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A good and computationally efficient polynomial approximation to the Maier–Saupe
nematic free energy
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A new computational strategy is proposed to approximate, with a simple but accurate expression, the Maier–Saupe
free energy for nematic order. Instead of the traditional approach of expanding the free energy with a truncated
Taylor series, we employ a least-squares fitting to obtain the coefficients of a polynomial expression. Both methods
are compared, and the fitting with at most five polynomial terms is shown to provide a satisfactory fitting, and to
give much more accurate results than the traditional Taylor expansion. We perform the analysis in terms of the
tensor order parameter, so the results are valid in uniaxial and biaxial states.

Keywords: liquid crystal; phase transition; Maier–Saupe theory; Landau–de Gennes theory

1. Introduction

Liquid crystal (LC) materials display intermedi-
ate degrees of positional and orientational order,
between crystalline solids and liquids [1, 2]; the sim-
plest LC phase is the nematic phase that displays only
orientational order. To describe the state of order in
a nematic phase, the second moment of the orienta-
tion distribution function is usually sufficient, in the
sense that most of the relevant experimental informa-
tion (anchoring, textures, defects) is captured by it.
This symmetric and traceless quadrupolar tensor is
known as the tensor order parameter Q, and can be
written as

Q = S
(

nn − δ

3

)
+ P

3
(ll − mm), (1)

where S is the scalar uniaxial order parameter, P is the
biaxial order parameter,δ is the identity matrix and n, l
and m are the eigenvectors of Q [1]. The scalar uniaxial
order parameter S measures the degree of molecular
alignment along the average orientation n, and plays
a central role in investigating phase transitions, phase
separation, pattern formation and multi-phase equi-
libria in the mixtures of polymer/monomers and LCs
[2]. The biaxial order parameter measures the devi-
ation of the molecular alignment distribution from
axial symmetry; it plays a fundamental role in the
formation of defects, interfaces, texturing and biaxial
states.

In computational modeling, the accuracy and
usefulness of predictions depends both on the model

∗Corresponding author. Email: ersoule@fi.mdp.edu.ar

and on the numerical methods. A simple expression
for the bulk nematic free energy is the Landau–de
Gennes (LdG) theory [1–11], in terms of the invari-
ants of the order parameter. Usually, a fourth-order
polynomial is used:

fLdG = aI2 + bI3 + cI4 + · · ·
= aI2 + bI3 + cI2

2 + . . . (2)

where f LdG represents the dimensionless free energy
density and Ii are ith-order invariants of Q.
According to the Caley–Hamilton theorem, I2 =
Q:Q and I3 = (Q.Q):Q are the only independent
invariants of Q [9] and all higher-order invariants
are written in terms of these two. The LdG model
is based on the phenomenological Landau theory
which is based on the general assumption that the
free energy in the vicinity of a phase transition can be
written as an analytical function of some phase vari-
able that describes the state of the system. In the LdG
model for nematic liquid crystals, this phase variable
is the nematic order parameter. The coefficients a, b,
c. . . are phenomenological parameters that must be
measured; for thermotropics, a is a function of tem-
perature. Generalisations of the model to mixtures,
and to account for the presence of external fields and
surfaces, are available [2].
Another very popular model is the Maier–Saupe
(MS) theory and its extensions and modifica-
tions [2–6, 11–18] which is based on statistical
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202 E.R. Soule and A.D. Rey

thermodynamics and has no phenomenological
parameters:

fMS = 3
4
Γ Q:Q

− ln

⎛
⎝

2π∫
0

π∫
0

exp
(

3
2
Γ Q:

(
−uu

δ

3

))
sin θdθdϕ

⎞
⎠

(3)

where Γ = 4.54T/TNI is the nematic interaction
parameter, T is the absolute temperature, TNI is the
nematic–isotropic first-order transition temperature,
u is the molecular unit vector and the integration
is over the unit sphere. The first term arises from
orientation-dependent energetic interactions, and the
last term is the logarithm of the partition func-
tion [12–15]. This expression for f MS is a function
of the invariants of Q. This is a mean-field theory
which assumes that the nematic–isotropic transition
is produced by attractive interactions, and excluded-
volume effects are neglected.

From a computational point of view, a transient
multidimensional model based on LdG theory is
much more attractive because it requires short calcu-
lation times and standard computational resources,
as opposed to MS theory that requires the numerical
solution of an integral for each time step and space
node. Also, the LdG is a phenomenological theory
whose parameters can be fitted from experimental
data, so that the behaviour of a given system could be
represented in a wide range of conditions (using the
adequate sets of parameters), whereas the accuracy
of MS theory is solely determined by the applicability
of its assumptions to the experimental system under
consideration. However, the fact that the parame-
ters in LdG theory are phenomenological and the
parametric data is not always available is a disadvan-
tage. This disadvantage is particularly important for
mixtures involving LCs [2], where experimental data
would be required for every mixture composition
analysed. In these cases it is necessary to use a model
with no phenomenological parameters, like the MS
theory. A usual strategy that allows one to keep the
computational simplicity of LdG theory, but with no
adjustable parameters, consists in using a polynomial
expression obtained from a Taylor series expansion
of MS free energy [14, 19, 20]. This can be easily
done for uniaxial nematics by calculating the deriva-
tives of the free energy as a function of S analytically
[3–6, 19, 20].

