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This work develops the equations that relate the kinetic parameters of the hydrogen electrode reaction
(HER) with the current density (j) vs. potential (E) dependences of a thin-layer cell (TLC). Two operation
modes of the TLC are analyzed. The first one proposes to examine the j(E) dependence of the hydrogen
evolution reaction (her) on one electrode while the paired electrode oxidized the dissolved H2 back to
H+ under diffusion control. The second mode proposes to analyze the j(E) dependence of the hydrogen
oxidation reaction (hor) on one electrode while the other generates dissolved H2 from H+ under diffusion
control. In both cases, as very high mass-transport rates are reached for distances in the micrometer
range, the j(E) curves are sensitive to the complete set of kinetic parameters even for very large reaction
rates. Possible ways to incorporate these equations in the theoretical formalisms of well-established
TLC-based techniques such as scanning electrochemical microscopy are discussed.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The hydrogen electrode reaction (HER) in acid medium, Eq. (1),
operates through the Volmer–Heyrovsky–Tafel (VHT) mechanism,
which is represented by Eqs. (2)–(4), where S denotes an active
site. It proceeds via two parallel pathways, which are the
Volmer–Tafel (VT) and the Volmer–Heyrovsky (VH) routes [1].

Hþ þ e�¢
1
2

H2ðgÞ ð1Þ
Hþ þ Sþ e�¢ SAHðaÞ Volmer ð2Þ

Hþ þ SAHðaÞ þ e�¢ H2ðgÞ þ S Heyrovsky ð3Þ

SAHðaÞ þ SAHðaÞ¢ H2ðgÞ þ 2 S Tafel ð4Þ

The relative weights of these routes on the reaction rate at each
potential are established according to the values of the elementary
kinetic parameters. Thus, the current density (j) vs. potential (E)
dependence could be dominated primarily by just one of these
routes over a certain potential range, and by the other in a different
range [2,3]. In this context, for interpretation of j(E) curves it is
important to use a kinetic model that takes into account the possi-
ble occurrence of both routes [4,5]. Moreover, likewise important is
to analyze experimental data from the reaction operating under
ll rights reserved.
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activated control over a wide range of potential, so that the route
transition can be readily observed [6,7]. On the basis of a rigorous
treatment of the VHT mechanism, Chialvo and co-workers devel-
oped the kinetic equations that describe the complete steady-state
j(E) dependence for the HER [8]. They were able to reproduce the
j(E) dependences of a Pt rotating disk electrode (RDE) for the
hydrogen oxidation reaction (hor), the hydrogen evolution reaction
(her), and around the equilibrium potential, with a single set of
elementary kinetic parameters. The importance of working in con-
ditions of high mass-transport rates for accurate determination of
all kinetic parameters of the HER was remarked by these authors
[3,8,9].

The configuration of a thin-layer cell (TLC) operating in
steady state allows to reach very high mass-transport rates by
approaching two electrodes to micro- and sub-micrometer
distances [10]. Even though the first TLC experiments were
reported more than four decades ago [10–12], there is a renewed
interest in this configuration. This interest is raised by novel
electrochemical techniques that exploit the recent progresses in
nanopositioning and nanofabrication to create TLCs with submi-
cron separations. Such are the cases, for example, of the scanning
electrochemical microscopy (SECM) [13] and of the nanofluidic
channels [14].

This work presents the analysis of two possible ways to study
the mechanism of the HER in acid medium in conditions of high
mass-transport rates using TLC-based techniques. Both the her
and the hor are analyzed in two different TLC configurations, and
the VHT mechanism is solved for both cases without aprioristic
restrictions about rate-determining steps.
doi:10.1016/j.jelechem.2010.09.002
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Scheme 1. Diagram of the two-electrode thin-layer cell for studying the HER.
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2. Theory

2.1. Basic equations for the HER

From a mass balance of the reaction defined by Eq. (1) operating
in steady state through the VHT mechanism, the following rela-
tionships between the reaction rate (V) and the elementary step
rates (vi) are obtained.

