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3 Centro Atómico Bariloche, 8400 SC de Bariloche, Ŕıo Negro, Argentina
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Abstract. We study the transition from the Abelian multi-component (3, 3, 1) quantum Hall state to the
non-Abelian one component Pfaffian state in bilayer two dimensional electron systems. We show that
tunneling between layers can induce this transition. At the transition points part of the degrees of freedom
that describe the (3, 3, 1) state disappear from the spectrum, and the system is correctly described by the
Pfaffian state, with quasi-particles that satisfy non-Abelian statistics. The mechanism described in this
work provides for a physical Hamiltonian interpretation of the algebraic projection from the (3, 3, 1) to the
Pfaffian state that has been discussed in the literature.

PACS. 73.40.Hm Quantum Hall effect (integer and fractional)

Even denominator states in double layer two dimensional
electron systems (2DES) have been observed experimen-
tally [1] and are theoretically quite well understood [2].
The two 2DES are separated by a potential barrier that,
if high and thick enough, will inhibit both Coulomb in-
teractions and tunneling between layers. If the barrier is
made thinner, Coulomb interactions will become impor-
tant even if tunneling is still suppressed. The relevant pa-
rameter to measure this effect is the ratio d/l0 where d is
the interlayer separation and l0 is the magnetic length. In
real samples neither Coulomb interactions nor tunneling
can be completely neglected. Therefore a very rich phase
diagram can be constructed with Coulomb interlayer in-
teraction (or alternatively the distance d) on one axis and
the tunneling amplitude on the other.

We will concentrate here on systems in which a quan-
tized Hall plateau exists at total filling fraction ν = 1/2.
The phase diagram for these systems was first discussed by
Halperin [3]. He assumed that the actual spin of the elec-
trons was polarized in the direction of the external field,
and that the two layers were completely equivalent. A pos-
sible experimental realization for this system is a single
wide quantum well in which the self consistent Coulomb
potential creates a barrier in the middle of the well with
maxima in the electron density at the two edges. Halperin
suggested [3] that for an intermediate range of distances d
and vanishing tunneling, the so called (3, 3, 1) state should
be a stable phase for the system.

The (3, 3, 1) state is a correlated bilayer state which
is basically stabilized by Coulomb interactions. It was
shown [4] that if the layer separation is large enough the

a e-mail: rossini@venus.fisica.unlp.edu.ar

state collapses into decoupled layers due to the fact that
interlayer Coulomb interactions become negligible. The
variational wave function describing this state, proposed
by Halperin [5] in the context of spinful systems has the
form

see equation (1) next page

where zi and wi are the coordinates of the electrons in
each plane. The first two factors represent the correlations
within each layer, and the last one corresponds to the
intralayer correlations. The ν = 1/2 state was observed
experimentally and it was checked numerically that its
properties are indeed well described by the (3, 3, 1) wave
function (1) [2].

It was also conjectured [3] that a transition to a
Pfaffian state should occur, within the range of distances
d for which the (3, 3, 1) state is stable at vanishing tunnel-
ing, when the tunneling amplitude is made large enough.
The Pfaffian state, proposed by Moore and Read [6], is a
candidate for a fractional quantum Hall state at ν = 1/2
in single layer systems, or in general for ν = 1/q where q is
an even number (were we working with bosons with strong
repulsive interactions, q would be an odd integer [7]). Its
variational wave function is given by

ΨPf = Pfaff (
1

zi − zj
)
∏
i<j

(zi − zj)qe−
1
4
P
|z|2 , (2)

where the Pfaffian is defined for a 2N×2N antisymmetric
matrix whose elements are Mij by

Pfaff (Mij) =
1

2NN !

∑
σεS2N

sgn(σ)
N∏
k=1

Mσ(2k−1),σ(2k) (3)
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Ψ331 =
Y
i<j

(zi − zj)3
Y
i<j

(wi − wj)3
Y
i,j

(zi − wj)e−
1
4
P

(|zi|2+|wi|2) , (1)

or as the square root of the determinant of M . It was
shown [6] that this wave function arises from applying
Wick’s theorem to real fermion fields, or as the real space
BCS wave function for pairing of spinless fermions.

