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Abstract We study finite volume effects within the
Polyakov loop Nambu-Jona-Lasinio model for two light and
one heavy quarks at vanishing baryon chemical potential and
finite temperatures. We include three different Polyakov loop
potentials and ensure that the predictions of our effective
model in bulk are compatible with lattice QCD results. Finite
size effects are taken into account by means of the Multiple
Reflection Expansion formalism. We analyze several ther-
modynamic quantities including the interaction measure, the
speed of sound, the surface tension, and the curvature energy
and find that they are sensitive to finite volume effects, spe-
cially for systems with radii below ∼ 10 fm and temper-
atures around the crossover one. For all sizes, the system
undergoes a smooth crossover. The chiral critical tempera-
ture decreases by around 5% and the deconfinement temper-
ature by less than a 2% when the radius goes from infinity
to 3 fm. Thus, as the drop’s size decreases, both tempera-
tures become closer. The surface tension is dominated by the
contribution of strange quarks and the curvature energy by
u and d quarks. At large temperatures both quantities grow
proportionally to T 3/2 but saturate to a constant value at low
T .

1 Introduction

Understanding the hadron-quark phase transition is still a
challenge from both the theoretical and experimental points
of view. The framework for describing it is provided by
Quantum Chromodynamics (QCD), which is the fundamen-
tal theory of strong interactions. However, the nonperturba-
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tive character of QCD at low energies makes extremely dif-
ficult to solve it in the regime of intermediate temperatures
and chemical potentials, although lattice methods had a huge
progress in the last years [1–5]. In this context, effective mod-
els such as the Nambu-Jona-Lasinio (NJL) model [6–9] are
very useful because they can address many aspects of the
QCD phase diagram without computational shortcomings at
finite chemical potentials. The NJL model has many similar-
ities with the full QCD theory but does not take into account
the property of confinement, since quarks interact each other
via pointlike interactions without exchanged gluons. Thus,
in order to obtain a more realistic description, taking into
account the quark confinement at low energies, the Polyakov
loop was introduced in the NJL model [10], leading to the
so called Polyakov loop NJL (PNJL) model (see also [11]).
From this widely studied effective QCD model, many prop-
erties of strongly interacting matter can be obtained, such as
its phase diagram [12–14].

On the other hand, a comprehension of finite size prop-
erties is very important for situations where the deconfine-
ment transition occurs over a finite volume as in relativistic
heavy ion collisions and neutron stars. The strongly interact-
ing matter formed in a heavy-ion collision is finite in volume,
and its size depends on the size of the colliding nuclei, the
collision center of mass energy, and the centrality of the col-
lision. In neutron stars, a deconfinement transition to quark
matter is possible and a hybrid star or a strange quark star
can be formed. The conversion of the star is expected to
start with the nucleation of small quark matter drops [15–
18] which subsequently grow at the expenses of the gravi-
tational energy extracted from the contraction of the object
and/or through a strongly exothermic combustion process.
Quark matter droplets with a variety of geometrical forms
can also arise within the mixed hadron-quark phase that is
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expected to form inside hybrid stars if global charge neutral-
ity is allowed [19]. Also, the most external layers of a strange
star may fragment into a charge-separated mixture, involving
positively-charged strange droplets (strangelets) immersed in
a negatively charged sea of electrons, forming a crystalline
solid crust [20].

In the past years, many theoretical studies of finite-volume
effects have been performed based on the NJL model [21–
23]. However, studies within the PNJL model are more recent
[24–26]. To incorporate finite-size effects different proce-
dures have been employed, such as Monte Carlo simulations
[24], a renormalization group approach [27], and the imple-
mentation of a low momentum cutoff Λ on the integration
of the thermodynamic potential density of the PNJL model
[28].

In the present work we use a different approach for the
inclusion of finite size effects, known as Multiple Reflection
Expansion (MRE) formalism [29]. First, different thermo-
dynamic quantities calculated within our effective model in
the bulk (including three different Polyakov loop potentials)
are compared to the corresponding lattice QCD results. This
is necessary as a starting point to check the validity of our
model. Then, we study the relevance of finite size effects on
many properties of strongly interacting matter and analyze
how they deviate from the bulk case.

A comparison with lattice QCD is always important to
calibrate effective models, that can be later extrapolated to a
higher density regime. For example, the effective model can
be used to explore finite-volume effects in a regime where
they are known to be essential, such as in relativistic heavy
ion collisions. Additionally, some results could be of interest
for the analysis of the cosmological quark-hadron transition,
which occurred in the early Universe about 10 μs after the
Big Bang, when a hot unconfined quark-gluon plasma was
converted, as the Universe expanded and cooled, into a con-
fined hadronic phase.

The paper is organized as follows. In Sect. 2 we review
the PNJL model in bulk for different Polyakov loop poten-
tials and in Sect. 3 we introduce finite size effects through
the MRE formalism. Our results are presented in Sect. 4
where we analyze the behavior of several thermodynamic
quantities such as the chiral critical temperature, the decon-
finement temperature, the constituent masses, the interaction
measure, the pressure, the energy density, the entropy den-
sity, the speed of sound, the surface tension, and the curva-
ture energy for different system sizes. Finally, we present our
conclusions in Sect. 5.

