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Abstract

Coronal mass ejections (CMEs), which are among the most magnificent so-
lar eruptions, are a major driver of space weather and can thus affect di-
verse human technologies. Different processes have been proposed to explain
the initiation and release of CMEs from solar active regions (ARs), without
reaching consensus on which is the predominant scenario, and thus rendering
impossible to accurately predict when a CME is going to erupt from a given
AR. To investigate AR magnetic properties that favor CMEs production, we
employ multi-spacecraft data to analyze a long duration AR (NOAA 11089,
11100, 11106, 11112 and 11121) throughout its complete lifetime, spanning
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five Carrington rotations from July to November 2010. We use data from
the Solar Dynamics Observatory to study the evolution of the AR mag-
netic properties during the five near-side passages, and a proxy to follow the
magnetic flux changes when no magnetograms are available, i.e. during far-
side transits. The ejectivity is studied by characterizing the angular widths,
speeds and masses of 108 CMEs that we associated to the AR, when ex-
amining a 124-day period. Such an ejectivity tracking was possible thanks
to the mulit-viewpoint images provided by the Solar-Terrestrial Relations
Observatory and Solar and Heliospheric Observatory in a quasi-quadrature
configuration. We also inspected the X-ray flares registered by the GOES
satellite and found 162 to be associated to the AR under study. Given the
substantial number of ejections studied, we use a statistical approach instead
of a single-event analysis. We found three well defined periods of very high
CMEs activity and two periods with no mass ejections that are preceded or
accompanied by characteristic changes in the AR magnetic flux, free mag-
netic energy and/or presence of electric currents. Our large sample of CMEs
and long term study of a single AR, provide further evidence relating AR
magnetic activity to CME and Flare production.

Keywords: Sun: activity, Sun: coronal mass ejections (CMEs), Sun:
photosphere, Sun: magnetic fields

1. Introduction

Active regions (ARs) are areas of intense magnetic field concentration
on the Sun that are constantly evolving throughout their lifetime, typically
ranging from days to a few moths (see e.g. van Driel-Gesztelyi and Green
2015 and references therein). From their generation, linked to the emergence
and concentration of new photospheric magnetic flux, to their decay, par-
tially driven by the spatial spreading and cancellation of such flux, ARs are
centers of diverse magnetic activity. They provide vital constraints to model
the underlying dynamo process (van Driel-Gesztelyi and Green, 2015) and
are also the main source region of different kinds of transient phenomena,
such as solar flares (see e.g. Priest and Forbes 2002) and coronal mass ejec-
tions (CMEs). CMEs involve the fast release of large amounts of mass and
magnetic field from the solar corona into the interplanetary medium (some-
times exceeding 2500 kms™! and 10'® g), see e.g. Webb and Howard 2012.
They produce significant perturbations in the solar wind and can strongly



influence the geomagnetic environment conditions, a.k.a space weather, see
e.g. Bothmer and Daglis (2007) and Zhang et al. (2018).

Magnetic energy dominates other forms of energy in the low corona, par-
ticularly near ARs, where magnetic pressure overcomes plasma pressure and
drives the matter dynamics. The occurrence of a CME is then of magnetic
nature, as summarized in Green et al. (2018) requiring (a) the previous build-
up of free magnetic energy stored in the non-potential core field, which may
or may not contain a filament and is generally located above the polarity
inversion line (PIL) of ARs; (b) a destabilizing mechanism that triggers the
eruption of the core field; and (c) a driving mechanism that powers the ejec-
tion of the core field from the low to the high corona while interacting with
the overlying strapping field.

Several mechanisms contribute to build up non-potential energy and mag-
netic helicity in the coronal field associated to ARs. These include, among
others, sunspot rotation, the frequent emergence of twisted magnetic flux
tubes (or flux ropes, see e.g. Hood et al. 2009; Poisson et al. 2015a) and the
stress produced in the field lines by shearing photospheric flows (e.g. Mac-
Taggart and Hood, 2010). There is substantial observational evidence of the
presence in the solar atmosphere of the topological features (e.g. S-shaped
loops, magnetic tongues, etc.) and electric currents associated to such a non-
potential field, e.g. Rust and Kumar (1996); McKenzie and Canfield (2008);
Koleva et al. (2012); Jiang et al. (2014); Poisson et al. (2015b). Abrupt mag-
netic reconfigurations, associated to the reconnection of field lines, transform
large amounts of the free magnetic energy stored in the coronal field into ki-
netic and thermal energy, powering eruptive events such as CMEs and flares,
e.g. (Kliem et al., 2014; Aulanier et al., 2010).

