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Abstract

Unraveling the structure of lectin–carbohydrate complexes is vital for understanding key biological

recognition processes and development of glycomimetic drugs. Molecular Docking application to

predict them is challenging due to their low affinity, hydrophilic nature and ligand conformational

diversity. In the last decade several strategies, such as the inclusion of glycan conformation spe-

cific scoring functions or our developed solvent-site biased method, have improved carbohydrate

docking performance but significant challenges remain, in particular, those related to receptor

conformational diversity. In the present work we have analyzed conventional and solvent-site

biased autodock4 performance concerning receptor conformational diversity as derived from dif-

ferent crystal structures (apo and holo), Molecular Dynamics snapshots and Homology-based

models, for 14 different lectin–monosaccharide complexes. Our results show that both conven-

tional and biased docking yield accurate lectin–monosaccharide complexes, starting from either

apo or homology-based structures, even when only moderate (45%) sequence identity templates

are available. An essential element for success is a proper combination of a middle-sized (10–100

structures) conformational ensemble, derived either from Molecular dynamics or multiple hom-

ology model building. Consistent with our previous works, results show that solvent-site biased

methods improve overall performance, but that results are still highly system dependent. Finally,

our results also show that docking can select the correct receptor structure within the ensemble,

underscoring the relevance of joint evaluation of both ligand pose and receptor conformation.
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Introduction

Lectins are sugar-binding proteins, characterized by the presence of
a carbohydrate recognition domain which harbors the carbohydrate
binding site (CBS). They are ubiquitous, involved in many important
biological activities, and have been proposed and validated as thera-
peutic targets (Orozco et al. 2018). Understanding and predicting
lectin–carbohydrate interactions is therefore of enormous relevance
for Glycobiology.

Molecular Docking is the most extensively used strategy for pre-
dicting protein–ligand structures (Forli et al. 2016), and there are
several packages available in the community (Morris et al. 1998;
Verdonk et al. 2003; Friesner et al. 2004; Trott and Olson 2010;
Ruiz-Carmona et al. 2014). Docking methods are usually composed
of two main elements: (i) a conformational search algorithm, and
(ii) a scoring function. The conformational search algorithm moves
the relative ligand position with respect to the protein receptor, the
ligand internal conformation and sometimes also the receptor (or
part of it). Since the complexity of the problem scales exponentially
with the number of conformational variables, usually the receptor is
kept fixed and the ligand’s internal conformation is significantly
restricted. This can be a severe problem when the proper conform-
ation of the receptor and/or ligand are unknown, and thus efficiently
incorporating receptor flexibility in docking is an active research
area (Nivedha et al. 2014). Concerning the scoring function, it is
usually a parameterized additive force-field like an equation, which
estimates the ligand binding energy (Morris et al. 1996; Friesner
et al. 2004; Ruiz-Carmona et al. 2014).

Docking of carbohydrates to their lectin receptors is particularly
challenging since they display low affinities (in the micromolar range)
and their binding sites are shallow and highly hydrophilic (Kadirvelraj
et al. 2008). Moreover, ligand conformational space is quite ample
beyond the monosaccharide level and most important, scoring func-
tions are usually trained with more hydrophobic drugs containing aro-
matic rings, and thus perform poorly for carbohydrates (Kerzmann
et al. 2008). Previous works from our group showed that solvent struc-
ture in the CBS mimics the carbohydrate hydroxyl positions in the lec-
tin–sugar complexes, and thus characterization of this structure by
means of “Water Sites” allows improvement of docking performance,
both in terms of accuracy and its capacity to detect the correct pose
among all possibilities (Gauto et al. 2009; 2013; 2011; Guardia et al.
2011; López et al. 2015; Modenutti et al. 2015).

Water Sites (also called Hydration Sites or Solvent Sites) are
defined as space regions adjacent to the protein surface, where the
probability of finding a water molecule is significantly higher than in
the bulk solvent. They can be derived from explicit water MD simu-
lations and thermodynamically characterized using the “Inhomogeneous
Fluid Solvation Theory” (Abel et al. 2008; Gauto et al. 2013).
Alternatively, a simpler approach is to determine them by looking in
apo-protein structures for the presence of crystallographic waters,
which results in what we call crystallographic or X-ray derived Water
Sites (Modenutti et al. 2015). Generally, x-ray and MD-derived WS
coincide, but usually more sites are detected with MD simulations,
plus they can be better characterized (Saraboji et al. 2012). Recently,
we also showed that WS could be used to improve docking of com-
mon ligands and together with other probes (such as ethanol) allow
improvement in the prediction of ligand binding free energies (Arcon
et al. 2017).

Despite the mentioned improvements, several challenges remain
for carbohydrate docking, particularly related to receptor and ligand
flexibility, as well as the use of comparative or homology-based

models when no crystal structure of the receptor is available. In the
present work, we have analyzed Conventional Autodock Docking
Method (CADM) and Solvent Site Biased Docking Method
(SSBDM) performance when receptor flexibility is considered, and
evaluated whether docking strategy can detect the correct receptor
structure among an ensemble of structures derived from either MD
and/or comparative models. Our results show that docking methods
can select the correct lectin receptor structure within a conform-
ational ensemble derived either from Molecular Dynamics or com-
parative modeling, underscoring the relevance of joint evaluation of
pose, ligand and receptor conformation.

