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Abstract On the one hand, non-reflexive logics are logics in which the principle of
identity does not hold in general. On the other hand, quantum mechanics has diffi-
culties regarding the interpretation of ‘particles’ and their identity, also known in the
literature as ‘the problem of indistinguishable particles’. In this article, we will argue
that non-reflexive logics can be a useful tool to account for such quantum indistin-
guishability. In particular, we will provide a particular non-reflexive logic that can
help us to analyze and discuss this problem. From a more general physical perspec-
tive, we will also analyze the limits imposed by the orthodox quantum formalism to
consider the existence of indistinguishable particles in the first place, and argue that
non-reflexive logics can also help us to think beyond the limits of classical identity.

Keywords Identity · Non-reflexive logic · Interpretation of quantum mechanics

Introduction

It is well known in the literature that the notion of ‘particle’ in quantum mechanics
(QM) faces serious difficulties when analyzed form a formal perspective. In particular,
there are experts that defend the thesis that the notion of identity (or that of equality) is
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meaningless with reference to quantum particles or, at least, that it has to be restricted or
modified in some sense (see for example: [18, p. 335], [2, p. 493–495] and [20, p. 248]).
Our aim, in this paper, is to treat the problem of identity in QM from the perspective
of non-reflexive logics [6,9]. We introduce, in the first section, such kind of logics. In
the second section, we formulate a particular non-reflexive logic. In the third section,
it is outlined how the problem can be handled within the scope of the presented non-
reflexive logic. In section four we analyze the constraints of the quantum formalism to
discuss in terms of ‘quantum particles’ and argue that non-reflexive logics—which can
allow us to bypass identity “right from the start”—are a formal tool that could help us
to develop a different ontology from that of ‘particles’—which, quite independently
of the many efforts, does not seem to fit the orthodox formalism of QM.

1 Non-reflexive Logic

Non-reflexive logic, in a wide sense, is a logic in which the relation of identity (or
equality) is restricted, eliminated, replaced, at least in part, by a weaker relation, or
employed together with a new non-reflexive implication or equivalence relation.

In classical logic, one of the basic principles is the so called principle of identity (PI),
expressing the reflexive property of identity, whose usual formulation is as follows:

x = x (1)

or

∀ x (x = x) (2)

where x is a first order variable. There are other versions in higher-order logic, in
which appear higher order variables. There are also propositional formulations of the
principle:

p → p (p implies p) (3)

or

p ↔ p (p is equivalent to p) (4)

where p is a propositional variable. If propositional quantification is allowed, then we
have other forms of the principle:

∀ p (p → p) (5)

as well as:

∀ p (p ↔ p) (6)
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Some of the above principles are not in general valid in non-reflexive logics. They are
total or partially eliminated, restricted, or not applied to the relation that is employed
instead of identity. Several are the motivations for the development of non-reflexive
logics. For instance, the following:

1. Wittgenstein in his Tractatus, discussed the (possible) elimination of the relation
of identity from logic (cf. [7,27]).

2. The propositional logic of causal implication is such that this kind of implication
does not satisfy the propositional principle of causal identity [12].

3. From the logical and philosophical perspectives it is necessary to clarify the real
meaning of the relation of identity in all levels of the logical hierarchy. In this
way, as non-Euclidean geometries—independently of their intrinsic relevance—
contribute to the better understanding of the very structure of Euclidean geometry,
non-reflexive logic might helps us to explain the nature of identity and its principles.
For instance, the obstacles to the construction of a convenient semantics for some
of these logics (e. g., proper definitions of name, denotation, plurality, etc.) makes
it easier to perceive their status as formalisms or as tools to cope with different
problems. The systematic study of non-reflexive logic also makes evident how
ordinary language is deeply involved with identity.

4. It seems appropriate to observe that Russell and Whitehead in their Principia
Mathematica did already elaborate a theory of description that at least formally is
non-reflexive [26]. Consequently, non-reflexive logical ideas were present in some
context of classical logic, what may be a little surprising for most people. But the
first reference to non-reflexive logic as a new form of (mathematical) logic, are to
be found in [4,5].

5. Various authors, as referred to in the introduction to this paper, believe that identity
is not in harmony with the foundations of quantum physics.

In the present paper we are concerned mainly with the last point. More specifically,
with the possible solution provided by non-reflexive logics to the question of indis-
tinguishable particles and to the possibility to, assuming a non-reflexive formalism
“right from the start”, develop an ontology which matches a non-reflexive formalism
and escapes the presupposed ontology of particles.

