Physica A 506 (2018) 1050-1059

Contents lists available at ScienceDirect

Funsnca icumes
i 113 AppiATORS

Physica A

journal homepage: www.elsevier.com/locate/physa —

Verlinde’s emergent gravity in an n-dimensional, N
non-additive Tsallis’ scenario St
D.J. Zamora?, M.C. Rocca?, A. Plastino **, G.L. Ferri”

2 La Plata National University and Argentina’s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata, Argentina
b Fac. de C. Exactas-National University La Pampa, Peru y Uruguay, Santa Rosa, La Pampa, Argentina

HIGHLIGHTS

e The n-dimensional statistics of phase space curves is investigated.
e This is done in the framework of Tsallis statistics.

o The ensuing entropic force is examined.

o Effects typical of very high energies are obtained at a classical level.
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1. Introduction

This paper brings together four distinct but very important physical notions: (1) Entropic force, (2) Entropy-along-a-curve
(EAC), (3) Tsallis’ g-statistics, and (4) Emergent gravitation.

Since the early 90’s, Tsallis’ g-statistical mechanics has been employed in variegated scientific scenarios endowed with
multiple applications [ 1-12]. It proved useful for astrophysics, specially for self-gravitating systems [ 13-16]. It has generated
several thousands of both authors and manuscripts [2]. Its success reasserts the notion that a great deal of physics is to be
accrued to just statistical considerations. An example lies in its application to high energy physics, where g-statistics seems
to reasonably describe the transverse momentum distributions of different hadrons [ 17-19]. In this paper we discuss Tsalllis’
scenario for emergent gravity.

Emergent gravity (also called entropic gravity) is the notion that describes gravitation as an entropic force with macro-
scale homogeneity, but subject to quantum-level disorder. It claims that gravity is not a fundamental interaction. The theory,
advanced by Verlinde [20] is based on string theory, black hole physics, and quantum information theory. Here we consider
emergent gravity in a classical statistical context.

In [21] we introduced the analysis of the thermal properties of an entropy-along-a-curve (EAC), this is, we studied the
classical statistical mechanics of a phase space curve. This unveiled a mechanism that, via an associated entropic force,
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provided us with a simple realization of effects such as confinement, hard core, and asymptotic freedom, along with emergent
gravitation. Additionally, we obtained negative specific heats, a distinctive feature of self-gravitating systems, and negative
pressures, typical of dark energy. Now, it is well known that gravity strongly depends upon dimensionality. It is very different,
for instance in two dimensions than in 3D. Thus, it makes a lot of sense to perform in three dimensions the analysis of [21]
and we did this in [22].

The deep discovery of Tsallis’ was to point out that different statistics often uncover new physics, and thousands of
researchers followed suit. In this vein, we then investigated in [23] the g-statistical mechanics of phase space’s one-
dimensional curves associated to the harmonic oscillator hamiltonian. We computed Verlinde’s entropic force and re-
encountered, along with emergent gravitation, interesting effects analogous to confinement, hard core and asymptotic
freedom of [21].

Such effort is extended here to n dimensional curves, given the above mentioned relevance of dimensionality with respect
to gravitation. Does the g-scenario affect the properties of emergent gravitation, and in which form? How do n and g interact?
To answer these questions is the rationale of the present work.

2. Preliminaries

There is a strong link between the harmonic oscillator (HO) and the Kepler problem [24]. Fung worked out the full
correspondence between the Kepler problem and the isotropic harmonic oscillator in Newtonian mechanics by means of
a special transformation. He then applied this to get all the details of the Kepler problem from the simple solution of the
isotropic harmonic oscillator [24]. Thus, it is appropriate to introduce the HO in the present effort. We consider a particle
attached to a spring connected to the origin, in thermal contact with a heat bath at the inverse temperature 8. We consider
an n-dimensional harmonic oscillator-like Hamiltonian

H(P,Q) = P>+ Q7 (2.1)

PP=P{+P;+---+PQ*=0Qf +Q + - +Q7, (2.2)

where P2 and Q2 have the dimensions of H. We use Tsallis’ statistical mechanics [1], in which the probability distributions
are g-exponentials [1]

1
eq(x) = [1+ (1 —q)x] 1. (2.3)
The partition function in Tsallis statistical is defined as [1]
© 1
2p) = [ [+ vpHp. QI R, (2.4
—00

where 1 < q < 2 is the non-extensibility parameter. Note that, if ¢ — 1, the partition function reduces to the usual one,
that means, the Gibbs-Boltzmann’s canonical partition function. Following the procedure of [22] one arrives at