Results

The results are organized as follows: we first analyze the CADM
and SSBDM performance for docking of monosaccharides on holo
and apo x-ray structures on a set of fourteen monosaccharide-
binding lectins. Secondly, we explore the performance of docking
methods when no structural information is available, and receptors
have to be built by comparative modeling, using templates of differ-
ent global identity percentage (% GI). Finally, we analyze the impact
of using a Molecular Dynamics or a comparative modeling based
conformational ensemble.

Docking onto X-ray receptor structures

To start studying the lectin receptor conformation effect on the
docking performance, we analyzed the results of the Conventional
Autodock Docking Method (CADM) as well as Solvent Site Biased
Docking Method (SSBDM), with either X-ray Solvent Sites (X-
SSBDM) or MD derived Solvent Sites (MD-SSBDM). The receptor
structures used were either the one derived from the corresponding
Lectin–monosaccharide complex (i.e., the holo structure), or from
another ligand-free structure (i.e., an apo structure). A detailed rep-
resentative example of the results is presented in Table I for Jacalin
(see Tables S1–S13 for other lectins). For each receptor structure
type and docking method, we present both the most accurate result
(regarding RMSD against the X-ray obtained pose) and highest
ranked result. Since we perform several docking runs (100) for each
receptor structure, we rank them using a combined energy and
population Z-score, called “2D-score” (see Methods for details). In
all experiments, we considered as the predicted ligand binding mode
as “correct” whenever a ligand pose has a RMSD < 1.5 Å with
respect to the holo x-ray pose. RMSD is measured considering just
the pyranose ring heavy atoms.

The results for the 14 studied lectins in Table II show that when
comparing holo vs. apo receptor structures and the different docking
methods that performance is considerably system dependent, but in
general and as expected, docking to the holo structure performs bet-
ter than apo, a fact that might be attributed to the degree of
“induced-fit” of each particular system. It is interesting to note that
for most studied systems, at least one of the three docking methods
can find the correct pose within the top three ranks. Challenging
cases include lectins holo sna-II and the apo forms of aia, conA,
hpa, jac and sp-D (see Table V in Methods section for full name and
PDB id of all lectins), for which CADM fails to find the correct
pose, although this situation is sometimes successfully reverted when
employing either X-SSBDM or MD-SSBDM.

Concerning the comparison between conventional and biased
methods, and as shown in our previous works (Gauto et al. 2013;
Modenutti et al. 2015; Arcon et al. 2017), performance is highly
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system dependent, and although both biased methods can improve
the results, still not always the correct pose comes ranked first. An
example of improvement is shown in Figure 1 for holo sna-II, the only
case in which CADM fails to find the correct pose, while X-SSBDM

finds it (RMSD 0.4 Å) and ranks it in the first place. It is noteworthy
that the best result CADM is able to achieve has an RMSD of 1.6 Å
and corresponds to a different pose than that of the holo X-ray, indic-
ating that the RMSD cut-off chosen (1.5) is adequate.

Table I. Docking method comparison for different Jacalin structures

Jacalin - (beta-D-galactose) Docking
Method

First Rank
RMSD

Best
RMSDc

First Rank
2D-Score

Best RMSD
2D-Scorea

Best RMSD
Rankb

Jacalin(Jac) Holo (1ugw-A) CADM 0.328 0.328 2.214 2.214 1
X-SSBDM 0.28 0.28 2.77 2.77 1
MD-SSBDM 0.253 0.253 2.994 2.994 1

Apo (1ku8-A) CADM 2.172 2.172 3.791 3.791 1
X-SSBDM 2.148 0.786 3.268 0.872 3
MD-SSBDM 2.163 1.099 2.033 0.96 3

Template 79% GI
(1jot-A)

Best DOPE score model
(#052)

CADM 0.596 0.596 5.258 5.258 1
X-SSBDM 0.621 0.621 2.974 2.974 1
MD-SSBDM 0.562 0.562 5.524 5.524 1

Template 59% GI
(1xxq-A)

Best DOPE score model
(#029)

CADM 0.929 0.929 1.81 1.81 1
X-SSBDM 0.852 0.852 3.806 3.806 1
MD-SSBDM 1.117 1.117 4.598 4.598 1

Template 34% GI
(2jz4-A)

Best DOPE score model
(#033)

CADM 3.344 2.5 2.963 1.36 2
X-SSBDM 3.388 3.388 1.269 1.269 1
MD-SSBDM 3.319 2.509 2.992 1.245 2

Comparison of the different docking methods performance for holo and apo X-ray structures of Jacalin, and for comparative models using templates of differ-
ent global identity percentage (% GI).

a2D-score is the combined Population and Binding Energy normalized score (see Methods). bRank is the cluster ranking (ordered by 2D-score), and cRMSD is
the sugar heavy atoms RMSD against the reference structure, after receptor alignment. dDocking performance on an MD generated receptor conformational ensemble.

