer. The critical shear rate we obtained does not
correspond to any simple characteristic frequency. As a matter of
fact, the structure of the sheared layer is more complex than
reflected by averaged deformations. Chain deformation takes
place in the interface and is subsequently transported deeper into
the layer by longitudinal chain-end diffusion, which leads to
chain-end exchange between the interface and the bulk of the
layers. Because the lateral deformation relaxes in the same time,
deformed chains are hardly found far away from the interface.
Though chains that reside temporarily rather than permanently in
the interface are less deformed and chains outside the interface are
deformed to some extent as well, chain-end exchange does not
distribute the chain deformation evenly across the layer. It seems
more natural to base our argument to determine the critical shear
rate on the more deformed chains located in (and close to) the
interface at a given time. In the compressed brush, chain ends are
only weakly localized in the interface, in contrast to an Alexander
brush. This is discussed in detail in the appendices.

The exponents for the nonlinear regime predicted by both
theories are very close. Simulation results could hardly discrimi-
nate between them. The main benefit of the approach presented in
the appendices is conceptual. The critical shear rate turns out as
the inverse of the typical residence time of a chain end in the
interface (in all compression regimes). Under strong compression,
as considered in our simulations, the critical shear rate also
coincides with the lowest lateral relaxation frequency of a chain
in the brush.

For much longer chains, each grafted chain laterally wiggles
around many others. Our theory describes a nonentangled central
sublayer (comprising the interface) embedded into a gel-like
elastic layer. A slightly different approach is needed when the
interface is wide enough to be entangled itself.

V. Comparison to Experiment and Other Numerical
Approaches

Experimental limitations prevent the exploration of equiva-
lently large compressions and shear rates as they can be studied in
simulations. However, some experimental data that reach the
non-Newtonian regime have become available. Schorr et al.
recently measured shear forces in bilayers of polystyrene brushes
on mica with the surfaces forces apparatus (SFA)." In toluene
(good solvent), the authors observe linear response over a wide
range of compressions and shear rates. However, at large com-
pression (24/D ~ 4.6)°° they find a sublinear increase of the shear

(59) Joanny, J.-F. Langmuir 1992, 8, 989. . .
(60) The experiments are carried out at D ~ D' = 95 A, with h = 220 A the
unperturbed brush height.
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Figure 10. SFA data from PS/PVP[25/4]k in tolueneat 7' = 32°C
(taken from ref 13). Shear force and velocity have been scaled by
the same procedure as our simulation data [D = 14.75, N = 60,
pe ~ 1.1pE(N = 30), solvent-free] using f(y*) ~ 88uN and y* ~
16.8/s. Both experiment and simulation find a linear increase of the
shear force for W < 1 and are in agreement with eq 37 in the non-
Newtonian regime. The inset shows data'® (in LJ units) from
Brownian dynamics simulations, which agree nicely with the pre-
dicted power-law of eq 37 (dash-dotted line).

force with sliding velocity. Interestingly, the experimental data is
comparable with eq 37 [or eq 18], as can be seen from Figure 10.
Identifying the critical shear rate and f,(*) via the crossover from
linear to non-Newtonian behavior, we can compare the SFA data
to our results at similar compression and chain length. For this
purpose we use a solvent-free system with D = 14.75, N = 60,
and p,~ 1.1p§ ~ (N = 30), corresponding to a compression
of 2h/D ~ 4.1.77

In the same study, Schorr et al. performed Brownian dynamics
simulations using a Brinkman type equation to describe the
solvent flow. They observe shear thinning at their largest com-
pression (24/D ~ 7.4) over the entire range of investigated shear
rates. As shown in the inset of Figure 10, also this data follows the
scaling-law predicted by eq 37, despite the different approach to
treat solvent effects.

Goujon et al.?® recently investigated sheared polymer brushes
with an off-lattice bead—spring model by means of MD simula-
tions using a DPD thermostat with larger intrinsic friction (see
section II). The length of the grafted polymers (N = 20) was
somewhat smaller than considered here.