CMEs are commonly associated with flux rope eruptions, e.g. Li et al.
(2012); Jiang et al. (2014); Vourlidas et al. (2013). Different mechanisms
have been proposed and evidenced in the literature to explain CME trigger-
ing, including flux emergence (e.g. Chen et al. 1997 and Manchester et al.
2004), reconnection of field lines below (tether-cutting model, Moore and
Roumeliotis 1992) or above (breakout model, Antiochos et al. 1999) the flux
rope, excess of twist in the flux rope (kink instability, Térok and Kliem 2005)
and others (e.g. Amari et al. 2000; Lin et al. 2004 and Aulanier et al. 2010).

Once the core field is destabilized, it rises stretching and pushing aside
the overlying coronal field. It can be the case that this strapping field re-
strains the rising core field, preventing its ejection and producing a confined
CME, see e.g. Torok and Kliem (2005) and Moore et al. (2001). In any
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case, the above-named trigger mechanisms are not able to explain the ob-
served acceleration and expansion of CMEs in the low corona. Instead, two
driving processes have been proposed, namely the torus instability (a.k.a.
flux-rope catastrophe model, e.g. Kliem and To6rok, 2006; Aulanier et al.,
2010), which occurs when the outward magnetic pressure of the flux rope
exceeds the inward magnetic tension provided by the external field; and the
flare-reconnection (e.g. Forbes et al., 2018), that describes the successive
magnetic reconnections occurring at the vertical current sheet formed below
the rising core field, and its associated flaring activity.

Mainly due to the lack of routine magnetic field measurements of the
corona, no clear consensus has been reached regarding which of the named
trigger and driving mechanisms, or what combination of them, is the pre-
dominant, see e.g. the discussions in Webb and Howard (2012); Green et al.
(2018). Moreover, the activity of ARs varies during their lifetime. Flares are
common in the emergence and stable phase, decreasing in number with the
reduction of flux density during decay. On the other hand, CME production
is generally low during the emergence of young ARs, however, it can persist
or even increase during the stable and decay phases, see Sect. 4 and e.g. Li
et al. (2012); Démoulin et al. (2002). Because of this, studying the evolution
of the magnetic properties of ARs in connection with their associated eruptive
events is an active area of research. The vast literature includes short-term
(a fraction of the AR lifetime), detailed analyses focusing on, e.g. compara-
tive CME-production (e.g. Cremades et al. 2015; Murray et al. 2018), pre-
and post-eruptive coronal magnetic field topology (e.g. Mandrini et al. 2014,
2006; Chandra et al. 2011, 2017) and magnetic helicity evolution (e.g. Ro-
mano et al. 2014; Démoulin et al. 2002; Mandrini et al. 2004). There are
also investigations of the long-term (time scales covering a full AR lifetime
or more) evolution of, e.g the magnetic influence of AR plasma flows (e.g.
Harra et al. 2017; Zangrilli and Poletto 2016 and Ko et al. 2016), the CME
production rate along the solar cycle (e.g. Gopalswamy et al. 2003 and Riley
et al. 2006), the global magnetic field and its associated CME production
(Petrie, 2013), and the continuous tracking of some AR magnetic properties
(e.g. Démoulin et al. 2002 and Green et al. 2002), among many others, see
e.g. the review by van Driel-Gesztelyi and Green (2015).

Given the present fleet of Sun-observing missions, up to date we can only
obtain magnetograms of the portion of the solar surface that is facing Earth,
i.e. the near side. Moreover, limb darkening and spherical effects harm the
quality of the magnetograms obtained from a fixed Earth perspective, e.g. the
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noise properties of the tangential and radial field components change from
disk center to the limb. Therefore, all long-term studies cited above were
either done on ARs that live less than approximately half a solar rotation,
are restricted to only the intervals where the AR is on the near side, or have
used a proxy to estimate magnetic properties when the AR is on the far
side, such as using 304 A intensity images or constrained magnetic surface
flux transport models to estimate total flux, see e.g. Ugarte-Urra et al.
(2015). On the contrary, the above-named limiting factor is not present
when studying the CME production of an AR. There is the possibility of
continuous tracking of the CME production of an AR using a combination
Sun-observing spacecraft such as SDO (Solar Dynamics Observatory; Pesnell
et al. 2012) and/or SOHO (Solar and Heliospheric Observatory; Domingo
et al. 1995) plus the two STEREO (Solar-Terrestrial Relations Observatory;
Kaiser et al. 2008), provided that the latter are favorably located so as to
track the AR during its far side passage, i.e. nearly in quadrature with
the Sun-Earth line (=~ 180° apart). This combination of observatories offers
a unique opportunity to examine the CME production continuously during
one or more full solar rotations.