2 The PNJL model in the bulk

The Lagrangian of the Polyakov loop extended SU (3) f NJL
model including the six-quark ’t Hooft interaction reads

L = q̄
(
i D/ − m̂

)
q + gS

2

N2
f −1∑

a=0

[
(q̄λaq)2 + (q̄iγ5λ

aq)2
]

+ gD
[
det (q̄(1 − γ5)q) + det (q̄(1 + γ5)q)

]

− U(l, l̄; T ), (1)

where q = (u, d, s) represents the three flavor quark field
with three colors and m̂ = diag(mu,md ,ms) stands for the
current quark mass matrix. We assume the SU (2)V isospin
symmetry limit in which mu = md . The covariant derivative
in the fermion kinetic term couples a temporal background
gauge field, the Polyakov loop, to the quark fields through
Dμ = ∂μ − i Aμ with Aμ = δ0

μA0 in Polyakov gauge, and
A0 = −i A4. Here, we used the notation Aμ = gAa

μλa/2
with g the SU (3)c gauge coupling. Theλas stand for the Gell-
Mann matrices with λ0 = √

2/3 1 in flavor space. The four-
quark interaction coupling in the (pseudo)scalar channel is
denoted by gS and the six-quark ’t Hooft interaction coupling,
induced by instantons, is labeled by gD. The latter one breaks
the axial UA(1) symmetry. Finally, the above Lagrangian
includes an effective potential U(l, l̄; T ) that accounts for
gauge field self-interactions and is a function of the tem-
perature T and the normalized color-traced Polyakov loop
expectation value and its Hermitean conjugate, defined by

l = 〈trcL〉/Nc, l̄ = 〈trcL
†〉/Nc, (2)

where the Polyakov loop L is an Nc × Nc matrix in color
space, as a function of A4. The explicit form of the Polyakov
loop potential U(l, l̄; T ) will be discussed in Sect. 2.2.

2.1 The thermodynamic potential

Different thermodynamic properties of our model can be
obtained from the thermodynamic potential in the mean-field
approximation (MFA). The thermodynamic grand potential
Ω(T, μ) of the PNJL model in the MFA has been largely con-
sidered in the literature, see e.g. [30–32]. Based on [30,31]
we write the thermodynamic grand potential per unit volume
as follows

ΩPN J L = Ωcond +Ωzero+Ωquark −Ωvac+U(l, l̄; T ). (3)

The first term is the condensation energy, that contains the
contribution of the scalar four-quark interaction proportional
to gS plus the six-quark ’t Hooft interaction, proportional to
gD. In the MFA this term depends on the three condensates
〈ūu〉, 〈d̄d〉 and 〈s̄s〉 as follows

Ωcond = gS
[
〈ūu〉2 + 〈d̄d〉2 + 〈s̄s〉2

]
+ 4gD〈ūu〉〈d̄d〉〈s̄s〉.

(4)
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The zero point energy

Ωzero = −2Nc

∫ Λ ∑

i

d3 p

(2π)3 εi (p), (5)

is clearly divergent. Since the PNJL model is non-renorma-
lizable, the zero-point energy contribution requires an ultra-
violet cutoff Λ. The quark quasiparticle energies are denoted

by εi (p) =
√
p2 + M2

i where the constituent quark masses
Mi for flavors i = u, d, s are:

Mu = mu − 2gS〈ūu〉 − 4gD〈d̄d〉〈s̄s〉, (6)

Md = md − 2gS〈d̄d〉 − 4gD〈s̄s〉〈ūu〉, (7)

Ms = ms − 2gS〈s̄s〉 − 4gD〈ūu〉〈d̄d〉, (8)

being mi the current quark masses.
The Ωquark term is ultraviolet finite and hence no momen-

tum cutoff is imposed on it. It contains the coupling between
the chiral condensates and the Polyakov loop L , and reads
[30,31]:

Ωquark = −2T
∑

i

∫
d3 p

(2π)3 ln det
[
1 + Le− εi−μi

T

]

−2T
∑

i

∫
d3 p

(2π)3 ln det
[
1 + L†e− εi+μi

T

]
. (9)

As shown in [30,31], taking an average of the 3 × 3 determi-
nant we obtain:

Ωquark = −2T
∑

i

∫
d3 p

(2π)3

[
ln〈det f −

i 〉 + ln〈det f +
i 〉] ,

(10)

where

〈det f −
i 〉 = 1 + e−3(εi−μi )/T + 3 le−(εi−μi )/T

+ 3l̄e−2(εi−μi )/T , (11)

〈det f +
i 〉 = 1 + e−3(εi+μi )/T + 3l̄e−(εi+μi )/T

+ 3le−2(εi (p)+μi )/T . (12)

The fourth contribution in Eq. (3) is a constant Ωvac ≡
−Pvac, which is usually introduced in order to obtain a van-
ishing pressure at vanishing temperature and chemical poten-
tial. We will discuss the procedure for fixing Pvac and its
effect on the thermodynamic quantities in the next section.

Finally, the term U(l, l̄; T ) in Eq. (3), represents the pure
gluonic effective potential in terms of the Polyakov loop vari-
ables, which will be presented below in detail. Notice that the
U(l, l̄; T ) potential and Ωquark are invariant under the simul-
taneous exchange of l ↔ l̄ together with −μi ↔ +μi . Let
us remark that for three quark flavors the thermodynamic
grand potential Ω(T, μi ) generally depends on three inde-
pendent quark chemical potentials μi . As a consequence of

the isospin symmetry, the light quark chemical potentials are
also degenerated. In the present work, we consider quark mat-
ter to be symmetric and define a common chemical potential
μ ≡ μu = μd = μs . Moreover, since we want to compare
our results in the bulk with lattice QCD results we will work
at finite temperature and vanishing chemical potential.