The ν = 1/2 states were extensively studied in experi-
ments [8,9] in a wide single quantum well sample, varying
the well width and sheet density. It was concluded that
the state observed was the (3, 3, 1), i.e. the Pfaffian state
did not show up within the range of tunneling amplitude
and thickness scanned in the experiments. The authors ar-
gued nevertheless that it should still appear in the phase
diagram for larger tunneling.

Our goal is to explore the above mentioned transition
between the (3, 3, 1) and the Pfaffian states. Therefore,
we consider a system in which the interlayer separation d
is kept fixed, while the tunneling amplitude between lay-
ers can be changed arbitrarily. In other words, we will be
looking at Halperin’s phase diagram for a given value of
the interlayer separation, such that if the tunneling am-
plitude vanishes, the (3, 3, 1) state is the stable phase of
the system.

We start with the usual chiral boson approach for the
edge theory of the (3, 3, 1) state (see e.g. [10]), that was
recently reviewed in [11] with the inclusion of tunneling
between layers. We further include a chemical potential
term for the electrons. In this case the original theory,
written in terms of two chiral bosons (a c = 2 central
charge Conformal Field Theory (CFT)), can be mapped
into an effective theory with one chiral boson and two
Majorana fermions. We then study the phase diagram as a
function of electron tunneling λ and chemical potential µ.

As we have already mentioned, given that the spac-
ing between layers is kept fixed at a value such that both
phases are stable, the Pfaffian state could describe a dou-
ble layer sample in the limit in which the tunneling am-
plitude between the layers is large enough so as the two
species of electrons of the (3, 3, 1) state become indistin-
guishable. Since the edge theory for the Pfaffian state can
be described by a c = 3/2 CFT [6], the question is then
how does this process occur physically, i.e. how does the
(3, 3, 1) CFT with c = 2 evolve to the Pfaffian CFT with
c = 3/2. Related to this, it has been shown [7,14,15] that
the (3, 3, 1) edge theory can be seen as the enveloping the-
ory for the non Abelian Pfaffian state. Indeed, there is an
algebraic procedure by which the two elementary quasi-
holes of the (3, 3, 1) state merge into one in the Pfaffian
state by getting rid of an Ising CFT factor from the orig-
inal edge theory. However, an explicit mechanism imple-
menting physically this procedure is, to our knowledge,
still lacking. In this letter we address this issue and show
that electron tunneling between layers is capable of im-
plementing this projection. More precisely, when the tun-
neling amplitude and/or the chemical potential increase,
there is a critical line in the (λ, µ) plane at which one of

the degrees of freedom that describes the original theory
disappears. We furthermore show that the remaining de-
grees of freedom acquire the quantum numbers of the ele-
mentary excitations for the Pfaffian state and non-Abelian
statistics emerges.

The edge theory for the (3, 3, 1) state is described by
the Hamiltonian [10]

H =
1

4π

∫
dxVij : ∂xui∂xuj : , (4)

where colons denote standard normal ordering. Here x is
the coordinate along the edge, the ui are chiral bosonic
fields whose compactification radius is 1, and Vij is a sym-
metric matrix whose coefficients depend on the confining
potential and the interparticle interactions at the edge,

V =
(
v g
g v

)
. (5)

The commutation relations for the bosonic fields are

[ui(x, t), uj(x′, t)] = iπKijsgn(x− x′) , (6)

where K is a symmetric matrix which characterizes the
topological properties of the system

K =
(

3 1
1 3

)
. (7)

There exists an orthogonal transformation that diagonal-
izes V and K simultaneously, after which the Hamiltonian
equation (4) simply reads

H =
1

4π

∫
dx[vc : (∂xφc)2 : +vn : (∂xφn)2 :] , (8)

where vc = 4(v + g) and vn = 2(v − g). Notice that the
condition detV > 0 must hold in order that both modes
have the same chirality. φc and φn refer to charged and
neutral modes respectively, which are chiral bosons with
standard commutation relations

[φi(x, t), φj(x′, t)] = iπδijsgn(x− x′) . (9)

The electron operators can be written in this basis as
follows

ψe1 ∝ : ei(−
√

2φc+φn) :