The present work reports on the CME and X-ray flare production of a
long duration AR (NOAA 11089, 11100, 11106, 11112 and 11121) through-
out its complete lifetime, spanning five Carrington rotations (CRs) from July
to November 2010. We also analyze the evolution of some of the AR pho-
tospheric magnetic properties (magnetic flux, current helicity and a proxy
of the photospheric free magnetic energy, see Sect. 2.1 for exact definitions)
to study their relationship with the frequency and properties of the ensued
CMEs. Given the substantial number of mass ejections studied (108) and
their clustering in bursts, we do not focus on single events but relate the long-
term (few days) variation of the AR magnetic properties to the occurrence
of bursts of CMEs, i.e. high CME activity periods. The rest of this work
is organized as follows. Section 2 presents the methodology and analyzed
data, including that of the AR (Sect. 2.1) acquired during its near-side (us-
ing HMI and ATA'! onboard SDO, and MDI? onboard SOHO) and far-side

!The Helioseismic and Magnetic Imager (HMI, Scherrer et al. 2012) and the Atmo-
spheric Imaging Assembly (AIA, Lemen et al. 2012) are both onboard the SDO spacecraft
(in geosynchronous orbit).

2The Michelson Doppler Imager (MDI, Scherrer et al. 1995) onboard the SOHO space-
craft (located at Lagrangian point 1 of the Sun-Earth system).



(using SECCHI EUVIs® onboard STEREO) transits. Sect. 2.2 describes
the SECCHI and LASCO* data that allowed us to track the AR, identify
its associated CMEs and derive their main properties. Sect. 2.3 introduces
the Geostationary Operational Environmental Satellite (GOES) data used
to identify X-ray flares originating in the AR. Sect. 3 presents and describes
the resulting time series that drive the discussion and conclusions given in
Sect. 4.

2. Data sets and methodology

After Solar Cycle 23, a long solar minimum of over two years, and more
than 800 days without sunspots, a series of long-duration ARs emerged on
the Sun. Many of these had strong magnetic activity with flares, filament
eruptions and CMEs, see e.g. Schrijver et al. (2011); Liu et al. (2012); Li
et al. (2012); Mandrini et al. (2014).

The inspected AR was born in the far side of the Sun and appeared for the
first time on the east limb as NOAA AR 11089 on 19 July 2010, persisting for
approximately five CRs until mid-November 2010. During that period, the
STEREOQO twin spacecraft were approaching a quadrature configuration with
respect to Earth, i.e. they were ~ 148° and ~ 168° apart at the beginning
and end of the mentioned time interval, respectively. At the same time,
the SDO mission was beginning its operational phase, providing views of
the AR from Earth’s perspective. Numerous episodes of flux emergence and
ejective activity were observed during the lifetime of the investigated AR. As
a consequence, it has been subject of independent, short-term studies that
address different aspects and stages of its evolution, e.g. Guo et al. (2013);
Zuccarello et al. (2014); Mandrini et al. (2014); Cremades et al. (2015). In
the latter two articles, AR 11121 is analyzed together with the closely related
AR 11123, which emerged within AR 11121 during November 2010.

The photospheric imprints of the inspected AR can be seen in Fig. 1,
which presents the line-of-sight magnetograms during its five central meridian
passages. We also display the different NOAA numbers that were assigned

3The Extreme-Ultraviolet Imagers (EUVIs) are part of the Sun-Earth Connection
Coronal and Heliospheric Investigation experiment (SECCHI, Howard et al. 2008) onboard
of the two STEREO spacecrafts (orbiting the sun in opposite directions).

1The Large-Angle and Spectrometric Coronagraph Experiment (LASCO, Brueckner
et al. 1995) onboard the SOHO spacecraft.



to the AR after each new solar rotation, together with the dates at which it
appeared on the east limb, was at central meridian, and disappeared on the
west limb. The AR is seen to constantly evolve, starting with a configuration
predominantly formed by two bipoles in CR 2099 (top-left panel in Fig. 1).
During the near-side transit of the AR the bipoles do not present strong
photospheric interaction, e.g. cancellation of opposite polarities , and the
western, weaker bipole diffuses to be absent in CR2100. Moreover, we did not
find obvious signs of coronal magnetic interaction (in terms of simultaneous
EUV brightenings occurring over both bipoles) and the CME activity was
low (as is frequent in young ARs, see Sect. 1). After this, the AR adopts
a predominantly bipolar configuration from CR 2100 to CR 2102. During
the last rotation (CR 2103, shown in the bottom-right panel of Fig. 1) the
bipolar AR 11123 emerged in the negative polarity area of the decaying AR
11121, strongly incrementing the CME activity (see Sect. 4).