72.11

I(n)
where we employed the change of variable

Z(B) =

/OO U1 + (g — 1)U dU, (2.5)
0

U=P?+Q>% (2.6)

Evaluating (2.5) we have

" 1 " 1

where B|a, b] is the beta function. Thus:

r(-n)

T n
Z(B) = [ ] , (2.8)
a0 (= )
where we used this property of the Gamma function:
'(n+ 1) =nl(n). (2.9)
Using (2.9) n times, we then have
" 1
728) = | —= , (2.10)
Blg—1) (2;4) (37211) (HHW)
q—1 q—1 q—1
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and, finally:
2(p) = (”) 1 2.11)
B) TI.,(i+1—iq) '
Ifq — 1, then
T n
Z— <7> ) (2.12)
B
Eq. (2.11) reduces to the expression obtained in [22] for the Gibbs-Boltzmann statistical one. Also note that if n = 1, then
T 1
Z(B)= ———. (2.13)
B(2—aq)

Eq. (2.11) reduces to the 1-dimensional expression obtained in [23]. Similarly the mean value of the energy is defined in
Tsallis statistical mechanics like:

Wi = / H(P. Q)[1 + (q — DBH(P. Q)T d"Pd"Q. (2.14)
that leads to
ﬂn o0 1
- "1+ (g — 1)BU]| 7 dU. 2.15
v)(B) r(n)zw)/o U1+ (q — 1)BU] (2.15)
(2.15) results in
UyB) = — [ ! THB[nH 1—n—1] (2.16)
- rmzp)LBg-1) g1 ’ '
which is
nx" ri:%-n-1)
(u)s) = . L . (2.17)
Z(B)Bg— 11+t g ((;%1)

Using Eq. (2.8) we obtain
n I'(gg-n-1

(U)(B) = L : (2.18)
Pa=1 (L -n)
q—1
and employing (2.9), Eq. (2.18) can be written as
n
Uyg) = ) (2.19)
e Bl(n+2) — (n+ 1)q]
with the restriction 1 < q < % in order to guarantee the non-divergence of (U). When ¢ — 1 we obtain
n
Uy - —, (2.20)
B
and whenn =1,
1
U)y=——. (2.21)
B(3 —2q)

The restriction on g becomes q < 3/2.Eqs.(2.20) and (2.21) are the expressions of (U) obtained in [22] and [23], respectively.
Since the entropy S is [25]

S(B) = Iny—oZ + 297 B(U), (2.22)

we obtain for the entropy

T n(q—1) 1 q—1 1 n
S - =
» (ﬂ) [l’[?_l(iﬂ—iq)} [q—1+(n+2)—(n+1)q]

_ 1 (2.23)

qg—1
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3. Entropy along a path I

We recapitulate here the main ideas advanced in [21]. We assume that the system is in contact with a reservoir at the
fixed inverse temperature 8. We call I" a phase-space path parametrized by Q; that starts at the origin and ends at some
arbitrary point (P1(Q}), ..., Pa(QP), Q1(Q}), ..., Q4(QY)). All the calculations are of a microscopic character. Generalizing
the exact differentials-integrands (2.5) and (2.15), we introduce

2.1 = " [ U1+ (g — DU U, 31

(B.T) F(n)/r [1+ (g - 1)pU] (3.1)
" 1

U I)= — U™ — 1)BU]TadU. 3.2

(U)(B. ) F(n)z(ﬂ)/r [1+(q - 1)pU) (32)

Since P;,(0) = 0 and Q;(0) = 0 so is U(0,0) = 0. The integrands are exact differentials and they only depend on their
end-point Q?, Accordingly,

n Qlo 1

0y n—1 _ 1—
25,00 = 7o [ U+ @ - vpuTa, (33)

0 " o Ly
U)(8, = U™ — 1)gU]-4dU. 3.4
w)(B. QD) I’(n)Z(ﬂ,Qlo)/o [1+(q - DBU] (3.4
Integrating by parts n times one finds

26.00= " - (BUY [+ (g — 1Y) T 35
5. &) B | TT G+ 1—iq) 1(z+1—zq JX; (=)' [T (k+1—kq) 52)

where we write U instead of U(P(Q]O), Q(Q{’)) in order to simplify the notation. Note that when Q1° — 00 we recover the
relation (2.11).Ifn = 1,

26,0 = 5= (1 =11+ (@~ DpUIH), (36)

and we arrive at the expression found in [23]. The other interesting limit is ¢ — 1. Here we obtain

n US
2(6.Q)) = 5 "3”27; =t (3.7)

where we called s = n — j and we arrive to that equation already obtained in [22]. In the same way, integrating by parts
n + 1 times Eq. (3.4), we have for the mean energy