ψe2 ∝ : ei(−
√

2φc−φn) : (10)

while the quasi-particle operators are

ψqp1 ∝ : e−i( 1√
8
φc+ 1

2φn) :

ψqp2 ∝ : e−i( 1√
8
φc− 1

2φn) : . (11)
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Hn = −1

2

Z
dx (i(vn + µn + λeff) : χ1∂xχ1 : +i(vn + µn − λeff) : χ2∂xχ2 :) , (16)

In reference [11] the authors considered the problem
of adding uniform electron tunneling to the edge theory.
Here we will study the same problem adding also a chem-
ical potential for the electrons. Therefore we add to the
Hamiltonian the following perturbation terms

H ′ = − µ0

∫
dx[: ψ†e1ψe1 + ψ†e2ψe2 :]

+ λ0

∫
dx[: ψ†e1ψe2 + ψ†e2ψe1 :]. (12)

Using the bosonic representation for the electron operators
we can write

: ψ†e1ψe1 + ψ†e2ψe2 : ∝ (i2
√

2a0∂xφc − a2
0 : (∂xφn)2 :)

: ψ†e1ψe2 + ψ†e2ψe1 : ∝ : e−i2φn + ei2φn :, (13)

where a0 is the UV cut-off. In terms of these bosons the
total Hamiltonian can be decoupled into charged (Hc) and
neutral (Hn) sectors given by

Hc =
∫

dx[
1

4π
vc : (∂xφc)2 : −µc : ∂xφc :]

Hn =
∫

dx
1

4π
(vn + µn) : (∂xφn)2 :

−
∫

dx λ : (e−i2φn + ei2φn) :, (14)

where µc, µn ∝ µ0 and λ ∝ λ0.
The properties of the charged sector are not changed

by the perturbation since the new term is linear in
derivatives and can be absorbed by a shift in the bare
Hamiltonian.

As for the neutral mode, it proves useful to decompose
it (through conformal embedding) in terms of two chiral
Majorana fermions [11]

: e−iφn : ∝ (χ1 + iχ2) . (15)

The Hamiltonian then reads

see equation (16) above

where λeff ∝ λ [12].
We see that the two chiral Majorana fermions behave

as free fields, but acquire different velocities which are
determined by the bare velocity of the neutral boson vn,
the tunneling amplitude λeff and the chemical potential
µn. Moreover, each Majorana sector describes a (chiral)
Ising CFT.

It is clear now that, assuming that the perturbative
treatment of the interaction Hamiltonian (12) is valid,
there are two lines in the (λeff , µn) plane, given by µn =
−(vn±λeff), on which one of the Majorana velocities van-
ishes. Though this observation is immediate from equa-
tion (16), the study of the emerging state is non-trivial

and constitutes the main result in the present work. The
key observation is that when one of these two conditions
is satisfied, the corresponding Ising sector disappears from
the spectrum and, as we shall see, the remaining degrees
of freedom describe the physics of the Pfaffian state. In
fact, the Hamiltonian density for the zero-velocity mode
vanishes, therefore its energy-momentum tensor and hence
its central charge vanish. In this way, the central charge of
the original system (the (3, 3, 1) state) decreases by 1/2.
The remaining system is described by one chiral boson and
one Majorana fermion with total central charge ceff = 3/2,
which is the correct value for describing the Pfaffian state.

To make sure that the projection procedure drives the
system to the Pfaffian state, we now show how the electron
and quasi-particle operators (10, 11) in the (3, 3, 1) phase
come to describe the corresponding operators in this new
phase. To this end, we rewrite the original electron and
quasi-particle operators in terms of the charged boson and
the Ising primary fields (the Majorana fermions χa, the
spin (order) operators σa and their duals (disorder) µa,
where a = 1, 2 labels the two Ising sectors). Therefore the
electron operators for the (3, 3, 1) phase in equation (10)
can be written as

ψe1 ∝ : e−i
√

2φc(χ1 + iχ2) :

ψe2 ∝ : e−i
√

2φc(χ1 − iχ2) : . (17)

The neutral components of the quasi-particle operators
can be combined and represented in terms of the order
and disorder fields σa and µa as

: eiφn/2 + e−iφn/2 : ∝ σ1 ⊗ σ2,

: eiφn/2 − e−iφn/2 : ∝ µ1 ⊗ µ2 . (18)