V ¼ vV þ vH ¼ 2ðvV � vTÞ ¼ 2ðvH þ vTÞ ð5Þ

The elementary step rates can be written in terms of the elec-
trode potential referred to the reversible hydrogen electrode
(RHE) potential (ERHE) according to Eqs. (6)–(8) [4], where
g = E � ERHE. The RHE is defined at the proton concentration of
the solution (c�Hþ ) and at a hydrogen pressure (pH2) of 1 atm.

vV ¼ ve
V

1� hðgÞ
1� he

� �
Cs

Hþe�ð1�aÞfg � hðgÞ
he

� �
eafg

� �
ð6Þ

vH ¼ ve
H

hðgÞ
he

� �
Cs

Hþe�ð1�aÞfg � 1� hðgÞ
1� he

� �
Cs

H2

C�H2

 !
eafg

" #
ð7Þ

vT ¼ ve
T

hðgÞ
he

� �2

�
Cs

H2

C�H2

 !
1� hðgÞ
1� he

� �2
" #

ð8Þ

In these equations, h and he are the adsorbed-H coverages evaluated
at E and at ERHE, respectively, a is the symmetry factor (considered
equal for both steps), and f = F/RT (F is the Faraday constant, R is the
gas constant and T is temperature). The terms Cs

i are surface concen-
trations normalized respect to c�Hþ , and C�H2

¼ c�H2
=c�Hþ , where c�H2

is
the concentration of dissolved H2 in the RHE (i.e. c�H2

= 9.1 �
10�7 mol cm�3 in 10 mM H2SO4 for pH2

= 1 atm [15]). A Langmuir-
type model was adopted for the adsorbed-H intermediate. Besides,
ve

i are the equilibrium elementary step rates evaluated in the con-
ditions of the RHE. These parameters are related with the reac-
tion-rate constants of each elementary step (k±i) by Eqs. (9)–(11)
[16].

ve
V ¼

kþV c�Hþ
� �a

1þ kþT
k�T

� 	�1=2 ð9Þ

ve
H ¼

kþH c�Hþ
� �a

1þ kþT
k�T

� 	1=2 ð10Þ

ve
T ¼

kþT

1þ kþT
k�T

� 	�1=2
� �2 ð11Þ
2.2. Basic steady-state TLC equations

The general equations for a TLC operating in steady state have
been previously derived [10]. The specific situation that is the focus
of this work is represented in Scheme 1. The system is a four-elec-
trode cell with two working electrodes (1 and 2) separated a dis-
tance d. The potentials of both electrodes (g1 and g2) are
independently controlled respect to the RHE. Initially there is no
dissolved H2 in the cell solution. Fick’s Laws are solved in one
dimension (x) for the steady-state diffusion of H+ and electrogener-
ated H2 between both electrodes. At open circuit, or null TLC cur-
rent density, the concentrations of H+ (coc

Hþ ) and dissolved H2 (coc
H2

)
are constant and equal to their initial values (c�Hþ and 0, respec-
tively). At certain g1 and g2 values, the steady-state fluxes (J) of
H+ and dissolved H2 are constant. They are related between them
Please cite this article in press as: J.L. Fernández, J. Electroanal. Chem. (2010),
and with the current density by Eq. (12). Note that the current den-
sities of electrodes 1 and 2, j1 and j2 respectively, have opposite
signs since both electrodes have facing surfaces.

JHþ ðg1;g2Þ ¼ �2JH2
ðg1;g2Þ ¼ �

j1ðg1;g2Þ
F

¼ j2ðg1;g2Þ
F

ð12Þ

Thus, taking into account the Fick’s first law, the steady-state
concentration profiles result linear with x and are given by Eqs.
(13) and (14). In these equations, Di are the diffusion coefficients
and xo is a reference coordinate, for example where cHþ is fixed.

cHþ ðxÞ ¼ cHþ ðxoÞ þ
j1

FDHþ
ðx� xoÞ ð13Þ

cH2 ðxÞ ¼ cH2 ðxoÞ �
j1

2FDH2

ðx� xoÞ ¼
DHþ

2DH2

� �
c�Hþ � cHþ ðxÞ

 �

ð14Þ
2.3. The her in a TLC

The experiment setup that is proposed to study the her in a TLC
is represented in Scheme 2a. The her is studied on electrode 1,
which potential (g1) is varied over a range where H+ reduction oc-
curs. Electrode 2 operates at a positive enough potential where
electrogenerated dissolved H2 is oxidized back to H+ at diffusion-
limiting rate. In this case, as the electrode 2 holds the value of
cHþ ðdÞ in c�Hþ , the thickness of the diffusion layer is controlled by
the distance between both electrodes. Taking into account the
boundary conditions and the reaction-rate expressions (see Appen-
dix A), the three equivalent dependences of the current density of
electrode 1 on g1 given by Eq. (15) are obtained.