U)(B. Q%) = 2 ]
U pnz(B.QY) | [T+ 1 - ig)B
N+l Hn_jrmnt1—j _ qu
(n+1-j) k:1(1<+ 1—kq)
Again, we recover Eq. (2.19) when Q1 — 00. Appealing to Eq. (3.5) we obtain now
j+1-iq
ﬁU" ’[1+ q—1)/3U] =
BB, =n] =———— —
(U)B. Q) - 1(1+]—lq ; ik +1—kq)
1 on—jrnti—j _ e
1 Z B U [1+(qg—1)BU] T4 (3.9)

[T Gi+1-igp = +1=)! TT_ (k+1—kq)

If g — 1 we recover Ref. [22]'s result

n n s—177s
.oy = I B U gl 3.10
(U)(B, Q) 57260 | 5 Zzoj e (3.10)
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where this time we calleds = n + 1 —j. Forn = 1 we find

1 2-q
U)(B. Q) = | BUI1+ (g — 1)BU] ™=
B{1—[1+(q— 1)BU] 1}
[1+(g—DpUI =0
+ 320 (3.11)

This is the solution for Eq. (3.6) of [23], after integrating by parts. Finally, the entropy is expressed by Eq. (2.22), where we
have to replace Z and (U) from Eq. (3.5) and (3.8), respectively.

4. Entropic force and total force

According to [20], the entropic force is given by

1 0S
Fom 22 (4.1)
B 9Q;
In our case that this is
VARCEYA a(U)
Fo="+—11 —1BUY + 2971 L, 42
e= 5 8Q,[ +(g—DBU) + 0 (4.2)
where
0Z n’" ﬂ“_j { .
o = » (+1-jgpu™’
0Q 21: (n—j) jk:](k—kl—kq)
_4q j+ —Jq
X [1+(q = DBUF ™7 — (n = U""[14(q — DUT ™ |, (43)
and
AU Uy oz nn"_ S nj
o RS0 My
Q; Q; B (n+ 1=l (k+1—kq)
x G+ 1-japum I+ (g - ﬂUl’ =
— (1= U+ (g - UL T ] (4.4)
Using (4.3), (4.4),(4.2) we obtain the final expression for the entropic force given by (A.1) of the Appendix.
Ifn = 1Eqgs. (4.3) and (4.4) reduce, respectively, to
Y2 2rQl1+(q— 1BUITT (45)
— = 4Tl — -, .
0Q; 1
a(U) (U) a 2QU71
—_— = 1 —1)BU i —q, 4.6
30 Z 90, + [1+(g—1)BU] (4.6)
This is, they reduce to the expressions obtained in [23]. They also agree with the equations obtained in [22] whenq — 1
YA n+1 n—1 Uk
= —2x"Qe PV [Z Z (4.7)
“k—1 _ [
0Q kprkt T e (k= 1)
where we called k =n —j.
(U Uy 9z  2Q ° nuk u uk-!
au) _ _Uoz o—PU Z A L — (438)
0Q; Z 0Q; -z k! pn—k prs (k — 1)1pn—k+1
in which we called k = n 4+ 1 — j. Since Eqs. (4.3) and (4.4) reduces to (4.7) and (4.8) and when ¢ — 1 Eq. (4.2) reduces to
1 90Z o(U
Fo— L9230 (4.9)
BZ93Q  9Q

and then, the limit of F, agrees with that of [22]. The complete form for F, can be found in the Appendix, see Eq. (A.1) (see
Fig. 1).
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£5=0.2
g=1.05

100

Fig. 1. Behaviour of the entropic force with n. We note that the entropic force grows with the dimensionality.

q=1.05

Fig. 2. Behaviour of the total force with n. We note that the total force grows with the dimensionality.

Of course the particle also feels the influence of the negative gradient of the HO potential:

19(U)

Fyo = 2790, (4.10)
whose expression is given by (A.2) of the Appendix. Note that the force vanishes at the origin, as indicated by the graph. The
force of the harmonic oscillator (i) changes sign in going from one side of the origin to the other and (ii) depends on whether
one is compressing or elongating the associated coil spring. Remember also that we are dealing with the forces’ statistical
averages.