Table II. Overall comparison of the single structure docking performance

Structure

Correct result
(rmsd < 1.5)

Method Holo Apo Model > 45% GI Model < 45% GI

First Ranked CADM F17a-G, aia, bark, conA, fbm, hpa, jac
(7/14)

F17a-G, bark, fbm, wga1
(4/14)

jac, conA, bark, sp-
D (4/12)

fbm (1/9)

X-SSBDM F17a-G, aia, bark, fbm, hpa, jac, psl,
sna-II, wga1 (9/14)

F17a-G, bark, fbm, aia,
hpa, sna-II, wga1 (7/14)

jac, bark, fbm, sna-
II (4/12)

– (0/9)

MD-SSBDM F17a-G, aia, bark, conA, ctb, fbm,
hpa, jac, psl, sna-II, wga1 (11/14)

F17a-G, bark, fbm, gal7,
hpa (5/14)

ctb, jac, conA, bark,
sna-II (5/12)

– (0/9)

Within Top 3 CADM ctb, hsi, psl, wga1 (4/14) ctb (1/14) ctb, fbm (2/12) hsi (1/9)
X-SSBDM conA, ctb, hsi, sp-D (4/14) conA, ctb, gal7, hsi, jac, psl

(6/14)
F17a-G, aia, conA,

ctb, sp-D (5/12)
hsi, fbm (2/9)

MD-SSBDM hsi, sp-D, gal7 (2/14) conA, jac, psl, sna-II, spd,
wga1 (6/14)

F17a-G, sp-D (2/
12)

gal7, hsi (2/9)

Outside Top 3 CADM gal7, sp-D (2/14) gal7, hsi, psl, sna-II (4/14) F17a-G, psl, sna-II,
(3/12)

sp-D (1/9)

X-SSBDM gal7 (1/14) sp-D (1/14) psl (1/12) cona, sp-D (2/9)
MD-SSBDM -(0/14) ctb, hsi (2/14) psl (1/12) sp-D (1/9)

Not found CADM sna-II (1/14) aia, conA, hpa, jac, sp-D
(5/14)

wga1, aia, hsi (3/
12)

conA, gal7, psl,
bark,hpa, jac (6/
9)

X-SSBDM – (0/14) – (0/14) wga1, hsi (2/12) gal7, psl, bark, hpa,
jac (5/9)

MD-SSBDM – (0/14) aia(1/14) wga1, aia, fbm, hsi
(4/12)

conA, psl, bark,
fbm,hpa, jac (6/
9)

Comparison for each docking method for both X-ray structures and comparative Models for all 14 studied systems, showing for each method the name of suc-
cessful cases for which the correct pose (rmsd < 1.5) was found for each rank category. Number in brackets indicate the fraction of successful cases. Models are
further split into two categories according to the template Global Identity percentage (% GI).

a)2D-score is the combined Population and Binding Energy normalized score (see methods). b)Rank is the cluster ranking (ordered by 2D-score), and c)RMSD
is the sugar heavy atoms RMSD against the reference structure, after receptor alignment. d)Docking performance on an MD generated receptor conformational ensemble.
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Apo docking is generally more difficult than holo (also called
“cognate”) docking, since in certain complexes sometimes ligand
and receptor are conformationally adapted to each other to optimize
their interactions. An example of this situation can be observed for
Jacalin (Figure 2), where two binding-site tyrosine residues change
their spatial orientation upon ligand binding and complex forma-
tion. As a result, CADM docking on apo Jacalin is unable to find
the correct pose, but X-SSBDM rectifies this situation finding a 0.8
RMSD pose (although not ranked first).

Docking using comparative-modeling generated

receptor structures

Given the considerable breadth between the number of known pro-
tein sequences (and their correct inclusion in protein families or
domains) and the number of known structures, it is relatively com-
mon to use comparative (or homology) based models as receptor
structures in protein–ligand docking studies. Even though it is pos-
sible to build a good lectin model based on moderate sequence iden-
tity template (Guardia et al. 2011), the details of the Binding site
conformation are expected to vary significantly for different tem-
plates, even for different models built from the same template.
Model quality can rely on different properties of the template, such
as the structure resolution, the presence/absence of a similar ligand
in the active site, and/or the global identity (GI). In order to assess
the impact of this latter factor on docking performance, we built
comparative models using different GI % templates. Briefly, soft-
wares like Modeller allow to build several models from a single tem-
plate, and model quality can be then compared according to an

internal parameter called DOPE-score; The strategy we employed
was to build 100 different models (using each template), and then
select those with best DOPE-score to perform the docking. Results
are shown for Jacalin in Table I, and for all systems in Table II. For
clarity, in Table II models are grouped in two categories according
to their template GI. The data clearly shows that high and moderate
GI models (GI > 45%) perform almost as well as apo structures,
while low GI models (GI < 45%) have a poorer performance, failing
in most cases. Challenging systems are wga1, aia, fbm and hsi, this
last two particularly, since for the low GI model the correct pose
was indeed found while for the high GI it was not.

Receptor flexibility

We now turn our attention to receptor flexibility achieved using
Molecular Dynamics (MD) simulations and analyze whether the
docking technique can “fish a holo-like” receptor structure from
within a conformational ensemble obtained by MD. Figure 3 (upper
panel) and Table III (first three rows) present the results obtained
for the docking of Beta D-Galactose to 100 different snapshots
obtained from a 60 ns long MD simulation of Jacalin using the “apo
form” as starting structure. The data shows that all three docking
methods can detect the correct ligand pose among all MD generated
receptor structures and within the first ranks, as evidenced by the
0.7 Å RMSD outlier cluster in the plot. Moreover, the obtained 2D-
scores (with values in the 7.7–7.9 range, Table III) for the combined
results of a hundred receptor conformations are significantly higher
than those obtained for a single structure (2.9–5.2, Table I). This
suggests that intrinsic normalization of the population and score (z-

Fig. 1. “Z-score Population vs. Z-score binding energy” plots for the docking of Galactose to sna-II holo structure. Left panel shows CADM results, and right
panel shows X-SSBDM results. All docking poses are ranked according to “2D-score” (see Methods), and mapped onto the plots with red numbers. Best RMSD

poses are indicated with arrows, and illustrated with cyan sticks for carbon atoms. Reference holo structure ligand pose is drawn with gray sticks.