More importantly their study differs from ours in the way
solvent molecules are incorporated. While our simulations are
performed at constant particle number, Goujon et al. operate in
the grand-canonical ensemble, allowing the number of solvent
particles to fluctuate. This procedure guarantees a constant
normal pressure for all shear rates. However, our numerical data
indicates that the normal stress changes very weakly with shear
rate (see section I11A).

On the other hand, a grand-canonical solvent treatment might
bear the risk of suppressing some hydrodynamic correlations.
Also this effect seems negligible, as can be seen from Figure 11,
where we compare our data for the friction coefficient (as shown
in Figure 5) to the results of Goujon.®' Since f. is virtually
constant, the dependence of the friction coefficient and f, on W
must be similar. We find that both numerical approaches reveal
the same universal behavior, which is in good agreement with eq
37. The data superimposes when the kinetic friction coefficient is
normalized by u* = u(W = 1) to obtain a scaling plot.

(61) Goujon, F. Dissertation, Clermont-Ferrand, 2003.
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Figure 11. Renormalized kinetic friction coefficient (see text) as a
function of the Weissenberg number. We show the same data as in
Figure 5 but now on double—logarithmic scale. Results of grand-
canonical MD simulations®' are included. We find linear behavior
(solid line) for W =< 1 and a reasonable agreement to the exponent
suggested by eq 37 (dash-dotted line) beyond linear response.

In conclusion, we find the same universal macroscopic response
in numerical simulations despite very different approaches to
incorporate solvent effects, including the implicit treatment using
a DPD thermostat or the self-consistent solution of the Brinkman
equation. Approaches with explicit solvent molecules in different
thermodynamic ensembles provide the same general picture. All
these methods seem equivalently valid for steady-shear simula-
tions of strongly compressed brushes, providing hydrodynamic
correlations on the relevant length scales.

To the best of our knowledge, there is only one study®® that
reported a power-law behavior of the chain extension beyond
linear response. This investigation, by one of the authors, used a
Langevin thermostat without explicit solvent molecules; an ap-
proach widely used in the past (see, e.g. refs 14, 15, 19,23,24, 26,27,
and 30). However, the Langevin thermostat cannot account for
hydrodynamic correlations, because it does not apply random
and dissipative forces in a pairwise form.®>® In this case, the
response to shear should be described by our scaling theory for
semidilute, dry brushes. The previous study reported an exponent
of ¢ ~ 0.6, which is slightly smaller than our predicted value, 0.65.

VI. Summary

In the present study, we investigated polymer-brush lubrication
of short chains by means of MD simulations and scaling theory.
Using a classical coarse-grained polymer model, we measured the
response of two opposing brush-covered surfaces to stationary
Couette flows of different shear rates. We varied the compression
of the confined layers and their molecular parameters, grafting
density and chain length. Solvent-free systems have been com-
pared to systems that included explicit solvent molecules (dimers).

Very different responses to shear are observed, depending on
the considered parameter combinations. In particular for small
grafting densities, systems with explicit solvent leave the regime of
linear response earlier than their solvent-free counterparts and the
kinetic friction coefficient is significantly smaller. We observe the
formation of a fluid layer between the brushes for large shear
rates.

The regime of linear response is left earlier with increasing
compression, grafting density or chain length. In general,
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non-Newtonian behavior sets in at smaller shear rates when the
density of the system is increased.

In agreement with previous computer studies (see references in
ref 23 and refs 24—27, 29, and 30), we observe only small changes
of the layer thickness, but a pronounced swelling of polymer
chains along the shear direction. This behavior goes along with a
non-Newtonian response, e.g., a sublinear increase of the lateral
friction force with sliding velocity.

Our data indicates that the swelling of chains in the shear
direction can be described by a universal power-law increase of
the chain extension (characterized by the radius of gyration) with
the Weissenberg number. Using the shear-induced deformation of
chains, we demonstrated how to estimate the critical shear rate.
This allows one to superimpose the data of all considered
parameter combinations, revealing a rather closed picture that
relates the chain deformation to the macroscopic response.
Despite their distinct differences, solvent and solvent-free cases
can be described consistently.