j1 ¼
ve

V
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1�he

� 	
e�fg1 � hðg1Þ

he
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þ ve
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1�he
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he

� 	
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1�he

� 	h in o
1
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1�he

� 	
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he

� 	h i
� ve

T
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he

� 	2

1
2F þ ve
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1�he

� 	
e�ð1�aÞfg1 � ve

Tn
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1�he

� 	2
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1
jL

¼
hðg1Þ

he

� 	
ve

He�ð1�aÞfg1 þ ve
T

hðg1Þ
he

� 	h i
1

2F þ ve
H

hðg1Þ
he

� 	
e�fg1 þ n 1�hðg1Þ

1�he

� 	h i
eafg1 þ ve

Tn
1�hðg1Þ

1�he

� 	2
� 


1
jL

ð15Þ

The parameter n groups the diffusion coefficients and concen-
trations of H+ and H2 in the RHE according to Eq. (16). Moreover,
Eq. (17) gives the diffusion-limiting TLC current density (jL), which
is obtained when CHþ (x = 0) ffi 0 and CH2 (x = d) = 0.
doi:10.1016/j.jelechem.2010.09.002
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Scheme 2. Diagrams of the TLC configurations for studying the her on electrode 1 (a) and the hor on electrode 2 (b).
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n ¼ DHþ

2DH2

� �
c�Hþ
c�H2

 !
ð16Þ

jL ¼
FDHþc�Hþ

d
ð17Þ

Besides, h(g1) is a third-order polynomial function of g1 that can
be obtained, for instance, rearranging the last equality in Eq. (15).
As it was demonstrated in previous works [17] as g1 tends to very
negative values, h approaches to a limiting value (h�), which could
be different to one depending on the elementary kinetic parame-
ters and on jL.

On the other hand, when the her is infinitely fast the mass-
transport controlled (reversible) current density should be defined
by Eq. (18), which can be obtained from the Nernst equation (see
Appendix A).

j1 ¼
jL

2
ne2fg1 þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðne2fg1 þ 2Þ2 � 4

q� �
ð18Þ
2.4. The hor in a TLC

The electrode setup for studying the hor in a TLC is represented
in Scheme 2b. Electrode 1 operates at a negative enough potential
where H+ is reduced to H2 at diffusion-limiting rate. The hor is
studied on electrode 2, which potential (g2) is varied over a range
where dissolved H2 diffusing from the surface of electrode 1 is oxi-
dized to H+. The current density at electrode 1 is used for the anal-
ysis since it is sensitive to the H+ feedback. Taking into account the
boundary conditions and the reaction-rate expressions (see Appen-
dix A), the three equivalent dependences of the current density of
electrode 1 on g2 given by Eq. (19) are obtained. Again, n and jL are
defined by Eqs. (16) and (17), respectively.
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hðg2Þ
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þ ve
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Similarly to the previous case, h is a cubic function of g2 that can
be obtained, for instance, reorganizing the last equality in Eq. (19).
On the other hand, Eq. (20) gives the mass-transport controlled
j1(g2) dependence expected for the hor operating with an infinitely
large reaction rate (see Appendix A).

j1 ¼
jL

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne2fg2 ðne2fg2 þ 4Þ

q
� ne2fg2

� �
ð20Þ
3. Discussion

3.1. General remarks

Two important issues related to the kinetic model and to the
reactant and product concentrations should be remarked. On the
one hand, in these treatments the adsorption of atomic hydrogen
intermediate follows a Langmuir-type model. Surely a more com-
plex model that takes into account the interaction between ad-
sorbed species, such as Frumkin, should be more realistic. This is
particularly critical for modeling the her when precise calculations
of kinetic parameters are required [18]. However, the simpler
Langmuir assumption is a good first approximation for the analysis
of the descriptive capabilities of the derived equations.