Crystallographic solvent-sites (X-SS) are drawn as yellow spheres.
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function) using a conformational ensemble has the potential to
increase the method sensitivity. Also important, analysis of the
receptor structure of the best ligand pose in comparison with the
holo reference structure (Figure 3, upper panel) shows that CADM
was able to “fish” the right conformation of the binding site, as evi-
denced by a corresponding binding site RMSD showing values of
1.02Å (for all binding site heavy atoms), and the “holo-like” con-
formation of the two key Tyrosine residues. These results under-
score the MD ability to sample “holo-like” conformational
structures, even when starting from a conformationally different
state, such as the Jacalin apo form in this example.

Performance on other lectins is depicted in Table IV.
Remarkably, when using an 100 Apo-MD snapshot ensemble the
correct pose is found for all 14 cases, even when using just CADM
(in contrast to X-ray apo structures); Nevertheless, correct poses
(ring RMSD < 1.5) are half the time ranked outside the top 5, indic-
ating that the use of an ensemble might sometimes decrease the
docking’s specificity.

Another valid strategy for ensemble building can be also com-
parative modeling, since it is fast and computationally cheap. In this
context, we performed docking not only on the best-DOPE score
models but on the whole 100 models previously built. The results
are presented in Table IV. The results show that previously challen-
ging/confusing cases (wga1, hsi, fbm) are now correctly predicted,

presumably because the best DOPE-score single models were not
conformationally optimal. As for Jacalin, in Figure 3 Z-score plot
(lower panel) an 0.6 RMSD outlier corresponding to the correct lig-
and pose is present. Superimposition of the model structure “fished”
by this pose with the holo X-ray shows a binding site conform-
ational structure strikingly similar to that of the X-ray complex
(binding site heavy atom RMSD of 0.9 Å), again highlighting the
docking methods’ capacity to select the correct receptor conform-
ation within a large ensemble.

We now analyzed the docking performance as a function of the
ensemble template’s GI, using the combined data from all systems.
The results presented in Figure 4 show that when GI is above 45%,
the correct pose is found for all cases. For GI in the 30–45% range, the
results are system and method dependent, but in several cases the cor-
rect pose can be detected. Also, as expected, biased methods perform
slightly better than CADM.

Summary of monosaccharide docking

A summary of all the previously described results is presented for
comparative and general analysis purpose in Figure 5. The figure
shows the performance of all three docking methods using receptor
structures from the holo, apo, MD frames, comparative models (the
latter separated in either high or low template identity, using 45%

Fig. 2. “Z-score Population vs. Z-score binding energy” plots for the docking of Beta D-Galactose to Jacalin holo (cyan) and apo (pink) superimposed structures.

Left panel shows CADM results, and right panel shows X-SSBDM results. Best RMSD poses are indicated with arrows, and illustrated with cyan sticks (holo

poses) or pink sticks (apo poses). Relevant binding-site Tyrosine residues that exhibit different rotamers in holo and apo structures are also drawn with the

same color code. Reference holo structure ligand pose is drawn with gray sticks. Crystallographic solvent-sites (X-SS) are drawn as yellow spheres.
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GI as cut-off). Performance is compared first, by looking for each
case at the pose displaying the lowest RMSD against the reference
complex, and also the first ranked pose RMSD. Here we corrobor-
ate that in most cases correct ligand pose is found by docking, and
as expected, most accurate results are found for the Holo receptor
structures. MD frames and high GI models both perform similarly
for Apo structures, underscoring the advantage of a multiple recep-
tor structure strategy. Comparing the method specificity – understood
as its capacity to detect the correct pose among the top-ranked ones –

Figure 5 highlights the better performance of high GI model ensembles
over single models and other types of ensembles, and also a slight
improvement of the biased methods over plain Autodock.

Metal treatment in modeling and docking

Divalent cations often play major roles in the structure and function
of biomolecules, that go from stabilizing structural motifs to even
being directly involved in ligand binding (Gabius et al. 2011). For

Fig. 3. “Z-score Population vs. Z-score binding energy” plot for the CADM docking of Beta D-Galactose to an ensemble of 100 different receptor structures of

Jacalin. Upper panel: ensemble of 100 MD simulation snapshots. Lower panel: ensemble of 100 comparative models built using a template of 79% GI. X-ray

Holo structure ligand pose and binding-site rotamers are always drawn in cyan; Outlier MD snapshot docking pose and binding-site residues are colored in

green, outlier comparative model docking pose and binding-site residues are colored in purple.