Now, we are in the presence of a total force

Fr = F, + Fyo. (4.11)
One has
1. .0Z a(U) _ 1
_ _ 79277 _ s -1 _ _
Fr—ﬁZ aQi[1+(q 1NBUN + 30 (Z 2>, (4.12)

and from this one is led to the form for Fr of Eq. (A.3) in the Appendix. (See Fig. 2.)
5. Specific heat

The specific heat can be calculated as

c_ M _ Wz kenrt n+1
ATz aT Z | B[l (i+1—iq)
n+1 —j .
gl [ j +1-jg
- A ——l1+(@—1)pU] ™
S 1= Ty (k+1—kg) LA
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U )L SR 1)ﬁur‘+%q“, (5.1)
pi-2
where
0z nkgm" uri
8T Bn- 11_[ 1—|—1—lq Z] J,'<:](k+1—kq)
1 U i a4
{ﬂ] ——1+( (Hﬂjzjm[1+(q—1)ﬁu}l+lq}- (5.2)

Thus on obtains for C Eq. (A.4) of the Appendix. When g — 1

0z

i —pU 2
o = I<71”|: (kTY""' —e Z . kT nes
—e ﬂ”z kT” = 1}, (5.3)

which agrees with the result given in [22]. In the expression above we called s = n — j. Whenn = 1, "Z becomes

0Z km 2-q 1
— =5 {1-[1+(q—1BUJ™ + (2 —q)BU[1+ (¢ — 1)BU] T}, (5.4)
oT  (2—q)
as in [23]. The limit of C when g — 1 also coincide with [22]:
(UYdZ  krx" n(n + 1. nustl " n(n—s+ 1)U
C=——7— —e P _. 55
Pty | S L 53

6. Conclusions

We have here brought together four disparate but very important physical notions: (1) Entropic force, (2) Entropy-along-
a-curve, (3) Tsallis g-statistics, and (4) Emergent gravitation in discussing the g-statistics of phase space curves.

The expressions for all the quantities here discussed are generalizations of those found in [22] and [23] for the limits
q — 1and n = 1, respectively. This reconfirms their correctness. The behaviour is the same in all dimensions, which
includes hard-core, confinement and asymptotic freedom. This should motivate efforts directed to find these properties in
the Lab, in more general settings than those of high energy physics.

Interestingly enough, although dimensionality is very important in gravity’s workings, in what respects to phase space
curves, we proved that, qualitatively, the statistical properties of them, e.g., the entropic forces, are intrinsic to the curve, no
matter in what space it is embedded. Quantitatively, our graphs show that the entropic force grows with the dimensionality n.
This can be understood if we accept that disorder grows with n, as the number of concomitant spatial "arrangements” of any
kind augments with n, and so that the entropy variation along a curve.

Appendix

We give here the explicit form of some rather complicated equations dealt with in the text. For the entropic force we
have

i1jg ) 972
20, 7" (BUY 11+ (g = AUI T
Fo=—2 -
g BN [, 1+1—1q jZ: (n—j)! _(k+1—kq)
n n?] q
+1—jg)BU" 1+ (g — 1)BUY T3
Y T {6+ 1-jgpu 11+ (g - npuy
. +1-iq 1
—(n—jHur 1 —1BU] e H]1 -1 -
(0= U1+ (@ = DBUL T 1 (@ = D | e
j+1-jq -1
_ i(ﬁU)"‘j[lJr(q—l)ﬁU] 1
= =D [Tk +1—kq) T+ 1—iq)
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§ priun1=i 1 +(q _ l)ﬂU].l qq N ila=1) 1
(n+1-=)" [T_,(k+1—kq) a1 | TTL,(+ 1 —iq)
j+1-jg ) 971
(BU)" ’[1+(q—1)ﬂU] =4 1
-y Q|
= (=)' [T_ (k+1—kq) [To,(i+1—iq)
n : j+1=iq -1
B s LR CRR ) B 1
S (= TRk +1— k) [T+ 1—ig)B

Zﬂ“U”*”[H(q—lﬂulw
1)) 1(k+1—kq) [T, 1+1—1q

ﬁU)“f[1+(q—1ﬁul i Z e
= ~ (n—=J)! Th_i(k+1—kq) = ( _(k+1—kq)
x {6+ 1-j@BUm 1 + (g — DU T — (n— U1+ (g - DT T |

g ) !
~ (BU) -f[1+ (a— 1pul'T=
2 —
+2nQ; T l(1+1—1q ; (n—j) _,(k+1—kq) }

n+1 ﬂn,j ) g
Z . [0+ 1-j@pumtI1 + (g - npuptTa

(n+ 1= Tz (k+1—kq)

—iq

—(n+1— U1+ (g — 1pU] T }] (A1)