We developed a scaling theory that allows one to explain the
structural changes of the bilayer and its macroscopic response to
shear. Our analytical approach is capable of reproducing not only
the data stemming from very different numerical models but also
recent experimental observations. A central result of our scaling
approach is that the critical shear rate, at which the linear
response regime is left and non-Newtonian behavior sets in,
depends on compression and molecular parameters as

)}* ~ ]\7—244'0g —0A27D0A6 (48)

in the limit of strongly compressed, semidilute brushes with Zimm
dynamics. Although we find a qualitative agreement between the
data in Table I and the predicted behavior of y*, the exponents
suggested in eq 48 are difficult to confirm numerically. Partially,
this is related to the fact that the dependence of y* on grafting
density and compression is rather weak. In addition, the para-
meter regime that can be probed for p, and D is limited because
one has to ensure strongly compressed brushes. The upper limit of
N, to which our theory remains valid, should be given by the
entanglement length.

Our results and previous investigations indicate that the
universal macroscopic response, as we report it here for the first
time, is not influenced by the way solvent effects are incorporated
in detail. However, at least the structural response is altered when
hydrodynamic effects are suppressed in simulations, as for
instance in ref 26.

In an upcoming publication,** we will demonstrate that the
power-law exponents obtained in this study remain unaltered,
even after certain structural modifications of the explicit solvent,
which is done by replacing solvent molecules with star polymers of
different functionality and arm length. Future work will concern
the response to nonstationary shear, such as the onset of motion,
shear inversion, and oscillatory shear.
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Appendix A: Equilibrium Description

Throughout we follow the standard Milner—Witten—Cates
(MWC)> strong stretching description (an equivalent one was
developed by Zhulina and co-workers®®). In the MWC theory, a
grafted chain part of the brush with its free end located at a
distance z, from the grafting plane can be described by its optimal
configuration only and other paths entering the partition sum can
be discarded. This is equivalent to the classical approximation to
quantum mechanics. MWC is expected to fail at the soft brush
edge, a calculation taking into account fluctuations has been
proposed to describe this outermost region. The main additional
assumption in MWC is that the tension vanishes at the free chain
ends. It follows that in this description the brush is a highly
degenerate system, all end locations being equivalent. Free ends
are hence expected to diffuse through the layer and exchange their
positions. Simultaneously, MWC predicts a free end distribution,
g(z), which is not flat. As noted by several authors (see ref 66 and
references therein), MWC is not strictly speaking a self-consistent
(mean-field) theory.

Let us recall the brush height, /, the classical concentration
profile, ¢(Z), a small distance Z </ from the edge, the correlation
length in the bulk of the brush, &, and at the edge, &y, according to
MWC:

Z) (6v—=2)/(3—2v)
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The length &, describes the soft brush edge for static properties
like brush interpenetration at contact or linear dynamics like flow
penetration at moderate shear rates.

When two brushes slightly overlap their interpenetration
length equals &j. In the opposite limit of strong compression,
the concentration profile is almost flat, ¢(z) = ¢ ~ p,N/D. The
brushes hence can be described as molten without concentration
fluctuations, provided monomers are renormalized to concentra-
tion blobs of radius & and monomer content g, ~ (£./a)""”. For a
molten brush (of concentration ¢ ~ a™?), the classical end
distribution, g(z), and penetration length obey
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The end distribution is singular at the brush edge
8(z) ~ pgy\/ 22/

but the ends are only weakly localized at the edge and remain
marginally free. After renormalization to blobs we obtain
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Note that the edge singularity of the end distribution does not
change upon renormalization to blobs. The end distribution
strongly differs from the Alexander—de Gennes distribution.
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It is instructive to estimate the penetration depth O for the
upper (D ~ h) and lower boundary (D ~ 0) of the strong
compression regime. We obtain ¢ ~ a[Nzy(pgaz)lﬁv]”((w) and 0
~ a[N" (pgaz)l_zv]l’w_”, respectively. For D ~ ¢, the penetration
depth merges with the isotropic chain radius at the actual brush
concentration. Upon further compression the chains in the brush are
not stretched but rather reflected by the surfaces, obviously the
strong stretching approximation is no longer appropriate. In prac-
tice, the brush may become dense (and the equation of state assumed
for the polymer solution fails) before the limit D ~ ¢ is reached.