Table III. Docking method comparison for different Jacalin ensembles

Jacalin - (beta-D-galactose) Docking
Method

First Rank
RMSD

Best
RMSDc

First Rank 2D-
Score

Best RMSD 2D-
Scorea

Best RMSD
Rankb

Jacalin
(Jac)

Apo-MD 100 frame ensemble (starting
strc. 1ku8-A)

CADM 0.69 0.69 7.994 7.994 1
X-SSBDM 2.465 0.62 7.861 7.752 2
MD-SSBDM 0.624 0.624 7.942 7.942 1

Template 79% GI
(1jot-A)

100 model
ensemble

CADM 0.656 0.656 11.387 11.387 1
X-SSBDM 0.599 0.599 8.287 8.287 1
MD-SSBDM 0.64 0.64 11.184 11.184 1

Template 59% GI
(1xxq-A)

100 model
ensemble

CADM 2.448 1.053 12.91 1.63 14
X-SSBDM 2.549 1.067 9.916 5.8 2
MD-SSBDM 2.439 0.979 13.743 3.953 2

Template 34% GI
(2jz4-A)

100 model
ensemble

CADM 4.415 2.098 13.037 0.291 120
X-SSBDM 4.142 1.925 12.174 0.343 69
MD-SSBDM 4.436 1.696 12.808 -0.196 179

Comparison of the different docking methods performance on different receptor structure ensembles of lectin Jacalin.
a2D-score is the combined Population and Binding Energy normalized score (see methods). bRank is the cluster ranking (ordered by 2D-score), and cRMSD is

the sugar heavy atoms RMSD against the reference structure, after receptor alignment. dDocking performance on an MD generated receptor conformational ensemble.
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example, for lectins that adopt the so called “legume fold”, it is
known that they bind Ca2+ and Mn2+ in two well identified coord-
ination sites whose proximity to the CBS make them of tremendous
importance since they scaffold an important part of the structure
and therefore, if not modeled correctly, could result in a poor qual-
ity structure for docking and/or modeling purposes. This is the case
of Griffonia simplicifolia I lectin, a legume family lectin whose struc-
ture has been determined both in presence and absence of divalent
cations. As can be seen in Figure 6 upper panel, both structures dif-
fer quite notably in the conformation of their binding site loop. In
the metal-free form, residues involved in metal coordination (Asn
134 and Glu 139) become disordered, and Trp residue (W132) that
in the holo structure is located very close to the ligand and helps to
shape the CBS is now buried into the structure occupying the spot
where the Calcium should be. An identical situation occurs with
residue Y12 in another legume lectin, Concanavalin A (not shown),
as evidenced comparing any holo structure with the metal-free struc-
ture PDB id: 1APN.

Another major concern arises when the cation participates dir-
ectly in ligand binding through metal–oxygen interactions. This is
the case of “C-type lectins”, like the presently studied Surfactant

Protein D (SP-D). Typically, this proteins bind the metal in a rather
shallow site, leaving 2 valences of its coordination sphere free to
interact with 2 water molecules (in apo-structures) or with the 2
adjacent hydroxyl groups of the carbohydrate ligand (in holo-struc-
tures), as depicted in Figure 6 bottom panel. In this context, a key
consideration for successful Docking predictions is to have proper
metal parameters to accurately model this type of interactions. For
instance, Autodock4 does not assign any gasteiger electrostatic
charge to ions by default, although experimented users can adjust
this parameter. Nevertheless, since the key oxygen positions can be
easily mapped by simply looking at apo structures water molecules
and/or determining them from MD simulations, SSBDM performs
quite well without the need of manipulating the cation charge. As
shown in Table S7, the docking of glucose onto sp-D receptors con-
taining metal with a zero charge successfully predicts the correct lig-
and pose across the variety of receptor types and ensembles.

Discussion

Appling of Molecular Docking methods for the prediction of lectin–
carbohydrate complexes is challenging due to the hydrophilic and

Table IV. Overall comparison of ensemble docking performance

Ensemble

Correct result
(rmsd < 1.5)

Method 100 Apo-MD snapshots 100 Models (>45% GI) 100 Models < 45% GI

First Ranked CADM F17a-G, bark, conA, jac (4/14) jac, conA, bark, fbm (4/12) fbm (1/9)
X-SSBDM F17a-G, bark (2/14) jac, bark, fbm, sna-II (4/12) fbm (1/9)
MD-SSBDM bark, jac, sna-II (3/14) jac, conA, fbm (3/12) -(0/9)

Within Top 5 CADM psl, sna-II (2/14) F17a-G, ctb, sp-D, hsi (4/12) hsi, sp-D, bark (3/9)
X-SSBDM fbm, hpa, jac, psl, sna-II (5/14) F17a-G, wga1, conA, ctb, psl (5/12) hsi, hpa, psl (3/9)
MD-SSBDM F17a-G, conA, psl, sp-D, wga1 (5/14) F17a-G, ctb, sna-II, sp-D, hsi (5/12) fbm, gal7, hsi, sp-D, hpa, bark (6/9)

Outside Top 5 CADM aia, ctb, fbm, gal7, hpa, hsi, sp-D, wga1
(8/14)

wga1, psl, sna-II (3/12) gal7, psl, conA (3/9)

X-SSBDM aia, ctb, conA, gal7, hsi, sp-D, wga1
(7/14)

aia, sp-D, hsi (3/12) gal7, sp-D, bark, conA (4/9)

MD-SSBDM aia, ctb, fbm, gal7, hpa, hsi (6/14) aia, wga1, bark, psl (4/12) psl, conA (2/9)
Not found CADM -(0/9) aia (1/12) hpa, jac (2/9)

X-SSBDM -(0/9) -(0/9) jac (1/9)
MD-SSBDM -(0/9) -(0/9) jac (1/9)

Comparison for each docking method for different structural ensembles for all 14 studied systems, showing for each method the name of successful cases in
which the correct pose (rmsd < 1.5) was found for each rank category. Number in brackets indicate the fraction of successful cases. Models are further split into
two categories according to the template Global Identity percentage (% GI).