On the other hand, it should be noted that on a proton-reducing
electrode operating under mass-transport limiting condition, the
concentration of H+ at the electrode surface is negligible, but not
null. In fact, as water is a source of protons, at negative enough
potentials the current for hydrogen evolution should increase
due to water dissociation [19]. Thus, a diffusion-limiting current
for proton reduction is only established over a potential window
where the surface concentration of H+ is very small and the water
discharge is negligible. As expected, the extension of this potential
window depends on the solution pH (or c�Hþ ).

3.2. The HER in a TLC

The HER proceeds via two parallel pathways, which are the
Volmer–Tafel and the Volmer–Heyrovsky routes. Thus, it is inter-
esting to analyze how the interplay of these routes affects the
j1(g, d) dependences for selected sets of kinetic parameters, both
for the her and for the hor.

In the first TLC configuration, the approach of an electrode to a
surface that keeps the reactant concentration at the bulk value pro-
duces a decrease of the diffusion-layer thickness with the conse-
quent increase of the mass-transport rate. Such property is
exploited, e.g. using SECM in the nanometer scale [20] and
doi:10.1016/j.jelechem.2010.09.002
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nanofluidic channels [14], to measure rate constants of fast single-
step electrode reactions such as the ferrocene electro-oxidation. In
the case of a multistep reaction such as the her, increasing the
mass-transport rate affects the j(g) dependence according to the
kinetic parameters of the elementary steps. Thus, in order to eval-
uate the effect of d on the j1(g1) dependences, these were simu-
lated with Eq. (15) using different equilibrium reaction rates,
coverage values, and distances. A typical situation was supposed
with a concentration of protons c�Hþ ¼ 0:02 M, which is low enough
to prevent nucleation of H2 bubbles [21]. In these conditions,
assuming diffusion coefficient values of DHþ = 7.1 � 10�5 cm2 s�1

[21] and DH2 = 1.4 � 10�5 cm2 s�1 [15], a value of n = 55.73 is calcu-
lated. From the derived equations for cH2 ðdÞ, it is obvious that the
concentration of dissolved hydrogen can take values as large as
nc�H2

. This means that, in the supposed conditions, the dissolved-
hydrogen concentration overpasses the saturation value for 1 atm
by almost two orders of magnitude. In spite of this, it is an exper-
imental observation that H2 bubbles are not nucleated as long as
c�Hþ < 0:06 M [21], which is well explained by the supersaturation
of dissolved H2 at the electrode surface [22].

A group of j1(g1) dependences for the her that were simulated
using quite large equilibrium rates (in the order of those measured
on Pt [8]) and different d values are shown in Fig. 1. These curves
are normalized respect to the corresponding jL values calculated
using Eq. (17). The j1(g1) dependence for a reversible reaction
(dashed line) and those simulated using the same kinetic parame-
ters but ve

H ¼ 0, which correspond to just the Volmer–Tafel route
(jVT, dotted lines), were also plotted. The resulting h(g1) depen-
dences are shown in a separate graph. From the analysis of these
her curves it is concluded that, for these kinetic parameters typical
of a good catalyst such as Pt, at distances larger than 10 lm the her
operates under mass-transport control (reversible). For distances
in the range d < 10 lm, there is an increase of the limiting current
density that brings the electrode operation into a mixed control. As
long as d P 0.3 lm the j1(g1) curves are mainly dominated by the
VT route before the coverage reaches a limiting value, which is les-
ser than one (h� < 1), and the current arrives at the diffusion limit-
ing value (jL). This is verified when comparing the j1(g1) curves
with the corresponding jVT(g1) dependences. It is observed that
Fig. 1. Dependences of the normalized current density of electrode 1 for the her and
of the adsorbed-H coverage (h) on the potential of electrode 1 (solid lines),
calculated using Eq. (15). Equilibrium rates (mol s�1 cm�2): ve

V = 10�5, ve
H = 10�10,

ve
T = 10�6. he = 0.2. a = 0.5. d (lm) = 10 (a), 1 (b), 0.5 (c), 0.3 (d), 0.2 (e), 0.1 (f), 0.05

(g). Dotted lines are the dependences for the VT route calculated using the same
parameters but ve