In order to obtain the dependence of the order parameters
on the temperature and the chemical potential, one has to
solve the following set of coupled equations:

∂ΩPN J L

∂〈ūu〉 = ∂ΩPN J L

∂〈d̄d〉 = ∂ΩPN J L

∂〈s̄s〉 = 0, (13)

∂ΩPN J L

∂l
= ∂ΩPN J L

∂ l̄
= 0. (14)

These conditions are consequences from the fact that the
thermodynamically consistent solutions correspond to the
stationary points of ΩPN J L with respect to 〈ūu〉, 〈d̄d〉, 〈s̄s〉,
l and l̄.

2.2 Polyakov loop potentials

The choice of the effective Polyakov loop potential U is not
unique. In general, it can be constructed from the center sym-
metry of the pure-gauge sector. The required parameters can
be extracted from pure gauge lattice data at μ = 0 [33].
Among several possible choices, see e.g. [34], we will use
the following effective Polyakov loop potentials:

1. Logarithmic potential The logarithmic ansatz presented
in [34] is:

UL

T 4 = −a(T )

2
ll̄ + b(T ) ln[1 − 6ll̄ − 3(ll̄)2

+ 4(l3 + l̄3)], (15)

where a(T ) and b(T ) are defined by [35]:

a(T ) = a0 + a1(T0/T ) + a2(T0/T )2, (16)

b(T ) = b3(T0/T )3, (17)

with a0 = 3.51, a1 = −2.47, a2 = 15.2 and b3 =
−1.75.

2. Polynomial potential Another choice is [32]:

UP

T 4 = −b2(T )

2
ll̄ − b3

6

(
l3 + l̄3

)
+ b4

4
(ll̄)2, (18)

where

b2(T ) = a0 + a1(T0/T ) + a2(T0/T )2

+ a3(T0/T )3, (19)
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with a0 = 6.76, a1 = −1.95, a2 = 2.625, a3 = −7.44,
b3 = 0.75 and b4 = 7.5. In the absence of dynamical
quarks, in a pure gauge sector, one expects a deconfine-
ment temperature T0 = 270 MeV. Nevertheless, in [36] it
has been shown that in the presence of two light dynami-
cal quarks and a massive strange one, this temperature is
rescaled to about 187 MeV, with an uncertainty of about
30 MeV. In fact, for N f = 2 + 1, T0 = 187 MeV and
T0 = 190 MeV have been used in [34] and in [25] respec-
tively. Here we use T0 = 185 MeV.

3. Fukushima potential Finally, we will use the strong-
coupling inspired version of the effective Polyakov
potential with only two parameters a and b proposed by
Fukushima [30,31]

UF

T 4 = − b

T 3

[
54e−a/T ll̄

+ ln
{

1 − 6ll̄ − 3(ll̄)2 + 4
(
l3 + l̄3

)}]
. (20)

The first term (proportional to ll̄) reminds the near-
est neighbor interaction in the effective action at strong
coupling and its temperature-dependent coefficient con-
trols the deconfinement phase transition temperature. The
logarithmic term comes from the Haar measure of the
group integration with respect to the SU(3) Polyakov
loop matrix. The parameters a and b are independent of
the temperature, the chemical potential and the number
of quark flavors N f . The parameter a controls only the
deconfinement transition temperature and can be deter-
mined by the condition that the first-order phase transition
in pure gluodynamics takes place at T = 270 MeV, which
results in a = 664 MeV. On the other hand, the parameter
b can be used to control the relative value of the decon-
finement and chiral restoration crossover temperatures.
Since there is no established prescription for fixing b, we
shall adopt here two different values. First, we consider
b = (196.2 MeV)3 as suggested in [30,31,34] leading to
an almost simultaneous crossover for deconfinement and
chiral restoration at a temperature of T � 200 MeV (we
call this caseUF1). The second choice isb = (115 MeV)3

(we call this case UF2) which gives lower critical tem-
peratures as we will see below.

2.3 Parametrization

In order to fully specify the non-local model under consid-
eration we fix the model parameters following Ref. [37].
For comparison with some recent results [38], we have con-
sidered the parameters in [9], mu = md = 5.5 MeV,
ms = 135.7 MeV, Λ = 631.4 MeV, gS · Λ2 = 3.67 and
gD · Λ5 = −9.29.

3 Finite size effects within the MRE formalism

Now we are ready to introduce the effects of finite size
in the thermodynamic potential. For doing so we consider
the MRE formalism (see Refs. [29,39–41] and references
therein) which takes into account the modification in the den-
sity of states resulting when the system is restricted to a finite
domain. For the case of a finite spherical droplet the density
of states reads:

ρi,MRE(p,mi , R) = 1 + 6π2

pR
fi,S + 12π2

(pR)2 fi,C , (21)

where the surface contribution to the density of states is

fi,S = − 1

8π

(
1 − 2

π
arctan

p

mi

)
, (22)

and the curvature contribution is given by Madsen’s ansatz
[39]

fi,C = 1

12π2

[
1 − 3p

2mi

(
π

2
− arctan

p

mi

)]
, (23)

which takes into account the finite quark mass contribution.
The MRE density of states for massive quarks is reduced

compared with the bulk one, and for a range of small
momenta becomes negative. This non-physical negative val-
ues are removed by introducing an infrared (IR) cutoff in
momentum space [41]. Thus, we have to perform the fol-
lowing replacement in order to obtain the thermodynamic
quantities

∫ Λ,∞

0
· · · d3 p

(2π)3 −→
∫ Λ,∞

Λi,IR

· · · ρi,MRE
d3 p

(2π)3 . (24)

The upper integration limit is either infinity or given by a
cutoff Λ. The IR cut-off Λi,IR is the largest solution of the
equation ρi,MRE(p,mi , R) = 0 with respect to the momen-
tum p.