In the following three subsections we describe the data sets employed to
study the evolution of the photospheric magnetic field, as well as the CME
and X-ray flare production along the AR lifetime.
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2.1. Photospheric properties

Magnetic flux evolution is expected to show correspondence with erup-
tive activity given that photospheric motions, including those related to flux
emergence, have been pointed out as a possible trigger of CME eruptions, e.g.
Chen (2011); van Driel-Gesztelyi and Green (2015). AR parameters charac-
terizing the field non-potentiality, e.g. electric currents or free magnetic
energy, have been also widely accepted to be related to solar eruptions, e.g.
Canfield et al. (1999); Falconer et al. (2006); Wang and Zhang (2008); Guo
et al. (2013); Liu et al. (2016). Here we analyze temporal series of the total
unsigned magnetic flux (3_ | B.|dA), mean current helicity (He o + > B..J.),
total unsigned current helicity (He o ) |B.J,|), and a proxy of the mean
photospheric free magnetic energy density (% S (B — BP°!)?), where B is
the magnetic field vector with radial component B,, N is the number of
spatial resolution elements (magnetogram pixels) contributing to the com-
putation, J, is the current density in the radial direction and dA gives the
surface area covered by each pixel. In the free energy density expression, B
and BP°" represent the observed and potential field (modeled) respectively.
These data series are obtained from the Space-weather HMI Active Region
Patches (SHARPs; Bobra et al. 2014) during the AR near-side passages,
covering 124 days (from 17 July to 18 November 2010). The SHARPs (see
Fig. 1) are standard data products extracted from HMI 12 min-cadence, full-
disk, vector magnetograms. Only pixels with transverse field strength that
exceed the azimuth disambiguation noise threshold (&~ 150 G) contribute to
the patch parameters, see Bobra et al. (2014) for extra details.

We additionally estimated the time evolution of the total unsigned mag-
netic flux in the AR using two other independent sources. The first one are
full-disk, level-1.8 MDI magnetograms. These data are the average of 5 line-
of-sight magnetograms with a cadence of 30s and a noise error of 20 G per
pixel. They are constructed once every 96 min and have an error in the flux
density per pixel of 9 G. Following Green et al. (2003), to find the AR flux, a
polygonal contour is fitted around the AR. The shape of the contour is given
by the large gradient between the AR and the network fields. Within this re-
gion, the flux is calculated for all pixels with absolute fields above 50 G. Due
to the limitations related to the projection effects involved in the magnetic
flux determination, we only show values corresponding to the dates when the
AR was on central meridian +4 days. The resulting MDI flux curves were
divided by a cross-calibration factor of 1.40 to make them comparable to the

HMI results, see Liu et al. (2012b); Chertok et al. (2019).
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The second method employed, estimates the total unsigned magnetic flux
using its strong positive correlation with the total brightness of the He II
304 A spectral line (e.g. Schrijver 1987). We used the technique developed
by Ugarte-Urra et al. (2015, 2018), which allows estimating the flux when
magnetograms are not available, by employing intensity-only 304 A images
as a proxy. In this technique, a synchronic Carrington map covering most
of the solar surface is assembled by combining quasi-simultaneous images of
the 304 A channels of the STEREO EUVIs and SDO AIA instruments. The
covered solar surface depends on the SDO and STEREO spacecraft locations.
The EUVI and AIA data are previously corrected to account for limb darken-
ing effects and the time-dependent, cross-calibration of the instruments. The
EUV synchronic maps allow tracking the movement of the AR on the solar
surface, in our case at a cadence of one image every 6h. A fixed-sized, square
box is defined around the AR of interest in each map, and the total photon
flux is computed by adding the contributions of all pixels within the box that
also belong to the AR. Pixels with a flux two standard deviations above the
normal distribution of quiet Sun flux in full maps are considered to belong
to an AR. The total photon flux can then be translated to the total unsigned
magnetic flux using a known power-law relationship, see Ugarte-Urra et al.
(2018, 2015) for extra details. This technique can be applied under complex
scenarios, e.g. strong emergence within an AR as is the case of ARs 11121
and 11123. The 304-proxy method may, however, underestimate the mag-
netic flux when sunspots are present within the considered area. Sunspots,
while contributing significant magnetic flux to active regions, do not emit
strongly in coronal or chromospheric spectral lines such as those contained
in the 304 A bandpass. This caveat is already implicit in the power-law
relationship which was optimized for magnetic flux densities in the range 90—
900G (Fludra and Ireland, 2008). Note that, the differences between MDI
and HMI spatial resolution plus the different lower-field thresholds employed
in the flux estimations named above, may introduce discrepancies between
their results.