H = 0. Dashed line is the reversible dependence calculated using
Eq. (18).
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there are no significant differences between the j1(g1) and the
jVT(g1) dependences for d P 0.3 lm. Thus, the j1(g1) curve is not
sensitive to the VH route under these conditions. As jL becomes lar-
ger for d < 0.3 lm, the j1(g1) dependence shows an inflexion (or
shoulder). For a better understanding of this behavior it is useful
to analyze only the VT route, which tends to reach a kinetic limit-
ing rate. This limiting value, which is observed in the jVT(g1) curves,
is established when the H-coverage reaches a limiting value. The
her Volmer–Tafel limiting current density (jVT;her

L ) value depends
on the kinetic parameters and on jL according to Eq. (15) evaluated
for ve

H ¼ 0, g ? �1, and h = h�, which leads to Eq. (21)

jVT;her
L ¼

2Fve
T

h�

he

� �2

1þ 2Fve
T n

jL
1�h�

1�he

� �2 ð21Þ

The dependence of h� and of jVT;her
L on d (or jL) is plotted in Fig. 2

for different values of ve
T . For a certain value of ve

T , there is a do-
main of distances where h� ffi 1 and jVT;her

L ¼ 2Fve
Tðh

eÞ�2
< jL. As ve

T

becomes larger, this domain shifts to smaller d values. For example,
for the parameters used in the simulated curves of Fig. 1, curve (b)
in Fig. 2II shows that jVT;her

L
ffi jL (h� < 1) as long as d P 0.3 lm, and

deviates from jL when d becomes smaller than 0.3 lm
(jL > 4.5 A cm�2). At more negative potentials the VH route be-
comes relevant (in detriment of the VT route) and raises the cur-
rent density until it reaches the diffusion limiting value. As a
consequence, a shoulder is verified in the j1(g1) response, which
highlights the transition from the VT route to VH route. Such
inflexion is only evident when ve

H � ve
T and the jL values are large

enough to make jVT;her
L < jL (>4.5 A cm�2 or d < 0.3 lm for the kinetic

parameters used in Fig. 1).
On the other hand, the second TLC configuration, which resem-

bles the feedback mode of SECM, permits to study the kinetics of a
reaction on electrode 2 by measuring feedback current in electrode
1. In other words, the j1(g2) dependence is analyzed. This configu-
ration was proved to be quite practical for localized kinetic studies
on macroelectrodes using SECM [23,24], and was applied in a few
studies of the hor on varied materials [21,25–27]. High mass-
transport rates are reached by fixing the concentration of the elec-
trode-two reactant (H2) at its maximum value on the electrode-one
surface and approaching both electrodes to submicron distances.
The feedback current is affected by the reaction rate at electrode
2, and so by the kinetic parameters. To evaluate this effect for
the case of the hor, simulations of the j1(g2) dependences were car-
ried out with Eq. (19). On this sense, Fig. 3 shows the normalized
Fig. 2. Dependences on the electrode distance of the limiting coverage of adsorbed
H (I) and of the normalized VT limiting current density (II). Equilibrium rates
(mol s�1 cm�2): ve

V = 10�5, ve
H = 0, ve

T = 10�5 (a), 10�6 (b), 10�7 (c), 10�8 (d). he = 0.2.
a = 0.5. Dashed line is the dependence jL(d) according to Eq. (17).

doi:10.1016/j.jelechem.2010.09.002
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Fig. 3. Dependences of the normalized current density of electrode 1 for the hor and
of the adsorbed-H coverage (h) on the potential of electrode 2 (solid lines),
calculated using Eq. (19). Parameters are as in Fig. 1. Dotted lines are the
dependences of the VT route calculated using ve

H = 0. Dashed line is the reversible
dependence calculated using Eq. (20).
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j1(g2) dependences for the hor obtained with the same kinetic
parameters and distances as those used in Fig. 1. The dependences
for a reversible reaction (dashed lines) and for the Volmer–Tafel
route simulated with ve

H ¼ 0 (dotted lines), were also plotted.
The resulting h (g2) dependences are included in a separate graph.
The analysis of these simulated hor curves leads to basically the
same conclusions as those drawn for the her. The reaction looks
reversible at distances larger than 10 lm. However, differently to
the her, a hor Volmer–Tafel limiting current density (jVT;hor