After the above replacement, the full thermodynamic
potential �MRE for a finite size spherical droplet reads:

�MRE

V
= Ωcond + U(l, l̄; T )

−2Nc

∑

i

∫ Λ

Λi,IR

εi (p) ρi,MRE
d3 p

(2π)3

−2T
∑

i

∫ ∞

Λi,IR

[
ln〈det f −

i 〉 + ln〈det f +
i 〉]

×ρi,MRE
d3 p

(2π)3 + Pvac. (25)

Multiplying on both sides of the last equation by the volume
of the quark matter drop, replacing the area S = 4πR2 and
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the curvature C = 8πR for a spherical drop, and rearranging
terms we arrive to the following form for �MRE

�MRE = −PV + αS + γC, (26)

where the pressure P , the surface tension α and the curvature
energy density γ , are defined as in Ref. [42]:

P ≡ −∂�MRE

∂V

∣
∣∣∣
T,μ,S,C

= −Ωcond − U(l, l̄; T ) + 2Nc

∑

i

∫ Λ

Λi,IR

εi (p)
dp3

(2π)3

+2T
∑

i

∫ ∞

Λi,IR

[
ln〈det f −

i 〉 + ln〈det f +
i 〉] dp3

(2π)3

−Pvac, (27)

α ≡ ∂�MRE

∂S

∣∣∣∣
T,μ,V,C

= −2Nc

∑

i

∫ Λ

Λi,IR

εi (p) fi,S pdp

−2T
∑

i

∫ ∞

Λi,IR

[
ln〈det f −

i 〉 + ln〈det f +
i 〉] fi,S pdp,

(28)

γ ≡ ∂�MRE

∂C

∣∣∣
∣
T,μ,V,S

= −2Nc

∑

i

∫ Λ

Λi,IR

εi (p) fi,C dp

−2T
∑

i

∫ ∞

Λi,IR

[
ln〈det f −

i 〉 + ln〈det f +
i 〉] fi,C dp.

(29)

As we previously mentioned, the value of ΛIR is the largest
root when solving ρi,MRE(p,mi , R) = 0 with respect to the
momentum p, i.e. ΛIR changes with mi and with the drop’s
radius R.

Finally, we will address some aspects of the present model
that deserve a more detailed discussion:

1. In the present treatment finite-size effects enter the
fermion loop integral only; i.e. these effects are not con-
sidered in the pure Yang-Mills sector. As a consequence,
the Polyakov loop potential remains unchanged and feels
volume effects only implicitly through the saddle point
equations. A more detailed analysis is left for future work.

2. The conventional procedure for fixing Pvac is to impose
that the grand thermodynamic potential Ω must vanish
at zero temperature and vanishing chemical potential for
matter in bulk. For the above quoted parametrization, this
assumption leads to the value Pvac = 5080 MeV fm−3.
Nevertheless, it has been emphasized in previous works

[43–45] that this prescription is no more than an arbitrary
way to uniquely determine the EOS of the NJL model
without any further assumptions. A change in the value
of Pvac has no influence on the fittings of the vacuum
values for the meson masses and decay constants and
thus the standard prescription for Pvac is not related to
experimental values. In fact, different prescriptions for
determining Pvac have been adopted [44], including the
alternative of taking it as a free parameter [45] as it is usu-
ally done within the MIT bag model for the bag constant.
When studying finite size systems, the standard choice for
Pvac has an additional issue. If Ω vanishes at T = μ = 0
for matter in bulk it will not do so for a finite size, due to
the contribution of surface and curvature effects (as can
be seen from Eq. (26)).
As in previous works [46,47], we will fix Pvac in the
standard way, i.e. setting Ω = 0 at T = μ = 0 for
matter in bulk, and will use this value for any system’s
size. Nonetheless, it must be emphasized that most of
the thermodynamic quantities of relevance here (such as
the critical temperatures, the entropy density, the sound
speed, the specific heat, the surface tension and the curva-
ture energy) are independent of the choice of Pvac since
they are related to derivatives of the grand thermody-
namic potential Ω . The influence of the Pvac choice on
other thermodynamic quantities will be discussed below.

4 Results

In this section we present our numerical results for some
thermodynamic properties of bulk and finite size quark mat-
ter systems. We will show the dependence of our results on
the size of the system as well as for different choices of the
Polyakov loop potential. We work at zero chemical potential
to compare our numerical results for the bulk with those from
lattice QCD for (2+1)-flavors using the highly improved stag-
gered quark action extrapolated to the continuum limit [48]
(see also [49]). Then we describe our predictions for finite
size systems.

4.1 Chiral and deconfinement transitions

Here we will focus on the order parameters for both chiral and
deconfinement transitions showing that, as the temperature is
increased at zero baryon chemical potential, the PNJL model
presents a smooth crossover transition atT ∼ 150−200 MeV
depending on the size. Our results for the bulk are compatible
with lattice QCD ones for N f = 2+1, as shown in Ref. [48]
where the authors find a critical temperature of 154±9 MeV
(see also [49]).