At the crossover to weak compression, D ~ &, each chain spans
the interpenetration length with (6/&.)%g. monomers. Inserting
values according to eqs Al and A3 we find (0/&.)°ge ~ go, i.. the
same number as for brushes that are just in contact. We may
conclude that the number of monomers per chain in the inter-
penetration layer is almost constant over the whole weak
interpenetration regime. Thus, the weak compression regime
(d = 2h — D < h) is characterized by the correlation length

d w/(2-3v)
Sa~é. (z)

and the interpenetration depth
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Inserting v ~ 0.588, the interpenetration is found to slightly
decrease upon weak compression.

(A4)

Appendix B: Linear Shear Regime

The linear shear regime is tightly linked to the previous section
as by definition the brush structure is only slightly disturbed and
hence is assumed to be preserved to leading order. It is convenient
to start out from the case of a single brush sheared through a
solvent layer. This case was thoroughly analyzed in ref 58. The
penetration depth of the flow into the brush is &). Assuming that
the same chains stay in the sheared edge all the time and sustain
the hydrodynamic force, f, we could naively apply the fluctuation
dissipation theorem and calculate the mean lateral deflection,
R, = R (kg T = 1). This is not justified as chain ends exchange
their position over time. Rather, a given end typically leaves the
sheared layer after the relaxation time associated with &, 7y ~
1s&o>. The actual deflection of a chain end depends on its history,
more precisely on the previous visits to the sheared layer.
Obviously, visits done more than one lateral relaxation time
ago do not matter. On the other hand, the response function to
the localized shear force only decays as a weak power of time.>®
What finally matters is the average hydrodynamic force exerted
on the end about one lateral relaxation time ago. An end currently
located in the sheared layer is likely to be most deflected (as
compared to those found deeper in the brush). One lateral
relaxation time ago its probability density was spread over one
isotropic radius in depth. Hence, the average force can be
estimated as

(1~ f&/\[(RD)
yielding
R.\‘ 3.
— S0 ~ &y (B1)
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when we insert the hydrodynamic force, f ~ 17,&y>7, exerted on one
end within the sheared layer. The threshold to non-Newtonian
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behavior corresponds to a deflection as large as the thermody-
namic fluctuation, hence the critical shear rate corresponds to the
relaxation frequency of the last blob, 7% ~ 1/5.&°.

The case of two brushes in contact sheared against each other
should be very similar. Formally, there are two sources of
dissipation, the drag of the polymers and the shear flow
imposed to the solvent in the interface. Both give contributions
scaling as nsyh&,. The drag is that of a blob through a mesh of
width similar to its own size, which only marginally differs from
the drag through solvent. The dissipation in the shear flow
corresponds to the effective velocity drop, yh, through the
interfacial layer of thickness &,. Taking into account chain-end
exchange yields

R, h
\/@—2> ~ 77553(3)5—07 (B2)

This result is identical to eq Bl if we replace y by the effective
shear rate in the interface, yD /&,.

In the weak compression regime, the drag force on a chain
moving in the interface of thickness 0 reads f ~ 5y(0/&4)*Eqy D.
Chain-end exchange reduces the force by a factor of

)

Collecting all factors we obtain a result very similar to eq B2

R, oD,
' =7 (B3)
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In analogy to the case of brushes at contact, the relaxation time,
17:0%/E4, of a section spanning the interface is multiplied by the
effective shear rate in the interface.

In the strong compression regime, eq B3 remains valid pro-
vided &4 is replaced by &. It is nonetheless instructive to recast this
formula into the equivalent form,

R, N\’ 5.
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showing that the critical shear rate can be understood as the
lateral Rouse/Zimm relaxation frequency of a chain in the brush.
Inserting the expression for & with ¢ ~ N py/D finally gives
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or, with v ~ 0.588
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The scaling with N and p, is very similar compared to the model
presented in the main text. Only the dependence on D differs
drastically. A critical test to distingiush between the suggested
exponents remains difficult, as already mentioned. In the Rouse
regime of dry, dense (nonswollen) brushes, we obtain
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