Fig. 4. RMSD of the best obtained pose vs. target-template % GI plot.
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shallow nature of the binding site and the ligand conformational
diversity. Previous works from our group (Gauto et al. 2013;
Modenutti et al. 2015; Arcon et al. 2017), and others showed that
inclusion of solvent structure information to bias (or modify) scoring
functions to favor those ligand poses where carbohydrate –OH
groups replace water sites can significantly improve the results. In
the present work, we have extended the analysis of conventional
and solvent site biased docking methods performance in the context
of several ways that deal with receptor conformational diversity,
focusing at the monosaccharide level as an initial approach.

The present results show that both conventional and solvent-site
biased docking method allow obtaining accurate lectin–monosac-
charide complexes starting from either apo or comparative modeling
based receptor structures, being able to correctly deal with the recep-
tor conformational flexibility to find the correct ligand-bound con-
formation within a large structural ensemble. When starting from
apo structures, the receptor conformational ensemble can be built
using relatively short MD simulations, such as those used to obtain
the solvent sites. When starting just from the sequence, about a hun-
dred models should be made, ideally from high % GI (>45) tem-
plates. Special care must be taken when modeling proteins that bind

metals. Whether they are metals that do interact directly with the
ligand as in C-type lectins, or metals that are important for the
binding-site fold architecture as in legume lectins, only proper inclu-
sion of these metals in the modeled receptor structures will provide
accurate receptor structures and thus successful docking results.

When comparing the different ensembles regarding to their cap-
ability of producing “holo-like” structures, Figure 7 shows the
binding-site heavy atom RMSD of each single structure with respect
to the holo x-ray for Jacalin (other lectins are shown in Figure S1).
As expected, the “holo-like” character of the structures diminishes
as the % GI of the template goes down, and this is also reflected in
the docking performance (see Table I). Also noteworthy, is that an
ensemble of models built from high % GI templates can sometimes
produce as good “holo-like” structures as those obtained from an
MD ensemble built from an apo X-ray.

For the 14 cases studied in this work, a combination of conven-
tional and biased docking always yields the correct complex among
the top scored results, although not always the first. Moreover, per-
forming multiple docking experiments to an ensemble of receptor
conformations can be a clever strategy when no structure neither
holo nor apo is available, although sometimes might result in a hard

Fig. 5. Overall performance of the docking for the different types of receptor structures (upper panel) and receptor ensembles (Lower panel), shown as an

RMSD Boxplot. “Best RMSD” (empty bars) refers to the pose that has the minimum RMSD value against the reference holo structure, whereas “first Rank

RMSD” (full bar) refers to the pose with the highest 2D-score.
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identification of the correct ligand-pose among top ranked false
positives. This implies that, while the search algorithm combined
with some MD or model building to allow receptor conformational
diversity seems a fairly adequate approach, in order to achieve a
more accurate ranking of the obtained poses better scoring functions

are needed. The need for a scoring function improvement under-
scores our previous observation: in general, solvent-site biased dock-
ing improves performance, particularly concerning the method
specificity. An example of a critical aspect of scoring function
improvement was recently highlighted for carbohydrate ligands by

Fig. 6. Upper panel: comparison of metal-free (PDB id: 1gnz) and holo metal-bound (PDB id: 1hql) structures of Griffonia simplicifolia I lectin. Lower panel: SP-D
Apo structure (PDB id: 1pw9) showing the X-ray water sites as yellow spheres, and Holo SP-D structure (PDB id: 3g81) showing the pose of ligand Mannose.

Protein–metal interactions are drawn with black dashed lines, and water/ligand–metal interactions are drawn as magenta lines.

Fig. 7. Jacalin CBS RMSD distribution of the various 100-receptor ensembles against the reference Holo structure (PDB id: 1ugw). RMSD is computed just on

the Binding site residues heavy atoms.
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Nivedha et al., who showed that re-scoring obtained poses with
accurate ligand internal energy functions is crucial for successful
docking beyond monosaccharides. This strategy has been success-
fully integrated into Autodock Vina scoring function and has proven
to be a major improvement for carbohydrate docking, yet with still
some remaining challenges to overcome (Nivedha et al. 2014;
2016). It would be interesting to explore how this method, called
“Vina Carb”, performs for oligosaccharides when combined with
solvent structure biasing. A final remark on strategies for specificity
improvement and false positive elimination is, as recently shown by
Makeneni et. al. for a set of antibody-carbohydrate complexes, the
use of a computational protocol consisting of “pose clustering” to
reduce the number of unlikely poses combined with “postdocking
MD simulations” for optimizing the ligand orientation and further
eliminating incorrect poses (Makeneni et al. 2018).

Finally, it is interesting to note that the docking methods can select
“holo-like” receptor structures, thus filtering bad quality receptor struc-
tures. Analysis of docking results for a receptor conformational ensem-
ble – built without any knowledge of the ligand – allows selecting
receptor structures which are conformationally adapted to the ligand

and thus accurately resemble holo structures. Given the relatively small
computational cost required to build these receptor conformational
ensembles, this strategy looks promising for its broader application.

Computational methods

Lectin–carbohydrate complexes structural data set

The first analyzed set comprises the following 14 lectin–monosac-
charide complexes structures, selected according to the following cri-
teria: (1) they had to have at least one apo structure reported
(resolution ≤ 2.5 Å), in order to be able to calculate X-ray derived
Water Sites (see below); (2) they had to have at least one similar
structure of an homologous protein reported, which could be used
as a template for comparative modeling. Table V shows all the PDB
id codes.