2 Non-reflexive Set Theory (ZF R)

In this section we construct a system of non-reflexive logic Z F R, incorporating with
a set theory, to the foundation of non-relativistic QM. Our auxiliary starting point is
the usual Zermelo-Frenkel system of set theory with Urelemente (see, for example,
[3]). Urelemente are the objects that are not sets. This system is denoted by Z FU .
The language of Z FU is built as follows:

1. The primitive symbols are ε (elementhood), C (a monadic predicate constant;
C(x), where x is a variable, means that x is a set), and the common primitive
logical symbols of a systematization of the classical first-order predicate calculus
with identity (equality). On these symbols, see [21] or [25], whose terminology,
notations, etc., we follow with some obvious adaptations.
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2. The syntactic concepts such as those of terms, formula, sentence, free variable,
etc., are also adaptations of the two just cited books.

3. Deductive structure of Z FU : the notions of axiom, axiom scheme, postulate
(axiom or axiom scheme, as well as primitive rule of inference), etc., are those of
the cited books with clear changes.

We write (∀Cx) (...) instead of (∀x) (C(x) → · · · ) and (∃Cx) (...) instead of (∃x)
(C(x) & · · · ).

The specific postulates of Z FU are the following:

(A.1) (∀Cx)(∀C y)((∀ z)(z ∈ x ↔ z ∈ y) → x = y).

(A.2) (∀ x)(∀ y)(∃C t)(∀ z)(z ∈ t ↔ z ∈ x ∨ z ∈ y).

(A.3) (∀Cx)(∃C y)(∀C t)(t ∈ y ↔ t ⊆ x).

If F(x) is a formula, x, y and z are distinct variables and y does not occur free in
F(x), we have:

(A.4) (∀Cz)(∃C y)(∀ x)(x ∈ y ↔ F(x) & x ∈ z).
(A.5) (∃C t)(∀x)(x 	∈ t).
(A.6) (∀Cx)((∀ y)(y ∈ x → C(y)) → (∃Cz)(∀ t)(t ∈ z ↔ (∃v)(v ∈ x & t ∈ v))).

If F(x, y) is a formula, and the variables satisfy evident conditions, we have:

(A.7) (∀ x)(∃! y)F(x, y) → (∀ Cu)(∃Cv)(∀ y)(y ∈ v ↔ (∃ x)(x ∈ u & F(x, y))).

(A.8) (∃Cz)(∅ ∈ z & (∀ x)(x ∈ z → x ∪ {x} ∈ z)).
(A.9) (∀Cx){(∀ y)(y ∈ x → C(y)) & (∀ y)(∀ z)(y ∈ x & z ∈ x → (y∩z = ∅ & y 	=

∅)) → (∃Cu)(∀ y)(∃v)(y ∈ x → (y ∩ u = {v}))}.
Remark It is possible to adjoin the following postulate of regularity to Z FU (although
we shall not do so here):

(A.10) (∀Cx)(x 	= ∅ & (∀ y)(y ∈ x → C(y)) → (∃z)(z ∈ x & z ∩ x = ∅).

The above schemes and axiom schemes are those of Z F with Urelemente (see, for
instance, [16]). For example, (A.4) is the axiom scheme of separation and (A.10) is
the axiom of regularity. We need, in addition, one more axiom:

(A.11) ∃C y ∀x(x ∈ y ↔ ¬C(x)).

which says that the totality of Urelemente constitutes a set.
The symbol {x : F(x)}, where x is a variable and F(x) is a formula, denotes the set

of all objects that satisfy F(x), if this set does exist, that is, if ∃C y ∀x(x ∈ y ↔ F(x))

is a theorem of Z FU . We put, by definition, that U = {x : ¬C(x)}. It is not difficult
to see that Z FU is a strong set theory, in which it is possible to develop, with clear
adaptations, the entire contents of usual Zermelo-Frenkel system of set theory (see,
for example [3] and [16]).

We enrich Z FU with the introduction of the finite and non-empty sets m, m1, m2
and M , under the following conditions: 1) U = m ∪ M ; 2) m = m1 ∪ m2; 3)
m1 ∩ m2 = ∅; 4) m ∩ M = ∅. Informally, m is the set of quantum objects m1 and
m2, are two kinds of quantum objects, and M is the set of classical objects. (In the
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general case, we have m = m1 ∪ m2 ∪ m3 ∪ · · · ∪ mk, 0 < k < ω; m1, m2, . . . , mk

are mutually exclusive sets).
The next developments of Z FU are informally presented. Small Greek letters stand

for ordinals and the class of all ordinals is represented by Ord. Z F is Zermelo Frenkel
theory.