For the HO force one has

-2
(BUYI [1+ (g — DpU] T

Fio=nQ{ —————— —
" nQ{l_L]lJrl—lq Z(n— i (k+1—kq) ]

o 1 B IBn—jun+1—j [1 +(q_ 1)/3U]H11:qjq

Mo a+1—igp o (+1=0 [T (k+1—kq)
fj
. 1_ . Unij
XZ (I<+1—k){0+ JOF

< a- ”ﬁUl”‘Tq —(n—j)U”*H[H(q—1)ﬂu1”1‘%q”}

-1
_i (BU) -f[1+ (- npul '
ITe 1(1—{—1—1(1 o (n—j _(k+1—kq)

=1

n+1 n—j ) )
x i {u+ 1)U I + (g — DBUPHT
(m+1—=) e (k+1—kq)

j=1
41— UM + (g — 1)/3U]J+1]%4}q]. (A2)

The total force is

1-jg ) 972
20; 7@ - ﬂU)"" [1 + (q-— 1)5”] b
Fr = —
T B ,Bn(q—l){n (i+1—1iq) Z _1(k+1—kq) }

j=1
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n

g
X -
= (=)' Ty (k+1—kg

j+1-jq 1
—(n—UI 1+ (g = DBUY ]{H(q—l)ﬂnln(
i=1

o+ 1-gwpuritn+ @ - npuf

i+ 1—iq)
it1-jg ) 7! ) )
_ Z (BUY' [1+(q— 1BUI 1 B W gy
(=)' [T_,(k+1—kq) [+ 1—igp = (+1-))
1o j1=ig ) 971
[1-1-((1—1)/3U]ﬁ a1 "L (BU) _’[1+(q—1),BU] =
X ’,;:1(l<+ k) }:| + Bra—1 l [T, G+ 1 —ig) ]:Z] k:1(k+ 1—kq) ]
-1
1 (BUY [1+ (g — 1)BU] 4" 1
-2 —
l an{]_L i+ 1—iq) ; (n—j)! k:](k+1—kq) ] {H?:ll(i+1_iq)ﬂ
B Yl (RA gl Z ﬂu yod
S 1= [T (k+1—kg) [T 1(z+1—zq =
i1 Y7, ,
[1+ (g — 1)BU] ™ B ) ) » s
i 1-— U1 — 1BUY T4
S } ]X;”—J'H A {o+ JDBU™I1 + (g — DpUY

_ _ ngn—i—1 _ Hll%qjq i\ =
(n—ju [1+4 (g — 1)BU] }+2nQ1 {H;;](i_l_] —iq)

j+1-iq

14— npup'ia | o g
< [G+1-jgpur15

]kzl(k"‘]_kfﬂ Z(n—i—l—])‘ _(k+1—kq)

ol P B Bl ‘ 1
x [1+4(q—DBUY" ™5 —(n+ 1= U1+ (g — DBU] }]Hq‘lﬂ?l(iﬂiq)
g ) 72
_ Z (BUY [1+(g—1)BU] ™0 1 gy
S (= TRy(k+1— k) ]‘[f‘*l‘(z+1—zq)ﬁ — (n+1-j)!

1 —npurT | n—j ,
, @1 1 ] B {UH_jq)ﬂUn_J

2

[T (k+1—kq) T (k+1—kq)
j+ -4 ; j+1-jq 1
_ tig _(n_ yni-1 _ < l_pno ) -
x [1+(q—1)pUY (n— U714 (g — 1)BU] } nQ,{H?_l(iH_iq)
=g Y 71, ,
_ Z (BUY' [1+(q = 1)pUT 7 f: g
= (=0 [T (k+ 1 —kq) S+ 1) Tk + 1 ko)

x G+ 1 =BT + (g = DBUYTTE — (41— U1+ (g - DpUT T |

Finally, for the specific heat we have

n
— 1
c- "

-2
_Z(ﬂU "I [14 (g — 1pU] T
| T+ 1—ig) = (=D [T (k+1—kq)

(A3)
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1 i B [14 (g — U] T
[ i+1-igp M+ 1=D" Thy(k+1—kq)
nkgr" I yrni
— kg" :
) BT, (i + 1 —ig) o ;(n —iNTEei(k+1—kq)

1—jqu 4
{ﬂj I {14+(-1) U+ﬁ]_2>[1+(q_1)ﬂuy+ﬁq}

(BUY'I [1+ (g — U] 10"

kgnB" -
lanp [T 1(l+1—lq Z(n =D TPy (k+1—kq)

n+l yr+Hi—i

y n+1 ¥
Brilicai+1—ia) S (n+1— ) Hey(k+1—kq)

1 iy a4
X [,3; T+ ( (’Jrﬂ,—z)lw —1)ﬁur+1—q] : (A4)
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