L ) sepa-
rates from the jL value already from d 6 10 lm (jL > 0.1 A cm�2).
This VT limiting current is established when h is null but Cs

H2
is

not, and was experimentally detected in a few studies of the hor
on Pt ultramicroelectrodes (UMEs) [3,6,7] and ensembles of UMEs
[2]. Similarly to the her, the jVT;hor

L value depends on the kinetic
parameters and on jL, in this case according to Eq. (22), which is
obtained from Eq. (19) evaluated for ve

H ¼ 0 and h = 0. From this
Fig. 4. Dependences of the normalized current density of electrode 1 and of the correspon
(I) and for the hor on g2 calculated with Eq. (19) (II). Equilibrium rates (mol s�1 cm�2): ve

V

(e), 0.1 (f), 0.05 (g). Dotted lines are the dependences for the VT route calculated with ve
H

respectively.
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equation it is evident that, for the values ve
T = 10�6 mol s�1 cm�2

and he = 0.2 used in Fig. 3, jVT;hor
L < jL only when d 6 10 lm

(jL P 0.14 A cm�2). As the potential increases (g2 > 0.2 V for these
parameters), the VH route starts to dominate the j1(g2) dependence
before it reaches the mass-transport limiting value.

1

jVT;hor
L

¼ 1
jL
þ ð1� heÞ2

2Fnve
T

ð22Þ

The potential value where from the VH-route rate becomes sig-
nificant depends on the relative value of ve

H respect to ve
T . Thus for

example, Fig. 4 shows that for ve
H only two orders of magnitude

smaller than ve
T the current plateaus observed in both the j1(g1)

and j1(g2) dependences extends over much narrower potential
ranges. Moreover, Fig. 5 shows that for similar values of ve

H and
ve

T , no shoulder is observed in the j1(g) curves. Besides, these last
curves are only sensitive to the VH route, as can be verified when
comparing them with the jVH(g) dependences simulated using
ve

T ¼ 0 (dotted lines). For smaller ve
H and ve

T values like those used
in the curves of Fig. 6, which could be typical of less active catalysts
such as Au, the j(g) curves present features distinctive of both
routes only when jL is not very large (or d > 1 lm). For large jL val-
ues the VT contribution becomes imperceptible and the j1(g)
curves show the typical behavior of an irreversible reaction. It is
also interesting to analyze the effect of he on the j1(g) curves in
conditions of high jL values, which can be observed in Fig. 7 for a
set of large equilibrium rates. It is observed that for the analyzed
kinetic parameters the j1(g) curves are quite sensitive to the he va-
lue in the range he P 0.1.

3.3. First approaches for applications in SECM studies

The presented models can be used to study the her and the hor
in experimental configurations that produce a TLC geometry. One
of these configurations is the scanning electrochemical micro-
scope, in which a disk-shaped UME tip with radius a (electrode
1) is approached to a substrate surface (electrode 2) and a TLC is
established in the tip-substrate gap [28]. In the so-called feedback
mode, the tip current is used to analyze an electrochemical reac-
tion occurring either on the tip surface or on the substrate surface
[23].
ding adsorbed-H coverages (h) (solid lines) for the her on g1 calculated with Eq. (15)
= 10�5, ve

H = 10�8, ve
T = 10�6. he = 0.2. a = 0.5. d (lm) = 10 (a), 1 (b), 0.5 (c), 0.3 (d), 0.2

= 0. Dashed lines are the reversible dependences calculated using Eqs. (18) and (20),
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Fig. 5. Idem Fig. 4 but ve
H = 10�6 mol s�1 cm�2. Dotted lines are the dependences for the VH route calculated with ve

T = 0.

Fig. 6. Idem Fig. 4 but ve
T = 10�8 mol s�1 cm�2. Dotted lines are the dependences for the VH route calculated with ve

T = 0.
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On the one hand, the her on a SECM tip can be analyzed using
Eq. (23), which is an approximate analytical dependence of the
tip current (IT) on the tip-substrate distance (d) [29].