Definition 2.1 By transfinite induction we put (P is the power-set of x): V0 = U =
m1 ∪ m2 ∪ M , V1 = P(V0), V2 = P(V1), . . ., Vn+1 = P(Vn), . . ., Vω = ⋃

β<ω(Vβ),
. . ., Vω+n+1 = P(Vω + n), . . ., V = ⋃

α∈Ord (Vα).

Definition 2.2 Analogously, the hierarchies V ′
α and V ′′

α , with V ′
o = M and V ′′

o = φ,
are defined. We put: V

′ = ⋃
α∈Ord(V ′

α) and V
′′ = ⋃

α∈Ord (V ′′
α ).

Definition 2.3 If x ∈ V0, then rank(x) is the least α such that x ∈ Vα . Similarly, we
define rank′(x) and rank′′(x).

Theorem 2.4 V
′′ ⊂ V

′ ⊂ V.

Proof Immediate. ��
Theorem 2.5 x ∈ V

′′ → C (x); x ∈ V
′′ → x ⊂ V

′′.

Proof By induction on the rank′′(x) as it is usual. ��
Theorem 2.6 If x ∈ V

′′, then rank(x) = rank′(x) = rank′′(x).

Proof By induction on the rank′′(x). ��
Theorem 2.7 V is an inner model of Z FU.

Proof By transfinite induction, as in the case of Z F . ��
Theorem 2.8 V

′′ is an inner model of Z F in Z FU.

Proof Analogous to the proof of the preceding theorem. ��
Theorem 2.9 If Z F M is the theory Z F with the set M of Urelemente, then V

′ is an
inner model of Z F M in Z FU.

Proof As the proof of the preceding theorem. ��
Definition 2.10 The binary relation ≡ is defined on V by transfinite induction through
the following clauses:

Initial clauses, defining ≡ on V0: (1) if x, y ∈ mi , 1 ≤ i ≤ 2, then x ≡ y and
y ≡ x ; (2) if x ∈ m1 and y ∈ m2, then x 	≡ y and y 	≡ x (x 	≡ y is the negation of
x ≡ y; (3) if x ∈ m2 and y ∈ m1, then x 	≡ y and y 	≡ x ; (4) if x ∈ m and y ∈ M ,
then x 	≡ y and y 	≡ x ; (5) if x, y ∈ M , then x ≡ y if and only if x = y; (6) if x ∈ V0
and y is a set, then x 	≡ y and y 	≡ x .

Inductive clauses: (1) if x and y are sets, x ∈ V
′ and y /∈ V

′, then x 	≡ y and y 	≡ x ;
(2) if x and y are sets and x, y ∈ V

′, then x ≡ y if and only if x = y; (3) if x and y
are sets and x, y /∈ V

′, then x ≡ y and y ≡ x if and only if:
∀z(z ∈ x → ∃w(w ≡ z ∧ w ∈ y)) ∧ ∀t (t ∈ y → ∃v(v ≡ t ∧ t ∈ x))∧ card(x)

= card(y), where card(x) is the cardinal number of x.
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Theorem 2.11 The relation ≡ is well defined on V.

Proof In effect, x ≡ y implies that rank(x)=rank(y), ordinal number that we denote
by α. Then, if ≡ is defined for all elements t of V of rank(t) < α, it easily follows that
x ≡ y is also defined. ��
Definition 2.12 If x and y are sets, then we put:

x ≺ y
de f= ∀z(z ∈ x → ∃ω(ω ≡ z ∧ ω ∈ y))

x ∼= y
de f= x ≺ y ∧ y ≺ x

x ≺ y is read ‘x is a quantum subset of y’; x ∼= y is read ‘x and y are weakly
quantum equivalent’.

Z F R is Z FU enriched by the individual constant m1, m2, m and M , and the
predicate constant ≡. Informally, m is the set of quantum objects, M is the set of
classical objects, and m1 and m2 are two sorts of quantum objects. The relation ≡,
between elements m, means quantum indistinguishability or (quantum) equivalence;
≡ is extended to all pairs of elements of V according to its intended meaning. By
definition of Z F R, its specific postulates are those of Z FU conveniently adapted.

We now present a list of theorems of Z F R whose proofs are not difficult. Every
permutation p of m1 (or of m2) induces a transformation p of any set of V into V.
Such permutations are called quantic permutations.