The chiral condensate is an order parameter for the spon-
taneous breaking of chiral symmetry [34]. The correspond-
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Table 1 Using the polynomial Polyakov loop potential and taking dif-
ferent values for the drop’s radius R, we show the chiral critical temper-
ature Tχ of the u and d condensates, the critical deconfinement temper-
ature T d of the Polyakov loop expectation value, and the temperature
T∗ below which the drop’s pressure becomes negative. Tχ and T d are
independent of the choice of the vacuum pressure Pvac. T∗ is calculated
for the standard value Pvac = 5080 MeV fm−3

R [fm]

3 5 10 ∞
Tχ [MeV] 177 182 184 186

Td [MeV] 160 161 162 162

T∗ [MeV] 155 141 124 0

Table 2 Same as in Table 1 but for the logarithmic Polyakov loop
potential

R [fm]

3 5 10 ∞
Tχ [MeV] 181 187 190 192

Td [MeV] 150 151 152 152

T∗ [MeV] 157 149 132 0

Table 3 Same as in Table 1 but for the Polyakov loop potential of
Fukushima, version UF1

R [fm]

3 5 10 ∞
Tχ [MeV] 197 201 203 204

Td [MeV] 190 192 193 194

T∗ [MeV] 175 158 137 0

ing crossover transition can be established, for instance, by
looking the temperature slope from χu

T ≡ ∂〈ūu〉/∂T and
χ l
T ≡ ∂l/∂T . The peak positions give the inflexion points at

the chiral critical temperature Tχ and the critical deconfine-
ment temperature T d of the condensates and the Polyakov
loop expectation value respectively. As discussed in [30,31],
it is convenient to take the crossover temperature in the
u−sector, because the crossover temperature in the s−sector
is larger and would be far from the deconfinement transition.
As also discussed in [30,31], the chiral and deconfinement
transitions do not take place at the same temperature as long
as we treat the chiral condensates and the Polyakov loop
as independent variables. Anyway, the idea is exploring dif-
ferent parameters in the Polyakov loop potential to force as
much as possible the proximity of both critical temperatures.
Also, as shown in [30,31,50,51] the peak of χ l

T occurs at a
lower temperature than the one of χu

T , in coincidence with
our results presented in Tables 1, 2, 3 and 4.

For the different choices of the Polyakov loop potential
introduced in Sect. 2.2, we present in Tables 1, 2, 3 and 4

Table 4 Same as in Table 1 but for the Polyakov loop potential of
Fukushima, version UF2

R [fm]

3 5 10 ∞
Tχ [MeV] 173 178 181 184

Td [MeV] 146 146 149 150

T∗ [MeV] 149 135 118 0

Fig. 1 We show P/T 4 as a function of temperature for different drop
sizes and different Polyakov loop potentials. The gray band are the
results for the equation of state in (2+1)-flavor QCD using the highly
improved staggered quark action extrapolated to the continuum limit
[48] (see also [49])

the critical temperatures Tχ and T d for different radii of the
system. We also display the temperature T∗ below which the
drop’s pressure P would become negative for the standard
prescription of Pvac. Below T∗ these results would be unphys-
ical if that Pvac is adopted. If another choice of Pvac is used
the curves in Fig. 1 would shift upwards or downwards and
a better coincidence of the model curves with lattice results
could be achieved for the bulk case. From Tables 1, 2, 3 and
4 we see that (except for the cases UL and UF2 with R = 3
fm) T∗ is always below Tχ . Since we are interested in the
physics around the critical temperature (relevant for heavy
ion collisions and the early universe) we will not show our
results for T < T∗. We emphasize that the values of Tχ and
T d are independent of the choice of Pvac.

In Table 1, we show our results for the polynomial
Polyakov loop potential. The chiral critical temperature Tχ

has a significant dependence on the system size; it varies from
186 MeV to 177 MeV as the radius shrinks from infinity to 3
fm. This effect is also apparent in the left panel of Fig. 2 where
we see that the peaks of ∂〈ūu〉/∂T move towards smaller tem-
peratures as the radius reduces. As seen in the right panel of
Fig. 2, ∂l/∂T is less sensitive to finite size effects. Thus, the
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Fig. 2 We show χu
T ≡ ∂〈ūu〉/∂T and χ l

T ≡ ∂l/∂T as a function of temperature for the polynomial Polyakov loop potential

critical deconfinement temperature T d varies over a narrower
range than Tχ , as can be verified in Table 1. This behavior
could have been anticipated because l feels volume changes
only indirectly through the gap equations, and the Polyakov
loop potential does not depend explicitly on the size of the
system. As a consequence, Tχ and T d get closer to each other
as the drop’s size decreases.

The critical temperatures for the model with a logarithmic
Polyakov loop potential can be seen in Table 2. In this case
Tχ varies from 192 to 181 MeV as R decreases. Here the
deconfinement temperatures are slightly smaller than in the
previous case, and the chiral ones, larger. For R = 3 fm,
we find that T d lies in the negative pressure region for the
standard choice of Pvac.

In the cases with UL and UP , the choice of T0 affects both,
the deconfinement and the chiral critical temperatures. Here
we use T0 = 185 MeV in agreement with the values used in
[25,34,36] for N f = 2+1. For larger T0, Tχ and Td approach
each other but both values increase, spoiling the coincidence
with lattice results. On the other hand, for smaller T0, Tχ

and Td are closer to lattice data but there is larger separation
between them.

Finally, we show the critical temperatures for the Polyakov
loop potential of Fukushima. Here we considered two differ-
ent examples, as discussed in the previous section. In Table
3 we show the results for b = (196.2 MeV)3, and in Table
4 for b = (115 MeV)3. The first case gives higher Tχ and
Td but both temperatures are closer to each other. In the sec-
ond case we obtain smaller critical temperatures (closer to
lattice results for 2+1 flavors) but there is a larger separation
between them.

Summing up, in all cases discussed above, we see as a
common behavior that Tχ decreases with the size of the sys-
tem by around 5% when the radius goes from R = ∞ to
R = 3 fm. We also note that Td varies by less than 2%

in the same size interval. As a consequence, as the drop’s
size decreases, Tχ becomes closer to T d . This behavior is in
agreement with the results presented in [24,25].