2.2. CMFE productivity

Using quasi-simultaneous observations from multiple vantage points, we
have tracked the AR in EUV wavelengths for five solar rotations and iden-
tified its productivity in terms of white-light ejecta. The nearly-quadrature
observations enabled a better estimation of the ejecta source regions, a some-
times challenging task, in particular for events propagating along the Sun-
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observer line (halo CMEs) which can lack structure, be diffuse and dim (see
e.g. Lara et al. 2006; Cremades et al. 2015). The location of the AR was
decisive to determine which instrument was best to observe the region and
its associated eruptive phenomena. During the AR near-side passages we
examined it with ATA and HMI onboard SDO, while we detected the en-
suing CMEs from a quadrature perspective using the STEREO/SECCHI
COR2 coronagraph. Likewise, when the AR was close to the solar limbs
(from Earth’s viewpoint), we used the SECCHI EUVIs to track the region
activity (EUVI-B for the east limb and EUVI-A for the west limb), and
SOHO/LASCO C2 to identify the associated mass ejections. As the AR
transited the far side of the Sun, we also used the SECCHI EUVIs to moni-
tor its behavior, while the SECCHI COR2 coronagraphs were used to detect
the associated eruptions. Note that we do not use LASCO C3 or SECCHI
HI data, to reduce the effects of the surrounding corona on the derived CME
properties, for instance due to solar wind acceleration or mass loss.

After careful inspection of these observations, we compiled 108 CMEs
that could be associated to the AR of interest, these are presented in Table
1. During this selection, we included all kinds of white-light ejecta that
were discernible from the background corona in running-difference images,
and at least in two consecutive images. For each CME we obtained the
following properties, which are directly associated to the energy involved in
the event given that generally wider CMEs are more massive and faster (see
e.g. Gopalswamy 2010):

e KUV brightening location and time: We inspected regular and running
difference images of the 171, 195 and 304 A channels to track back the
initiation of the identified CMEs using their maximum cadence (/10
min). We adopted the location of the maximum brightening observed
at any of these wavelengths, preferentially 304 A. Whenever we could
identify an extended structure, such as a filament as the responsible for
a given CME, we took instead the coordinates of the central point of
that structure. This was done to unambiguously associate the CMEs
with the AR under study. Similarly, the ejection time is defined as the
time of the first EUV brightening or filament eruption. Table 1 lists
these ejection times, along with the time of the first appearance of the
associated CME leading edge in white-light images of LASCO C2 or
COR2.

o Angular width (AW): The AW was measured in the set of coronagraphic

11



images where the CME propagation direction was closer to the corre-
sponding plane of the sky (e.g. Cremades et al., 2015). For complete-
ness, we also consulted the LASCO CME Catalog (Yashiro et al., 2004)
and the Computer-Aided CME Tracking catalog (CACTus, Robbrecht
and Berghmans 2004).

Mass: The coronal electron density can be estimated from the total
brightness of white-light coronagraphic images using the method intro-
duced by Vourlidas et al. (2010), which makes use of the Thomson scat-
tering properties (Billings, 1966) and assumes the electrons propagate
predominantly in the plane perpendicular to the line of sight. After
assuming a given plasma composition, e.g. a mixture of completely
ionized hydrogen and 10% helium, the electron density can be trans-
lated to total mass, see e.g. Colaninno and Vourlidas (2009). Given the
large number of events, we followed the implementation by Lépez et al.
(2017) which uses data from a single coronagraph to derive the total
mass of each event, by adding the contribution of the mass associated
to each pixel that belongs to the CME. The boundary of the CME is
manually selected by defining a freehand region of interest.

Linear propagation speed: Given that many of the selected events are
not cataloged (44%), we derived their plane-of-sky propagation speed
from a linear fit to height-time data points. These data points were ob-
tained from a manual tracking of the CME leading-edge, using running-
difference, coronagraphic images of LASCO C2 or SECCHI COR2 (de-
pending on whether the direction of propagation was closer to one or
the other, see below). Therefore, for accelerated or decelerated events,
the speed we derived represents their mean speed in the 1.5-2 to 6 solar
radii height range. The exact measurement interval within this range is
event-dependent, e.g. dim CMEs could not be generally followed across
the complete field of view.
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We note that, for the computation of the AW, mass and linear speed
we used the coronagraphic images where the CME propagation direction
was closer to the corresponding plane of the sky, i.e. up to 45°, to reduce
projection effects. The latter cannot be ruled out unless a tridimensional
model or tomographic reconstruction of the CME is applied, see e.g. Pluta
et al. (2019). However, projection errors effects are milder in our statistical
approach due to the different propagation directions of the large number of
CMESs analyzed.

2.3. X-ray flaring productivity

We collected the AR production of X-ray flares in the 1-8 A band by in-
specting the catalog of the GOES satellite, available at https://www.ngdc.
noaa.gov/stp/solar/solarflares.html. We included all flares cataloged
B-class (1077-107¢ W m™2) or superior, originating from ARs NOAA 11089,
11100, 11106, 11112, 11121 or 11123; and registered from 19 July to 17
November 2010. A total of 162 flares where found, with 127 (78%), 31 (20%)
and 4 (2%) being of class B, C and M, respectively.