Theorem 2.13 If p is a quantic permutation and x and y are sets of V such that x ≡ y,
then p(x) ≡ p(y).

Proof By induction on the rank of V, taking into account the definition of ≡. ��
Corollary Under the condition that x, y ∈ V

′, we have: x = y ↔
β(x) = β(y).

Where β are formulas.

Theorem 2.14 x ≡ x; x ≡ y → y ≡ x; (x ≡ y ∧ y ≡ z) → x ≡ z; x = y → x ≡ y.

Theorem 2.15 If x and y are sets, then:

1. x ≡ y ↔ ∀z(z ∈ x → ∃w(w ≡ z ∧ w ∈ y))

2. x, y ∈ V
′ → (x ≡ y ↔ x = y)

3. x ∈ y → rank(x) < rank(y)
4. x ≡ y → card(x) = card(y)
5. x ≡ y → x ∼= y
6. x ≡ y ↔ (x ∼= y ∧ card(x) = card(y))

Definition 2.16 x∈y
de f= ∃z (z ≡ x ∧ z ∈ y).

Definition 2.17 Let F be a formula of Z F R. We denote by F∗ the formula obtained
from F by replacing all occurrences of = by ≡, and all occurrences of ∈ by ∈.

Theorem 2.18 If F is a theorem of Z F R, then F∗ is also a theorem of the same
system.
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Proof By induction on the length of F . ��
Theorem 2.19 Let us suppose that it is added to Z F R new individual constants to
name, biunivocally, the elements of m1 and new individual constants to name biunivo-
cally the elements of m2, and that p is a permutation of the names of the elements of m1
(or of m2). The new system so obtained is denoted by Z F R−. Under these hypothesis,
one has: if F is a theorem of Z F R− and F− is obtained from F by replacing the
name K of any element of m1, appearing in F, by p(k), then F− is also a theorem of
Z F R−.

Proof Trivial. ��
Z F R is a non-reflexive system since it contains a relation ≡, of quantum equiva-

lence (or quantum indistinguishability), which is used in various contexts of QM to
replace identity. In some cases, as those referred to in the introduction to the paper, ≡
is really important, and identity, for some authors lose, at least in part, its meaning.
However, here, we shall employ Z F R basically as a classical set theory, although
one could try to handle Z F R, as a strict non-reflexive logic, to eliminate identity
in connection with quantum particles (see, for example, [17] and also [1,10,15,23]).
Therefore, one may say that Z F R is a kind of ‘classical non-reflexive’ logic.

3 Indistinguishability and Non-reflexive Logic

In this section, we outline how non-relativistic QM may be founded on Z F R. In [18,
p. 335] Ghirardi states that:

“Once we have understood that it is impossible to individualize the indistin-
guishables, we are let to assuming the impossibility of such operation itself as a
criterion of identity: two elementary particles will be proclaimed identical when
we must recognize that no physical procedure exists that permits us to distin-
guish them from each other, or in other words, when all the physical implications
about the system in question are unchanged when we imagine ‘switching’ the
constituents”

This is clearly interpretable as saying that ‘identity’ in QM really means that two
elementary particles of the same sort are identical in the sense they are physically
indiscernible, i.e. from our perspective, they are quantum equivalent. So, we must
distinguish, carefully, between logical identity (=) and quantum equivalence (≡). Some
physicists call ‘≡’ physical identity. Notice that the notion of ‘switching’ only makes
sense in an ontology which presupposes individuals that can be interchanged and have
some kind of identity. Thus if we accept the possibility of ‘switching’ the question of
individuals with no identity cannot be posed. One can also insist, following Holland
[20], on the role of logical identity in QM, although ≡ is a derived, but relevant concept.

We have, in effect, two major concerns in connection with logical identity and
quantum equivalence:

(1) Substitutivity: If a and b are quantum equivalent, then, in any physical system, a
can be replaced by b without physically changing the system.
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(2) The existence of quantum objects may be quantum equivalent but not logically
identical—since identity is considered by many physicists as meaningless.

(1) and (2) are such that we may have (1) although not (2), and (1) and (2). In
this second case, since Z F R does contain identity, this relation may be seen as an
“improper” relation, purely symbolic, when referring to quantum objects, more or
less as points at infinity in Euclidian geometry. Both situations are accommodated in
Z F R. This is one of the main reasons we call Z F R a ‘classical non-reflexive logic’.