In Fig. 3 we show the temperature variation of the con-
stituent masses Mu , Md and Ms for different drop sizes and
for all the Polyakov loop potentials presented in Sect. 2.2. In
the chirally broken phase, we find that the constituent quark
masses are somewhat smaller for drops with smaller radii. In
this region, the volume dependence of the effective masses is
stronger than in the chirally restored phase. Also, Mu and Md

show a steep slope around the crossover temperature while
for Ms the slope is smoother. As shown in Tables 1, 2, 3 and
4, the chiral critical temperature Tχ shifts to smaller values as
the volume decreases. Such behavior is also apparent in Fig. 3
where we see that, for smaller systems, the constituent mass
tends to the current value at lower temperatures. A similar
behavior has been reported in [25].

4.2 Interaction measure

A thermodynamic quantity of special interest is the thermal
expectation value of the trace of the energy momentum ten-
sor:

Θμμ(T ) ≡ ε(T ) − 3P(T ). (30)

This quantity is known as trace anomaly or equivalently as
interaction measure Δ(T ) ≡ ε(T ) − 3P(T ) since it is very
sensitive to the non-perturbative effects in the quark-gluon
plasma. Specifically, it measures the deviation from the equa-
tion of state of an ideal gas ε = 3P due to interactions and/or
finite quark masses.

Here we focus on the quantity

Δ(T )

T 4 = ε(T ) − 3P(T )

T 4 , (31)
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Fig. 3 Constituent masses Mu , Md and Ms as a function of temperature for different drop sizes and different Polyakov loop potentials. We do not
show the branch of each curve corresponding to temperatures for which the drop’s pressure becomes negative for the standard choice of Pvac

Fig. 4 We show Δ/T 4 as a function of temperature for different drop sizes and different Polyakov loop potentials. We also include lattice QCD
simulations data from [48] (gray band)

which allows a straightforward assessment of deviations
from the Stefan-Boltzmann behavior.

Within the present model, the energy density ε(T ) at zero
chemical potential is given by

ε(T ) = �MRE(T )

V
+ T s(T ), (32)

where the entropy density is given by:

s(T ) = − 1

V

∂�MRE(T )

∂T
. (33)

The interaction measure is sensitive to the finite drop’s
volume, because the energy density has an explicit depen-
dence on the surface tension and the curvature energy:

ε(T ) = −P(T ) + α(T )
S

V
+ γ (T )

C

V
+ T s(T ), (34)

In addition, as apparent from Eqs. (27), (28) and (29), there
is an additional dependence on finite size effects through the
infrared cutoff Λi,IR in the integrals for P , α and γ .

In Fig. 4 we show our results for the bulk and for finite
size systems together with lattice QCD simulation data in
the continuum limit [48]. In general, we observe that the
predictions of our effective model in bulk are in qualitative
agreement with lattice QCD results. The peak heights are
somewhat larger that in lattice QCD; nonetheless, the peak
positions are in good coincidence with lattice. As a global
feature, common to all finite sizes models that include dif-
ferent Polyakov loop potentials U , the interaction measure
presents a peak that moves towards decreasing temperatures
as the radii decrease. Note that, even though the interaction
measure is explicitly dependent on Pvac, the temperatures
at which the peaks take place are not affected by the Pvac

choice.
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Fig. 5 Energy density and entropy density as functions of temperature. Lattice data (gray band) are taken from [48]

For the chirally broken phase, i.e. for temperatures below
the one in the peak, the curves for the bulk case are in qualita-
tive agreement with lattice data. Close to T∗, for finite sizes,
the curves have a local minimum and start to increase at lower
temperatures due to the contribution of the surface tension
and the curvature energy.

Now let us concentrate on the peak of the curves. For
R = ∞, the peak position of the curves with UL , UP and
UF2 are in better coincidence with lattice results. The one
with UF1 is shifted to higher temperatures. For finite systems
the position of the peaks is shifted to lower temperatures in
all cases. As a global feature, the peak heights with R = ∞
for all models are larger than lattice results. We get a better
agreement for UF2 which is a ∼ 25% higher than lattice. For
finite systems we see that the height of the peaks increase as
the radii decrease, and they shift to smaller temperatures.

For high enough temperatures, in the chirally restored
phase, there is a reasonable agreement between the bulk mod-
els and lattice results, specially for the UL and UP Polyakov
potentials. Results for the UF1 and UF2 potentials, are some-
what below the lattice data. For finite sizes our results are
superposed with the corresponding bulk case.

4.3 Energy density and entropy density

In the bulk case, our results for the energy density and the
entropy density are in qualitative agreement with lattice QCD
results (see Fig. 5) and with Ref. [34], as can be seen from
their Fig. 2. As previously mentioned for the results of Fig. 1,
different choices of Pvac would lead only to a vertical shift
of the curves for the energy density but will not change the
temperature of the inflexion points. One could take advantage
from this feature and introduce a different procedure to fix
Pvac in such a way that our predictions for the bulk case are

as close as possible to lattice data. Since our focus here is not
centered on the equation of state we shall not explore such
strategy in the present work.

For high enough temperatures, our curves for all thermo-
dynamic quantities approach to the Stefan-Boltzmann limit.
The Stefan-Boltzmann limit for the pressure is given by

pSB
T 4 = (N 2

c − 1)
π2

45
+ NcN f

7π2

180
, (35)

where Nc and N f are the number of colors and flavors. The
first term represents the gluonic contribution and the second,
the quark’s contribution. For Nc = 3 and N f = 3 we have:

pSB
T 4 = 8π2

45
+ 7π2

20
= 1.75 + 3.45 = 5.20, (36)

which results in εSB/T 4 = 5.26 + 10.36 = 15.62 and
sSB/T 3 = 7 + 13.8 = 20.8.