Molecular dynamics (MD) simulations

Starting from the crystal structure and/or homology based model,
each system was first optimized using a conjugate gradient algorithm

Table V. Lectin data set

Fold Protein (acronym) Holo struc. (ligand in 3
letter code)

Apo struc. selected
for docking

Apo struc. used for X-SS
determination

Templates for c. modeling
(% GI/% BSI)

adhesin Fimbrial Adhesin (F17a-
G)

1o9w-A (NAG) 1o9z-A 1o9z-A 4k0o-A (91/100)

legume Bark (bark) 1fnz-A (A2G) 1fny-A 1fny-A 4u36-A (65/57)
1gzc-A (49/43)
5t5l-A (36/43)

legume Concanavalin A (conA) 5cna-B (MMA) 1jbc-A 1nls, 1jbc, 1scs, 1enr, 1qny,
2ctv, 1con, 1scr

3a0k-A (86/100)
1qmo-A (66/57)
1fx5-A (36/43)

ricin type
beta trefoil

Fucose Binding Module
(fbm)

2j1s-A (FUL) 2j1r-A 2j1r (chain A,B) 2j22-A (52/86)
3cqo-A (35/57)

jacalin-like Jacalin (jac) 1ugw-A (GAL) 1ku8-A 1ku8 (chain A,B,C,G)
3p8s (chain A,B)

1jot-A (79/100)
1xxq-A (59/43)
2jz4-A (34/14)

legume Pisum sativum lectin
(psl)

1rin-AB (MAN) 2ltn-AB 2ltn (chain A,C) 4u36-A (53/71)
5t5l-A (39/57)

Galectin Galectin 7 (gal7) 2gal-B (GAL) 3zxf-B 3zxf (chain A,B)
1bkz (chain A,B)

4lbj-A (35/100)
5duu-A (40/100)
2jj6-A (30/29)

ricin type
beta trefoil

Toxin HA33/C (hsi) 3aj5-A (NAG) 1qxm-A 1qxm-A 5b2h-A (48/38)
2vse-A (30/38)
4lo0-A (39/13)

C-type Surfactant Protein D (sp-
D)

1pwb-B (GLC) 1pw9-A 1pw9 (chain A,B,C)
1b08 (chain A,B,C)
3dbz (chain A,B,C)

3pak-A (49/71)
4ymd-A (35/71)

ricin type
beta trefoil

S. nigra agglutinin II - N
term (sna-II)

3ca1-A (GAL) 3c9z-A 3c9z-A 2aai-B (51/71)

Jacalin-like Artocarpin (aia) 1j4u-A (MMA) 1j4t-A 1j4s (chain A,B,C,D)
1j4t (chain A,B,C,D,E,F,G,
H)

5krp-C (90/100)

H.L.
enterotoxin

Cholera toxin (ctb) 1s5e-D (GAL) 1s5e-E 1s5e (chain E,F,G,H) 1b44-H (84/100)

H-type lectin roman snail agglutinin
(hpa)

2ccv-A (A2G) 2ce6-A 2ce6-A 3wmq-A (34/75)

chitin-
recognition

Wheat Germ Agglutinin
1 (wga1)

2uvo-A (NAG) 7wga-A 1wgc (chain A,B)
2cwg (chain A,B)
7wga (chain A,B)

1k7t-A (90/80)

Data set of the 14 systems (lectin–monosaccharide complexes) used in this study, with all their respective PDB id codes. “GI” stands for “Global Identity” and
“BSI %” stands for “Binding Site Identity”.
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for 5000 steps, followed by 150 ps long constant volume MD equili-
bration, in which the first 100 ps were used to gradually raise the
temperature of the system from 0 to 300 K (integration step =
0.0005 ps/step). The heating was followed by a 250 ps long constant
temperature and constant pressure MD simulation to equilibrate the
system density (integration step = 0.001 ps/step). During these tem-
perature and density equilibration processes, the protein alpha-
carbon atoms were constrained by 5 kcal/mol/Å force constant using
a harmonic potential centered at each atom starting position. Next,
a second equilibration MD of 500 ps. was performed, in which the
integration step was increased to 2 fs and the force constant for
restrained alpha-carbons was decreased to 2 kcal/mol/Å. Finally, a
1 ns. long MD simulation was carried out with no constraints and
the “Hydrogen Mass Repartition” technique (Hopkins et al. 2015),
which allows an integration step of 4 fs, and this conditions were
kept for all the subsequent Production 20 ns long MD runs. This
protocol was replicated 3 times, starting always from the same ini-
tial structure but assigning different random initial velocities to the
atoms, thus generating three independent 20 ns trajectories (with a
sample rate of 500 frames per nanosecond) for each case.

All simulations were performed with the Amber package of
programs (Case et al. 2014) using the ff14SB force field (Maier
et al. 2015) for all amino acid residues. Pressure and temperature
were kept constant using the Monte-Carlo barostat and Langevin
thermostat, respectively, using the default coupling parameters.
All simulations were performed with a 10 Å cut-off for non-
bonded interactions, and periodic boundary conditions using the
Particle Mesh Ewald summation method for long-range electro-
static interactions. The SHAKE algorithm was applied to all
hydrogen-containing bonds in all simulations with an integration
step equal or higher than 2 fs. Trajectory processing was per-
formed with the Cpptraj module of the AMBER package (Roe
and Cheatham 2013).