3. Results

Fig. 2 presents the measured properties of the 108 identified ejective
events: AW, mass, speed, and occurrence rate, as a function of time. The
bottom panel (number of CMEs per day) shows periods of time that stand
out from the rest, in that either many CMEs occur in only few days, or no
mass ejections are registered during one or more weeks. We identified five
such time intervals, with two of them being no-activity periods (NAP1 and
NAP2) and three of them high activity periods (HAP1, HAP2 and HAP3),
see labels and vertical dotted and dashed lines in Fig. 2. Table 2 details
the time intervals and relevant properties of these activity periods. Note
that HAP1, HAP2 and HAP3 combined cover only 16% (20 days) of the
AR lifetime (=~ 124 days) but account for 59% (64) of the total number of
produced CMEs. On the other hand, NAP1 and NAP2 combined imply 23%
(29 days) of the AR lifetime without a single registered CME.

The bottom panel in Fig. 2 also presents the daily frequency of the 162
GOES X-ray flares associated to the AR (red histogram). Note that, flaring
activity is not available when the AR is in the far side (see the blue segments
in the horizontal axis). A total of 62 CMEs were ejected during AR near-side
transits; out of these, we could associate 33 to a GOES flare (13, 17 and 3

14


https://www.ngdc.noaa.gov/stp/solar/solarflares.html
https://www.ngdc.noaa.gov/stp/solar/solarflares.html

Table 2: Five CME activity periods of the AR under study. We detail various properties
(Col. 1) for two no ejective activity periods, NAP1 and NAP2 (Cols. 2 and 4, respectively),
three periods of high CME production, HAP1, HAP2 and HAP3 (Cols. 3, 5 and 6,
respectively), and the total AR lifetime (Col. 7). The asterisk in the number of X-ray
flares means that no data is available because the AR was in the far-side. For each CME
property we show the temporal average and standard error. See Fig. 2 and the text for
extra details.

Property NAP1 | HAP1 | NAP2 | HAP2 HAP3 Total
Starting date 24/07 30/08 18/09 17/10 10/11 19/07
Ending date 01/08 | o04/09 | o7/10 | 23/10 | 16/11 17/11
Duration [days] 9 6 20 7 7 124
CMEs 0 24 0 15 24 108
X-ray flares 15 * * 23 31 162
Asoc. CME-flare 0 * * 6 17 33
CME AW [°] - 38+19 - 38416 32410 33418
CME Mass [10g] - 5.747.4 - 2.6+£25 | 47451 | 564105
CME Speed [km Sfl} - 5144353 - 282+£110 | 4294205 | 3944235

of class B, C and M, respectively), see Table 1. This association rate implies
that only 53% (33 out of 62) of the CMEs were accompanied by a flare, while
20% (33 out of 162) of the flares were related to a CME. Moreover, the more
energetic the flares, the higher is the association rate with CMEs, i.e. 10%
(13 out of 127) , 55% (17 out of 31), 75% (3 out of 4) of class B, C and M,
respectively.

For 96 out of the 108 CMEs, we could identify the location of their as-
sociated EUV brightening. These are indicated by the blue arrows over the
central-meridian magnetograms of each CR in Fig. 1. It can be seen that
the brightenings are occurring in various places above the AR throughout
its lifetime. During HAP1 (CR 2100), the brightening clump together either
near the PIL or a small (= 5° radius) cluster in the positive polarity section.
During HAP3 (CR 2103) most of the brightenings (27 out of 36) originated
from AR 11123.

From the top panel in Fig. 2 and Table 2, it can be seen that the AW
distribution of HAP3 is narrower than those for HAP1 and HAP2, with all
CMEs having AWs below ~ 45°. The largest AW (97°) was detected out of
the high activity periods for a rather isolated CME occurring on 10 October
at 20:03. Fig. 3 presents the distribution of all AWSs, including their average
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(= 33°) and standard error (= 18°). On the other hand, the distribution of all
CME masses is strongly skewed (4.09) towards high values, see Fig. 3, with a
mean of 5.6 x 101* g which is slightly higher to the value reported by Vourlidas
et al. (2010), 3.9x 10 g. The dispersion and mean value of the masses during
HAP2 are approximately half of the values registered for HAP1, HAP3 and
the full set, see Table 2. Regarding speeds, the largest were registered during
HAP1, with 4 events having speeds above 1000 kms~!. The dispersion and
mean value of the speeds during HAP2 are also below the figures registered
for HAP1, HAP3 and the full set, see Table 2. The overall speed distribution
is mildly skewed towards high values (1.83) with an average (~ 394kms™!)
within the slow solar wind speed range (<500 kms™!, Abbo et al. 2016), see
Fig. 3.