From Fig. 5 we see that, at high enough temperatures,
models with the Fukushima potentials UF1 and UF2 tend to
the Stefan-Boltzmann limit for quarks only (no gluons) while
models with the potentials UP and UL tend to the Stefan-
Boltzmann limit including quarks and gluons.

This behavior is already known from previous works
[25,30,31,34]. In the case of the UP and UL potentials, both
the unconfined transverse gluons as well as the Polyakov
loop, which corresponds to longitudinal gluons, contribute
to the thermodynamic quantities [30,31]. But, since the
Polyakov-loop potentials are fitted to pure gauge lattice data,
they thus reproduce the total pressure, energy density, and
entropy density of both the longitudinal and the transverse
gluons, overcounting the degrees of freedom in the chirally
symmetric phase [30,31,34]. However, the potential ansatz
by Fukushima excludes these transverse gluon contributions
at high temperatures leading to the differences found in Fig. 5.
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Fig. 6 Specific heat and speed of sound. Lattice data (gray band) are taken from [48]

Nonetheless, at temperatures around and below the transition
temperature such differences tend to disappear.

It is worth to remark that in Fig. 5 there is a wide range of
temperatures in which our results for UF2 are in a quantita-
tively good agreement with lattice results.

For finite systems, we see that in all cases the curves con-
verge to the bulk ones at high temperatures. Close to the
transition region, the curves for different radii start to sepa-
rate each other as the temperature decreases. In coincidence
with Ref. [25], we find that the smaller the radius the higher
the temperature at the inflexion point. Nonetheless, in Ref.
[25] the results for R = 5 fm and for the bulk case are coin-
cident for all temperatures but in our case are not. In the
chirally broken phase, the energy density and the entropy
density change very little with the drop’s size.

4.4 Specific heat and speed of sound

The specific heat at constant volume is given by

cV = −T
∂2�MRE

∂T 2

∣
∣∣∣
V
, (37)

and the corresponding results are summarized in Fig. 6. At
low temperatures cV grows with T , then shows a peak at
the transition temperature, and approaches the corresponding
Stefan-Boltzmann limit for high enough T . For the bulk case
our results are in agreement with Ref. [34] and with lattice
data [48]. In fact, in the left panel of Fig. 6 we note that lattice
data show a soft undulation around the critical temperature,
whose position is close to the peaks consideringUF2 andUP .
For UF1 and UL the peaks are shifted to higher temperatures.
In general, the best agreement with lattice data (up to the
critical temperature and somewhat above it) is obtained with
UF2.

For finite size drops, we find that cV doesn’t change sig-
nificantly with the change in volume, except in the crossover
region. In fact, we find that the height of the peaks decreases
as the volume shrinks, in agreement with [25]. Also, the
peak position shifts to smaller temperatures as the volume
decreases, as in [25]. As for other thermodynamic quanti-
ties, we find that the specific heat for the models with UF1

and UF2 tend to the Stefan-Boltzmann limit for quarks while
the models with UP and UL tend to the Stefan-Boltzmann
limit for quarks and gluons, due to the differences in the
contributing gluon degrees of freedom.

In Fig. 6 we show our results for the speed of sound [34]

c2
s = ∂p

∂ε

∣∣
∣∣
S

= s

cV
. (38)

The behavior of c2
s is associated directly with the role of

interactions in the system. The strength of interactions can
be quantified through the interaction measure Δ calculated in
Sect. 4.2. A comparison between Δ presented in Fig. 4 and c2

s
depicted in Fig. 6, shows that these quantities are correlated.
At large temperatures, as the value of Δ goes to zero, the
speed of sound tends to the ultarelativistic limit of an ideal
gas, cs = 1/

√
3. At lower temperatures, interactions become

relevant and thereforeΔgrows and c2
s decreases significantly.

Except forUF1, all minima positions lie close to the lattice
QCD one. In the chirally restored phase our results for all
Polyakov potentials are in good agreement with lattice QCD
data, except for the UF1 case that approaches lattice at higher
temperatures.

Contrary to previous findings [25], our results show that
the speed of sound doesn’t depend too much on the system’s
size. In fact, small variations are observed only in the transi-
tion region.
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Fig. 7 Total surface tension and total curvature energy as a function of temperature; the scales of panels (a) and (b) are different. The minimums
of αTOT and of γTOT occur at different temperatures

4.5 Surface tension and curvature energy

In Fig. 7 we show the total surface tension αTOT and the total
curvature energy γTOT for drops with different sizes. αTOT =∑

i αi and γTOT = ∑
i γi include the contribution of u, d

and s quarks. We have checked that αs is more than 10 times
larger than αu and αd , in qualitative accordance with results
for cold quark matter at very high densities [46,47] that show
that the total surface tension αTOT is largely dominated by
the contribution of strange quarks. On the contrary, γu and
γd are typically ∼ 1 − 2 times γs and thus the behavior of
γTOT is controlled mainly by u and d quarks.

Both, αTOT and γTOT show a significant variation with
R at all temperatures, specially for small drops with radii
below 10 fm. There is also a considerable dependence on the
Polyakov loop potential.