ITðgT ;dÞ ¼ ITLCðgT ;dÞ þ IT;1ðgTÞfTðdÞ ð23Þ

Eq. (15) should be employed to take into account the depen-
dence of the TLC current (ITLC) on the tip potential (gT) and on d.
Moreover, to use Eq. (23) it is necessary to solve the VHT mecha-
nism on a disk UME and find the dependence of the tip current
at infinite distance (IT,1) on gT. The term fT(d) takes into account
the blocking of diffusion toward the UME by the substrate surface
at a specific d. It has the general form given by Eq. (24), whose
parameters (A, C and D) are well known and depend on the overall
tip dimensions [30]
fTðdÞ ¼ Aþ C exp
D
ðd=aÞ

� �
ð24Þ
Please cite this article in press as: J.L. Fernández, J. Electroanal. Chem. (2010),
On the other hand, the analysis of the hor on a portion of an infi-
nite SECM substrate could be performed using the dependence of
the tip current on d and on the substrate potential (gS) defined by

ITðgS;dÞ ¼ ITLCðgS;dÞ þ IT;Lðd; tÞfTðdÞ ð25Þ

This includes the TLC current, which can be calculated with Eq.
(19). However, the analysis over the full potential range requires
the modeling of the shielding of H+ concentration due to consump-
tion at the substrate at slightly negative gS values [31,32]. So far a
first approximation could be done by calculating the diffusion lim-
iting tip current (IT,L) with Eq. (26), using the local concentration of
H+ that results when solving the linear diffusion from the sub-
strate. In these conditions of planar semi-infinite diffusion, the
tip current only reaches a quasi-steady state at long times. Proba-
bly, a simpler and steady-state equation could be used when this
analysis is performed on a substrate with size equal or smaller than
the tip size.

IT;L ¼ 4FDHþcHþ ðd; tÞa ð26Þ
doi:10.1016/j.jelechem.2010.09.002
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Fig. 7. Dependences of the normalized current density of electrode 1 and of the corresponding adsorbed-H coverages (h) (solid lines) for the her on g1 calculated with Eq. (15)
(I) and for the hor on g2 calculated with Eq. (19) (II). Equilibrium rates (mol s�1 cm�2): ve

V = 10�5, ve
H ¼ 10�10, ve

T = 10�6. d (lm) = 0.1. a = 0.5. he = 0.001 (a), 0.01 (b), 0.1 (c), 0.2
(d), 0.4 (e), 0.6 (f), 0.9 (g). Dashed lines are the reversible dependences calculated using Eqs. (18) and (20), respectively.
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4. Conclusions

Steady-state experiments in thin-layer cells can provide very
useful mechanistic information of both the cathodic branch (the
her) and the anodic branch (the hor) of the hydrogen electrode
reaction. When the TLC distance is below 10 lm, the expected
j(g) responses are kinetically controlled even for the largest kinetic
parameters known so far (as those reported for Pt). Thus, this tech-
nique is particularly useful to study the HER on highly active mate-
rials without mass-transport limitations. One of the most
interesting properties verified from the presented theoretical anal-
ysis is the ability to highlight different mechanistic aspects of the
reaction by manipulation of the electrode distance (d). On that
sense, depending on the kinetic parameters and on d, the resulting
j(g) curves may be dominated by only one of the two possible
mechanistic routes, or may reveal the simultaneous contributions
and interactions of both routes. Nowadays there are techniques,
such as SECM, that can establish a TLC with variable separation be-
low 10 lm. By a proper inclusion of the developed models in the
theoretical formalisms of these techniques, they surely will consti-
tute powerful tools for determination of the complete set of HER
kinetic parameters.
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Appendix A

This appendix gives details on the derivation of Eqs. (15), (18),
(19), and (20).

Derivation of Eq. (15). For the TLC operating to study the her
according to Scheme 2a, the normalized concentrations of H+ and
H2 at the electrode-two surface (x = d) are given by Eqs. (A1) and
(A2). Moreover, from Eqs. (13) and (14), and taking into account
that in this case xo = d, the dependences CHþ ðxÞ and CH2 ðxÞ given
by Eqs. (A3) and (A4) are obtained.
Please cite this article in press as: J.L. Fernández, J. Electroanal. Chem. (2010),
CHþ ðx ¼ dÞ ¼ 1 ðA1Þ