Determination of MD and X-ray derived Water Sites

The Water Sites calculation is based on the method developed and
thoroughly tested in our previous works (Gauto et al. 2009;
Modenutti et al. 2015). Briefly, Molecular Dynamics derived Water
Sites (MD-WS) are derived – as their name describe – from explicit
water MD simulations (Gauto et al. 2009). The position of the oxy-
gen atoms of water molecules in successive snapshots are clustered
together, when they are closer than a user defined cut-off (usually
1.4 Å), and their center of mass defined the corresponding WS coor-
dinates. Subsequently, the probability of finding a water molecule
inside a volume of 1 Å centered on the WS coordinates is computed
with respect to the bulk solvent. When this value is larger than 2,
the WS is kept for the biased docking.

X-ray derived Water Sites (X-WS) are defined simply by the pres-
ence of crystallographic waters in the available apo structure/s of the
corresponding receptor. To define an X-WS across several struc-
tures, if any crystallographic waters from different structures are clo-
ser than 1.4 Å, they are combined and then, X-WS position is then
defined by the center of mass of all resulting oxygen atoms that
form it (Modenutti et al. 2015).

Comparative modeling

All homology models were generated using the Modeller v.9.19 soft-
ware (Eswar et al. 2008). Template search was done using the
HHpred tool of the Max Planck Institute Bioinformatics Toolkit
(Alva et al. 2016). Whenever possible, three templates with three

different levels of global identity percentage (% GI) were selected for
each system (a high, an intermediate and a low % GI). Finally, in
such cases where % GI was the same for more than one possible
template, the template was selected randomly.

Docking protocol

The “Conventional Docking Method” consists in using Autodock
4.2.6 software, with all its parameters kept default. Briefly,
Autodock works by computing energy grids for each ligand atom
type, based on the receptor structure. The grid size and position
were chosen so that they include the whole CBS. This was achieved
by placing the grid center in the geometric center of the CBS, and
extending its size 20 Å (for the mono- and disaccharide-binding pro-
teins) in each direction, and using a grid spacing of 0.375Å. The
genetic algorithm parameters for each conformational search run
were kept at their default values (150 for initial population size,
2.5 × 106 as the maximum number of energy evaluations and
2.7 × 104 as the maximum number of generations). For each cal-
culation, always 100 different docking runs were performed,
and the resulting 100 poses were clustered according to the pyr-
anose ring heavy atom RMSD using a cut-off of 1.5 Å, using the
quality threshold algorithm implemented in VMD software.

The Water Site Biased Docking Method (WSBDM) is based on
the method developed and thoroughly tested in our previous works
(Gauto et al. 2013; Modenutti et al. 2015). For both variants of the
method, (MD/X-SSBMD) the strategy is conceptually the same: they
take advantage of the fact that carbohydrate –OH groups tend to
occupy or replace the positions of the WS, and that there is a posi-
tive correlation between the solvent site’s probability of being
replaced, and a negative correlation with its dispersion. The
AutoDock4 scoring function is thereby modified, adding an add-
itional energy term for each ligand oxygen (atom type “OA”) to the
original function, whose deepness and size is proportional to its
probability and dispersion, respectively.

All ligands coordinates were retrieved from the ‘holo structure
complexes, and randomized before each docking calculation. All lig-
and torsions were kept active.

Data analysis

To analyze the performance of the different docking strategies we
considered two issues: first, the method’s accuracy, which is mea-
sured as the pyranose ring heavy atoms (C1, C2, C3, C4, C5 and
O5) RMSD of each predicted complex with respect to the position
of the same group of atoms in the corresponding complex crystal
structure. Except for the re-docking experiments (i.e using the holo
receptor structure), for all other cases the receptor conformations
were structurally aligned to the reference complex structure consid-
ering only the receptor binding site heavy atoms. In summary, accur-
acy measures the docking method’s capacity to place the ligand in
the correct place and with the correct orientation. Secondly, we ana-
lyzed the method’s specificity, understood as its capacity to distin-
guish the right complex from all other wrong predictions. Each
Autodock4 run yields the estimated ligand binding energy for the
corresponding pose (ΔE). Then the population, which is the percent-
age of individual docking poses that resulted in a similar binding
mode according to a RMSD criteria, can be easily computed after
pose clustering.

Previous works showed that both parameters should be taken
into account in order to have a reliable prediction. This is done by
plotting population vs. binding energy plots for all obtained poses
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and looking for outliers in the upper left corner (those with high
population and negative ΔGB) (change in free energy upon bind-
ing, see results in previous works for examples). Since in the pre-
sent work we are comparing results across a large number of
receptor conformations, for each receptor we combined all dock-
ing results. In order to better compare different docking methods,
we used a receptor-dependent normalization for both parameters,
which is simply the corresponding Z-score. Therefore in the pre-
sent work we present the results as Z-score(ΔE) vs. Z-score(Pop)
plots.

Finally, to rank all obtained poses combining both parameters
we designed a “combined Z-score”, which we call 2D-score (scheme
I) and is defined as follows:

2D score 1 Z score E Z score Pop− = − ∗ [ − (Δ )] + − ( )

In other words, top ranking poses correspond to those having
negative ΔE and high population (upper left quadrant).

Supplementary data

Supplementary data is available at GLYCOBIOLOGY online.
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