At large temperatures αTOT and γTOT are monotonically
increasing functions of T . Moreover, for T � 250 MeV the
surface tension grows approximately as

αTOT = CαT
3/2, (39)

being Cα ≈ 0.029 − 0.034 MeV−1/2fm−2, while the curva-
ture energy grows as

γTOT = Cγ T
3/2, (40)

being Cγ ≈ 0.030 − 0.035 MeV−1/2fm−1.
At lower temperatures both αTOT and γTOT have local min-

imums. In the case of the total curvature energy the minimum
falls around the chiral critical temperature Tχ of the u and d
condensates, which evidences the fact that γTOT is controlled
mostly by up and down quarks and is sensitive to their chiral
transition. On the other hand, the total surface tension is sen-

sitive to the chiral transition of strange quarks and therefore
its minimum falls at a larger temperature.

At temperatures below that of the minimum there is a nar-
row interval where αTOT and γTOT are decreasing functions
of T . For even smaller temperatures, αTOT and γTOT tend
to a constant value which is of the same order of the val-
ues obtained within the NJL model for cold quark matter
(T = 0) at finite chemical potentials (μ = 0 − 450 MeV)
[47]. In some cases such constant value is not shown in the
figures because the pressure becomes negative for the stan-
dard choice of Pvac.

5 Summary and conclusions

In this work we studied the thermodynamic properties of
finite systems composed by quark matter containing two light
and one heavy quark within the frame of the PNJL model.
We have considered vanishing baryon chemical potential and
finite temperatures. We compared our numerical results for
the bulk case with those from lattice QCD simulations, and
then we studied the finite size deviations from the bulk case.
We included finite size effects through the Multiple Reflec-
tion Expansion formalism and explored the effect of using
different Polyakov loop potentials. Finite size effects were
incorporated in the fermion integrals but not in the Polyakov
loop potentials. However, if the pure Yang-Mills theory were
formulated with a finite radius, the deconfinement phase tran-
sition could be affected and presumably the first-order tran-
sition would turn into a smooth crossover for small enough
radii. This is beyond the scope of the present work.

As the temperature is increased at zero baryon chemical
potential, the order parameters for both chiral and decon-
finement transitions indicate that the PNJL model presents a
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smooth crossover transition, in accordance with lattice QCD
results. For different radii of the system and different choices
of the Polyakov loop potential, we determined the chiral criti-
cal temperature Tχ of the u and d condensates and the critical
deconfinement temperature T d of the Polyakov loop expec-
tation value (see Table 1). In general, Tχ depends on the sys-
tem’s size, decreasing by around 5% when the radius goes
from infinity to 3 fm, while T d varies by less than 2% in the
same interval. Thus, as the drop’s size decreases, Tχ becomes
closer to T d , in accordance with [24,25].

Then we focused on the interaction measure Δ(T ) ≡
ε(T ) − 3P(T ), which evaluates the deviation from an ideal
gas behavior (ε = 3P) due to interactions and/or finite quark
masses. Δ/T 4 goes to zero at low and large temperatures
and presents a peak around the transition density. In the bulk
case, our results for Δ/T 4 are in qualitative agreement with
lattice QCD results. Moreover, for UF2 we obtain a good
quantitative agreement with lattice data up to temperatures
around 250 MeV. For different Polyakov loop potentials U ,
we find that as the radii decrease the peak moves towards
lower temperatures and its height increases. At temperatures
below that of the peak the results show a stronger dependence
on the system’s size and on the choice of the Polyakov loop
potential.

In the bulk case, our results for the energy density ε, the
entropy density s and the specific heat cV are in qualita-
tive agreement with previous calculations presented in Ref.
[34] and with lattice QCD results [48]. At high temperatures,
the curves for all system’s radii converge to the bulk ones
and approach to the Stefan-Boltzmann limit. However, mod-
els with the Polyakov loop potentials of Fukushima tend to
the Stefan-Boltzmann limit for quarks only (without gluons)
while models with the polynomial and logarithmic Polyakov
loop potentials tend to the Stefan-Boltzmann limit including
quarks and gluons, as already known from previous works
[25,30,31,34]. In general, ε, s and cV don’t change signifi-
cantly with the change in volume, except for cV in the tran-
sition region and for ε at temperatures below the transition
region.

At high temperatures the speed of sound tends to the
ultarelativistic limit of an ideal gas, cs = 1/

√
3 but at lower

temperatures, interactions become relevant and c2
s decreases

significantly. Again, for the bulk case we find a qualitative
agreement with lattice QCD results. Notwithstanding, con-
trary to previous findings [25], our results show that the speed
of sound doesn’t depend too much on the system’s size.
In fact, small variations are observed only in the transition
region.

Two very relevant quantities for finite systems are the sur-
face tension and the curvature energy which have been cal-
culated for drops with different sizes. We find that αTOT is
largely dominated by the contribution of strange quarks (in
coincidence with previous results for cold quark matter at

very high densities [46,47]), while γTOT is controlled mainly
by the behavior of u and d quarks. Both, αTOT and γTOT

change significantly with R at all temperatures, specially for
small drops with radii below 10 fm. There is also a con-
siderable dependence on the Polyakov loop potential. For
T � 250 MeV, αTOT and γTOT grow proportionally to T 3/2.
At lower temperatures αTOT has a minimum related to the
chiral transition of s quarks and γTOT has a minimum asso-
ciated with the u and d quarks chiral transition. For smaller
temperatures, αTOT and γTOT tend to constant values of the
same order of the ones obtained for very dense cold quark
matter [47].

In summary, our main conclusion is that several thermo-
dynamic quantities are sensitive to finite size effects, partic-
ularly for temperatures around the crossover transition and
for systems with radii below ∼ 10 fm. These results can be
potentially relevant for the study of the QCD transition at
the early Universe [52,53] and should be extended to other
regions of the QCD phase diagram, specially the region of
high temperatures and moderate baryon chemical potentials
where heavy ion collisions take place.
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