Fig. 4 shows the AR photospheric field properties for the full analyzed
time interval. As explained in Sect. 2.1, HMI magnetograms and thus
SHARP data are only available during the near-side passages of the AR,
while HAP1 occurred when the AR was on the far side. The total unsigned
flux curves derived from three different sources are plotted in the top panel of
Fig. 4 with different colors. They differ from each other due to the limitations
of each technique, which have been addressed in Sect. 2.1. In particular, the
flux derived from the 304 A images underestimates the SHARP flux during
the first and third near-side passages. However, the general trend of variation
is similar in all three flux estimations, except during the end of the third and
fifth near-side passages. The flux derived from the 304 A images has been
interpolated and smoothed with a 24 h window, to reduce the influence of
flaring activity (see Ugarte-Urra et al. 2015), and fitted with an spline to
obtain an continuous estimation.

4. Discussion and conclusions

To provide further insights on the ejective activity variation of ARs, we
have made use of the advantageous positioning of the STEREO and SOHO
spacecraft to track and characterize the white-light ejecta of a long-duration
AR during its complete lifetime (spanning approximately 124 days). We
found a large number of mass ejections (108), distributed non-uniformly in
time, i.e. 56% of all CMEs occurred in 16% of the AR lifetime. Moti-
vated by the large number and clustering of the CMEs within the studied
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time interval, we focus the discussion below on comparing the occurrence of
full ejective activity periods with the GOES X-ray flaring activity, and the
long-term (multi-day, see Green et al. 2018) temporal variation of the AR
photospheric properties using SDO and STEREQ. Such analysis differs from
the more frequent studies of the short-term (tens of hours) evolution of the
AR magnetic properties, preceding the occurrence of single (or few) CMEs
and/or flares (see Sect. 1).

Fig. 4 shows that HAP1 and HAP2 take place during or after periods of
persistent (=3 days) magnetic flux increments. Using the 304 A proxy these
increments are of ~ 1.2 x 10?2 and ~ 1 x 10> Mx for HAP1 and HAP2,
respectively. Moreover, it stands out that a large portion of the CMEs were
ejected when the flux variation was decreasing, i.e. reaching a plateau. The
bottom-right histogram presented in Fig. 3 quantifies this, showing that 73
out of 108 CMEs occur when the second temporal derivative of the magnetic
flux is negative. Note that the number of events analyzed is small and only
a proxy of the magnetic flux is used, thus a hard conclusion from these
results cannot be drawn. However, many other single or few-events studies
report CMEs occurring after the flux emergence, e.g. Romano et al. 2014;
Bobra et al. 2014; Li et al. 2012; Mandrini et al. 2014; Jiang et al. 2014.
This is likely related to the fact that the non-potential energy may continue
increasing during the flux stabilization period, as the shearing photospheric
motions twist the emerged flux rope building up the coronal field helicity.
During HAP2, the flux emergence is also followed by a clear increase of the
field non-potentiality before the burst of several CMEs, suggesting again the
twisted flux emergence and its accompanying shearing photospheric motions
as the main free energy contributors. This is manifested by the jumps in the
magnetic free energy density (=~ 2000 ergcm™3), mean Hc (=~ 0.012G*m™1)
and total unsigned He (=~ 700 G*m™'), see Fig. 4.

The case of HAP3 is different in that it starts during the decay phase of
AR 11121. A persistent decrease (=5 days) of the total unsigned magnetic
flux is registered before HAP3 begins (according to the SHARP data and the
304 A proxy) and continues with only moderate increases and recurrent dips
(< 5 x 10*! Mx, according to the SHARP data) until the end of the period.
During the decay phase of bipolar ARs, the CME activity can increase due
to the flux cancellations produced at the PIL or by the motion of magnetic
elements (van Driel-Gesztelyi and Green, 2015), which induce the successive
formation and eruption of flux ropes (because it favors the onset of torus
instabilities Forbes and Isenberg 1991, among others). However, for the case
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of HAP3, the persistent increase in the free magnetic energy density and
He (for a ~3 days period and similar in value to the ones registered before
HAP2, see Fig. 4) are most likely related to the emergence of AR 11123,
from which most of the EUV brightenings in HAP3 originate (see Fig. 1).
As detailed by Mandrini et al. (2014), a series of fast bipolar emergences
formed AR 11123 between 9 and 10 November. This produced an increase
in AR 11123 flux (partially masked in Fig 4 because we consider the full AR
complex including AR 11121, see Fig. 5 in Mandrini et al. 2014) due to the
creation and subsequent topological evolution of the magnetic field in the
following two days. After this period, the free energy density and the mean
Hec peak, suggesting that the non-potential energy was built by photospheric
shearing motions, and the most active portion of HAP3 begins. Note that,
during most of HAP3 the free magnetic energy density reduces monotonically
due to the successive CMEs.