After the presentation of quantum structures and their postulates, Theorems 2.13 and
2.19 remain valid; therefore, quantum equivalence is a congruence relation satisfying
the laws of substitutivity. Here, we shall treat a particular form of QM, in which both
= and ≡ are used and are basic, which mirrors what most physicists do.

The basic orthodox interpretation of QM is that the state of a quantum system, say
a particle of mass m, is given by a complex valued function �, the so called ‘wave
function’ which depends on the three space coordinates �3 and time. Newtonian space-
time constitutes the frame involving quantum systems. In addition, there exists another
function �, the Fourier transform of �, conveniently normalized, that furnishes the
momentum. For n particles, � and � are complex valued functions defined on �3n and
time. The Schrödinger equation characterizes the dynamics. � might be viewed as a
vector in a Hilbert Space (a space of functions), and the probability for the distribution
of particles is given by the known Born rule. The states of a quantum system are
vectors of the Hilbert space and the observables self-adjoint operators in the same
space, etc.

Taking into account such interpretation, we introduce the quantum structures, which
are mathematical structures, as follows:

e =< C,�3n × �, H, �, P > .

Where the following postulates are satisfied:

1. C is a set of n (n ∈ ω) elements of the set m, set of the quantum objects;
2. �3n is the Cartesian product of �3 by �3 n times and � is the set of reals that

represent instants of time; �3n is the configuration space.
3. H is a complex Hilbert space, that is separable, etc.;
4. � is a vector of H , called the ‘wave function’, given the state of the system, and

defined on �3n × � (× is the cartesian product);
5. P is a function defined by the Born rule;
6. The dynamics of the system is summarized by the Schrödinger equation.

Other relevant notions such like momentum, �, angular momentum, free particle,
scattering, etc., are all definable. However, there are other, extra concepts, such as
spin, and extra postulates, for instance Pauli’s principle, that need to be adjoined to
cope with some questions. Details may be seen in works on the subject, among which
we mention [19] and [24].

Mathematically, QM is the theory of quantum structures of species e. This math-
ematical theory of certain kind of structures (cf. [7,11]) is what the physicist tries to
relate to physical experience.
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It is quite clear that Theorems 2.13 and 2.19 remain valid in the mathematical
treatment of QM based on Z F R. Thus there are two main routes to deal with identity
in QM under the supposition that Z F R is its underlying logic:

1. We can employ both identity and quantum equivalence in QM with reference to
quantum objects;

2. We can give emphasis on quantum equivalence in connection with quantum objects
in which case the recourse to identity, especially its reference to ‘classical’ objects,
would be a theoretical device to simplify some aspects of QM. Clearly, this pre-
supposes the consistency of QM based on Z F R.

However, there are other reasons to found QM on a non-reflexive logic. In the next
section we make some comments on the connections between ontology and identity
in QM that may constitute the starting point of a new no-reflexive foundation for this
science. We intend to develop the more technical parts of this paper in future works.
The philosophical aspects will be also treated in detail.

4 Beyond ‘Quantum Particles’?

As we mentioned above—leaving aside instrumentalist interpretations which deny the
need of an interpretation—there are two main strategies to account for the problem of
indistinguishable particles in QM. We can either start our analysis assuming that QM
talks about some strange kind of ‘particles’—which do not seem to follow partly or
completely the PI—and then try to make sense of the formalism, or we can accept that
we do not know what QM is talking about, start our investigation from the formalism
itself and try to find an appropriate ontology which is not restricted to the notion
of ‘particle’. In the following section we provide arguments against the first line of
analysis and call the attention to the importance of non-reflexive logics within the
second proposed line of research.

The two authors of this paper believe that within physical theories there is a tight
interrelation between logic and ontology which cannot be bypassed by either side.
There are many logics and possible ontologies. A given ontology is always related
to a specific kind of logic and, vice versa, a given logic might determine, at most, a
restricted set of possible ontologies that can be coherently developed from the logical
scheme. Thus, when attempting to interpret a theory, either starting from the formal
logical perspective or from the ontological one, the physicist—who attempts to provide
a physical representation of the theory—needs to call special attention to the fact
that both ontology and logic must relate in a coherent manner. This interrelation
must also be capable of allowing us to discuss about physical experience—e. g.,
the experience provided by Maxwell’s theory regarding electromagnetic waves, the
experience provided by Newtonian mechanics regarding physical particles and bodies,
etc. One must be careful however, for it is in principle not necessarily true that from
any logic one can develop a suitable ontology and, vice versa, that from every ontology
one can coherently find a suitable logical scheme.