CH2 ðx ¼ dÞ ¼ 0 ðA2Þ

CHþ ðxÞ ¼ 1þ j1

FDHþc�Hþ
ðx� dÞ ðA3Þ

CH2 ðxÞ ¼ �
j1

2FDH2 c�Hþ
ðx� dÞ ¼ DHþ

2DH2

� �
1� CHþ ðxÞ½ � ðA4Þ

The normalized concentrations at the surface of electrode 1,
that result when Eqs. (A3) and (A4) are evaluated at x = 0, are de-
fined by

Cs
Hþ ¼ 1� j1

FDHþc�Hþ
d ðA5Þ

Cs
H2
¼ j1

2FDH2 c�Hþ
d ¼ DHþ

2DH2

� �
ð1� Cs

Hþ Þ ðA6Þ

By substituting Eqs. (A5) and (A6) into Eqs. (6)–(8), the elementary
reaction rates in terms of j1 can be obtained. By replacing them into
Eq. (5), taking into account that V = j1/F and rearranging, three inde-
pendent equivalent dependences of j1 vs. g1 given by Eq. (15) are
obtained.

Derivation of Eq. (18). The Nernst equation for the HER can be
written in terms of the normalized surface concentrations accord-
ing to the first equality in Eq. (A7). By substituting Eqs. (A5), (A6),
(16), and (17), the dependence j1(g1) given by the third term of Eq.
(A7) is obtained.

e2fg1 ¼ Cs2
Hþ

Cs
H2

c�H2

c�Hþ

 !
¼ ð1� j1=jLÞ

2

nðj1=jLÞ
ðA7Þ

By reordering Eq. (A7), the second-order polynomial expression gi-
ven by Eq. (A8) is obtained, which root can be calculated with Eq.
(18).

j2
1 � jLðne2fg1 þ 2Þj1 þ j2

L ¼ 0 ðA8Þ
Derivation of Eq. (19). For the TLC operating to study the hor

according to Scheme 2b, the normalized concentrations of H+ and
H2 at the electrode 1 surface (x = 0) are given by Eqs. (A9) and
(A10). Moreover, from Eqs. (13) and (14), and taking into account
doi:10.1016/j.jelechem.2010.09.002
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that in this case xo = 0, the dependences CHþ ðxÞ and CH2 ðxÞ given by
Eqs. (A11) and (A12) are obtained.

CHþ ðx ¼ 0Þ ¼ 0 ðA9Þ
CH2 ðx ¼ 0Þ ¼ DHþ

2DH2

� �
ðA10Þ
CHþ ðxÞ ¼
j1

FDHþc�Hþ
x ðA11Þ
CH2 ðxÞ ¼
DHþ

2DH2

� �
1� j1

FDHþc�Hþ
x

 !
¼ DHþ

2DH2

� �
1� CHþ ðxÞ½ � ðA12Þ

The normalized concentrations at the surface of electrode 2,
that result when Eqs. (A11) and (A12) are evaluated at x = d, are de-
fined by

Cs
Hþ ¼

j1

FDHþc�Hþ
d ðA13Þ

Cs
H2
¼ DHþ

2DH2

� �
1� j1

FDHþc�Hþ
d

 !
¼ DHþ

2DH2

� �
1� Cs

Hþ
� �

ðA14Þ

By substituting Eqs. (A13) and (A14) into Eqs. (6)–(8), the elemen-
tary reaction rates in terms of j1 can be obtained. By replacing them
into Eq. (5), taking into account that V = j2/F = �j1/F, and rearranging
terms, three independent dependences of j1 vs. g2 given by Eq. (19)
are obtained.

Derivation of Eq. (20). By substituting Eqs. (A13), (A14), (16),
and (17) in the Nernst equation for the HER, the dependence
j1(g2) given by Eq. (A15) is obtained

e2fg2 ¼ Cs2
Hþ

Cs
H2

c�H2

c�Hþ

 !
¼ ðj1=jLÞ

2

nð1� j1=jLÞ
ðA15Þ

This can be reordered to a second-order polynomial expression gi-
ven by Eq. (A16), which root can be calculated with Eq. (20).

j2
1 þ jLne2fg2 j1 � ne2fg2 j2

L ¼ 0 ðA16Þ
Please cite this article in press as: J.L. Fernández, J. Electroanal. Chem. (2010),
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