We note that, even though HAP1 and HAP2 were preceded by a flux
increment and occurred when the AR was a simple bipole, the aggregate
CME properties reported in Table 2 do not substantially differ from those of
HAP3, which occurred after a strong flux decrease when AR11123 emerged
and the photospheric field was a more complex quadrupole (two bipoles).

Substantial X-ray flaring activity was registered during HAP2 and HAP3
(54 flares), however only 40% (6 out of 15) of CMEs in HAP2 were associated
to a flare. This association increases to 71% (17 out of 24) for HAP3, which
includes CMEs that are on average 52% faster and 81% more massive, see
Table 2. This is in agreement with the well known fact that more energetic
CMEs tend to be preceded by bigger flares, see e.g. Webb and Howard (2012)
and references therein. On the other hand, 98% of the flares registered during
the AR lifetime are of B or C class, and most of the CMEs are slow (75%
having speeds <600 kms~'). Moreover, no X-class flare was associated to
the AR, although the fastest 4 CMEs, within the speed range commonly
associated to X-class flares (~1500 km s™!, see Yashiro et al., 2005), were
produced during the back-side transit in HAP1, not visible by GOES.

The two main periods of no ejective activity, NAP1 and NAP2, begin dur-
ing a phase of strong reduction of the free magnetic energy density, although
the initial values are comparable to those found at the beginning of HAP2
and HAP3. NAPI1 also starts during a period of Hc and flux reduction,
suggesting that the non-potential energy was reduced by flux cancellation,
likely related to the decay of the small western bipole present during the first
rotation of AR11089 (see top-left panel in Fig. 1). Such a flux cancellation is
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accompanied by flaring reconnections (see Table 2), however, no CMEs are
observed. This can be due to the fact that the AR is young and thus no well
formed flux ropes are present and/or due to a more efficient confinement by
the overlying strapping field, see e.g. Romano et al. (2014). On the other
hand, NAP2 begins with a flux rise (according to SHARP data) and not a
marked Hc increment, suggesting a mechanism other than flux cancellation,
diffusion, or field ejection to explain the free energy reduction, e.g. flux emer-
gence with an helicity sign opposite to the predominant. The main results of
the long-term, multi-viewpoint study reported here are summarized below:

56% of the 108 CMEs identified occur in three activity periods (HAP1,
HAP2 and HAP3) spanning 16% of the AR life time(~ 124 days).
Two periods of no CME activity where identified (NAP1 and NAP2)
spanning 23% of the AR life time.

HAP1 and HAP2 take place after periods of persistent (/=3 days) mag-
netic flux increment (=~ 1 x 10** Mx) and free magnetic energy (only
measurable for HAP2).

73 out of 108 CMEs occur when the flux change rate is decreasing, i.e.
during intervals of negative second time derivative.

HAP3 occurs during the decay phase of the AR 11123 and a persistent
reduction (= 5 days) of the magnetic flux. The high CME activity is
related to the free energy increment produced by the flux injection and
photospheric motions induced by the emergence of AR 11121.

There is no statistical difference among the aggregate CME properties
of the three activity periods.

62 CMEs occurred during front-side transits, 33 where associated to
one of the 162 GOES flares identified. The more energetic the flare,
the higher the association rate, i.e. 10% (13 out of 127) , 55% (17 out
of 31), 75% (3 out of 4) of class B, C and M, respectively.

Most of the CMEs found are slow (75 % having speeds < 600 km ™)
and thus 98% of the flares are of B and C class.

NAP1 and NAP2 occur during phases of strong reduction of free mag-
netic energy. NAP1 occur during a flux reduction interval accompanied
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by flaring activity but no CMEs, likely because the AR was young and
no sizable filamentary structure was present.

e No obvious correlation was found between the long-term variation of
the average photospheric properties, and the values of the aggregated
CME characteristics of the high activity periods.

Regarding the last point, it is known that the photospheric field properties
are only a partial indication of the likelihood of an AR to produce a mass
ejection, see e.g. Green et al. (2018); Mandrini et al. (2014b); Romano et al.
(2014). The characteristics of the higher coronal field above the potential
CME source region, e.g. the presence of streamers, are not addressed here
and strongly affect the CME production and early kinematics. An additional
effect, that we plan to further study, is related to the fact that we employ
photospheric quantities averaged over the full SHARP patch, while the EUV
brightenings associated to the CMEs tend to cluster in specific sectors within

the AR.
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