Within Aristotelian metaphysics the PI, together with the principle of existence and
the principle of non-contradiction, constitute and determine not only classical logic
but also the notion of ‘entity’—of which the notion of ‘particle’ is a particular case.
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These principles play not only a logical but also an ontological role in Aristotle’s archi-
tectonic. And it is not self evident that one can “leave aside” one of such constitutive
principles and claim that one is still talking about the same ontology; it is not at all
obvious that without the PI one can still talk about ‘entities’. One must be cautious
for if we attempt to provide a physical interpretation of a given formalism one also
needs to be clear about what the formalism is talking about—e. g. ‘particles’, ‘waves’,
‘fields’, etc. Neglecting this interpretational fact can rapidly direct us, willingly or not,
through the unwanted path of instrumentalism.

Pointing to ‘something’ at time t1 relates, through the PI, to the same ‘something’
at time t2. Thus it is the PI which allow us to state that we have the same ‘something’
through time. But even in one instant of time we run into trouble in case we naively
assume there are a certain number of ‘indistinguishable objects’. In such case their
‘existence in space’—quite independently of time—makes them distinguishable, for
any object with a definite position becomes distinct to another one in a different
position. This means that if we are to take indistinguishability in ontological terms,
we must accept that ‘indistinguishable objects’ cannot exist within space-time. They
must exist with a different “ontological support”. But what is the meaning of ‘a particle
which does not exist in space nor time’? Can this be regarded as a ‘physical particle’?
Or is it space-time a necessary precondition for talking about particles? Does this
notion make sense at all or is it just a logical game with no physical counterpart? The
question remains if an ‘entity with no identity’ is a thinkable physical object or rather,
just an oxymoron. But even leaving aside the problems to reconcile the PI with the
quantum formalism there are other aspects of the formalism which go deeper against
the presupposition of a ‘particle ontology’ for QM.

One can discuss individuality and identity in the case of the statistical properties of
indistinguishable quanta, but we can also go a step further and claim that the failure
of the applicability of the notion of individuality occurs in a more general frame.
Indeed, it occurs within the whole structure of QM. Let us consider the set L of
physical properties of a quantum system. The formalism of the theory associates to
each physical magnitude a mathematical object—an operator, called “observable”,
over the Hilbert space of states of the system—and the Heisenberg principle states
that not all magnitudes may possess definite values at the same time. This must not be
interpreted as a consequence of our ignorance or of our inexact procedures to determine
them. Only subsets of compatible magnitudes may simultaneously possess values.1

This is strongly different from the classical realm—where they are structured in a
Boolean lattice—and thus there exist (Boolean) valuations of all propositions about
physical magnitudes. The different algebraic structure of the quantum properties has
as its counterpart the different meaning of the logical connectives among propositions
regarding properties. Thus, if we naively try to interpret them as classical properties,
as properties possessed by the system, we are faced to all kind of no-go theorems

1 The indetermination of the values of incompatible pairs is a matter of principle. In fact, it is one of
the fundamental physical principles from which the formal structure of the theory may be derived. In
mathematical terms, observables linked by the Heisenberg principle do not commute and thus, physical
magnitudes obey a non-commutative algebra—technically, the projectors in which they decompose are
structured in a modular lattice in the finite case.
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that preclude this possibility. Most remarkably is the Kochen–Specker (KS) theorem
which explicitly shows the fact that within the formal structure of QM, it is not possible
to jointly assign truth values to different not-disjoint subsets of mutually compatible
properties [22]. This is a very strong impediment to get an image of quantum systems
in some sense close to classical objects. One of us has claimed that the conclusion
which must be driven from the KS theorem is that the quantum wave function cannot
be conceived in terms of ‘the state of an individual which possesses properties’ [13].
The possible mathematical representations which expose the quantum wave function
from different basis cannot be interpreted as related to properties which preexist (to
measurement). Thus, the KS theorem shows the impossibility to unify the different
representations in a unique and singular ‘whole’, in something which can be considered
as a classical individual. As it has been analyzed in [14] one cannot naively assume
that the choice of the context allows us to claim that classicality has been restored.

Following this line of thought, it could be argued that one should leave the door
open to the possibility to consider an interpretation of QM which is not necessarily
based on the ontology of ‘particles’. If such possibility is granted and taken seriously,
just in the same way paraconsistent logics might be an interesting tool for discussing a
new interpretation of quantum superpositions [8], a radical Non-Reflexive Logic with
no identity might be a perfect tool to advance in an interpretation that is not restricted
by (classical) metaphysical presuppositions.
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