This identification has been proven in reference [13] by a
careful analysis of operator product expansions on both
sides. Then the quasi-particle operators can be written as

ψqp1 + ψqp2 ∝ : e−i 1√
8
φcσ1 ⊗ σ2 : ,

ψqp1 − ψqp2 ∝ : e−i 1√
8
φcµ1 ⊗ µ2 : . (19)

The vanishing of the energy-momentum tensor for one
of the two Ising sectors at the critical line implements a
coset construction. The essence of the coset is to project
a sector out from the physical Hilbert space. In the case
at hand the projected subspace corresponds to one of the
Ising sectors (say a = 2) of the (3, 3, 1) theory [7].

It should be stressed at this point that the coset projec-
tion appears in a natural way within this context. Previous
treatments advocating the coset mechanism for projecting
out an Ising sector were performed without any connec-
tion to a Hamiltonian description.

An important question that remains to be answered is
how this projection acts on the quasi-particle and electron
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ψqp1 ∝ : e
−i 1√

8
φc(σ1 ⊗ σ2 + µ1 ⊗ µ2) :

ψqp2 ∝ : e−i
1√
8 φc(σ1 ⊗ σ2 − µ1 ⊗ µ2) :

9=
;→ ψPfaff

qp ∝ : e
−i 1√

8
φcσ1 : (20)

ψe1 ∝ : e−i
√

2φc : (χ1 ⊗ 12 + i11 ⊗ χ2)

ψe2 ∝ : e−i
√

2φc : (χ1 ⊗ 12 − i11 ⊗ χ2)

)
→ ψPfaff

e ± : e−i
√

2φc : ∝ : e−i
√

2φc : χ1± : e−i
√

2φc : , (21)

operators. This projection can be seen as if all primaries
in the projected sector become trivial (they have vanish-
ing conformal weights). More precisely, the quasi-particle
operators (11) degenerate into a single quasi-particle op-
erator

see equation (20) above

(there are indeed two possible dual descriptions in terms
of σ or its dual µ) describing quasi-particle excitations
over the Pfaffian ground state. They have charge e/4 and,
more importantly, exhibit non-Abelian statistics.

Besides, the two original electron operators are pro-
jected onto

see equation (21) above

that is the Pfaffian electron operator plus a four quasi-
particle bound state : e−i

√
2φc : (cf. Eq. (20)).

Once the electron and quasi-particle operators at the
edge are known, the (bulk) wave functions for both the
ground state and excited states can be constructed fol-
lowing [6], by computing suitable correlation functions of
those operators. In this way one recovers the expression
in equation (2) for the Pfaffian ground state. The com-
putation of the wave function for four quasi-holes over
the ground state shows that the quasi-particle statistics is
non-Abelian.

It is worth mentioning that non-Abelian statistics
arises in this context due to the fact that one of the order-
disorder fields becomes trivial. The corresponding com-
putation with the full (non projected) quasi-particle op-
erators gives the correct Abelian statistics in the (3, 3, 1)
phase.

In summary, we have shown that if we add to the
edge theory for the (3, 3, 1) state tunneling and chemical
potential terms, there exists a critical line where part of
the degrees of freedom that describe the system becomes
unphysical and disappears from the spectrum. This is
precisely the line where the characteristic properties of
the (3, 3, 1) state are lost. In turn, at these points of the
parameter space, the electron and quasi-particle operators
of the (3, 3, 1) state can be mapped into the corresponding
operators of the Pfaffian state, and the statistics of quasi-
particles becomes non-Abelian. The mechanism described
in this work provides for a physical interpretation of
the algebraic projection from the (3, 3, 1) to the Pfaffian
state that has been discussed in the literature [7,14,15].
The question that remains to be answered is whether the
Pfaffian state corresponds to a stable phase, i.e. if the

system remains in this state beyond the critical lines. An
alternative treatment to the one presented here is eventu-
ally needed to resolve this issue within the framework of
the edge theories. According to the phase diagram found
by comparing the Pfaffian state bulk wave function with
the real space BCS wave function for pairing of spinless
fermions [16,17], the system should be in a Pfaffian phase
somewhere beyond those lines.
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