With this strategy, a simple polynomial expres-
sion with no adjustable parameters becomes avail-
able. The problem is that the Taylor expansion is

a very poor approximation to the MS free energy.
Katriel et al. [14] have shown that this series only
converges to the exact solution in a limited range of
values of the order parameter. Rey and colleagues [3]
explicitly compared phase diagrams for mixtures of a
LC with an isotropic solvent (polymer), predicted by
a modification of MS theory (including an excluded
volume term in Γ ) and by a LdG expression based on
a fourth-order Taylor series expansion for uniaxial
nematics (P = 0). They found that the Taylor expan-
sion was very inaccurate, when compared to the exact
solution of the MS free energy obtained by an accu-
rate numerical solution of the integral. As an exam-
ple the value of Γ at which the nematic–isotropic
transition is predicted [3] with the Taylor expansion
is 4.315, with a value of S = 0.77, while the value
according to MS theory is 4.54, with S = 0.44. In
addition, in some cases the phase diagrams predicted
by the Taylor expansion were not only quantitatively
but also qualitatively different to the ones predicted
by using the accurate solution of f MS. If we take into
account that MS theory does not always represent
well the experimental data, an inaccurate approxima-
tion to MS theory can lead to significant differences
between theoretical predictions and experiment.

In this communication we generalise the polyno-
mial approximation to f MS in order to account for
the biaxial nematic state, and we propose a new sim-
ple strategy that provides an excellent approximation
to f MS, keeping the simple polynomial expression.
The computational strategy consists in calculating
the polynomial coefficients not from a Taylor series,
but from a least-squares fitting of the polynomial to
the exact values of f MS. Emphasis is put on taking
into account biaxiality, since LdG models are spe-
cially used to simulate defect cores and flow-induced
orientation [3–6].

We wish to point out that there are previous
works that analyse and compare the MS and LdG
approaches in terms of the physics involved, predic-
tive capability and limitations of each theory (see,
for example, [2, 14, 15]). The present work’s objec-
tive is to analyse the computational efficiency of the
models and the accuracy of two different strategies to
approximate the full solution of MS theory, and not
to compare the theories from a physical or a formal
point of view.

2. Results and discussion

As mentioned above, the free energy is a function
of the invariants of Q, and these invariants are
only a function of S and P (more specifically, Ii

is a linear combination of the products SjPk with
i = j + k). Moreover, as can be seen in Equation (3),
f MS is composed of a polynomial term and a non-
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polynomial term which is a function of Γ Q, so we
can re-write the polynomial expansion as

fLdG-MS = 3
4
Γ I2 (S, P) +

N∑
i=2

biIi (Γ S, Γ P) (4)

where N is the order of the highest-order polynomial
term. The fitting was performed obtaining the coef-
ficients bi that minimise the sum of (f MS – f LdG-MS)2

calculated at several values of Γ S and Γ P, spanning
different ranges. In order to better represent the value
of the transition temperature and the value of S at
the transition, the free energy for P = 0 was weighted
with a factor of 10 when performing the fitting. It
is noted that in order to perform the fitting, the
MS free energy was computed by solving the integral
numerically, using a Romberg algorithm [21] with a
small tolerance value to ensure high accuracy.

The Taylor expansion could be obtained by cal-
culating the derivatives of f MS with respect to Γ S
and Γ P, but the direct analytical derivation and eval-
uation of these derivatives is not trivial. Instead, an
indirect method was devised and implemented; we
take into account the form of Equation (4) which
indicates that the free energy is expressed as a func-
tion of the invariants of Q, and the invariant of
order i involves all the polynomial terms of order
i. Consequently, all the ith-order derivatives of the
free energy are related through the invariants and the
expansion coefficients bi. The Taylor expansion for
the uniaxial case (P = 0) can be easily done (and
it has been done, see for example [3, 19]). Knowing
the coefficients for the uniaxial case and taking into
account that I2 = (2/3)S2+ 2P2 and I3 = (2/9)S3

– 2SP2, the coefficients bi can be calculated and
the whole expression constructed. For example, the
third-order term of the Taylor series for the uni-
axial case is (1/105)(Γ S)3 [3, 19], and according to
Equation (4), this term is equal to b3I3 with P = 0, so
1/105 = (2/9)b3.

Figures 1(a), (b) and (c) show the free energy
density from the MS model, the fourth-order Taylor
expansion and a fourth-order least-squares fitting, at
different values of Γ . It can be seen that in general
the approximation of the Taylor expansion is poor;
neither the values of S at the local minimum S > 0,
nor the shape of the curve, are well represented. The
accuracy of the fitting is considerably better.

The values of the fitting coefficients, and Γ

and S at the transition, are shown in Table 1 for
different cases. This table also shows the maximum
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Figure 1. Free energy density calculated by solving
numerically the integral in the MS expression (full), with
a fourth-order Taylor expansion (dash), and with a fourth-
order least-squares fitting (dot) for: (a) Γ = 4.315, (b) Γ =
4.54, (c) Γ = 5.

values of Γ S and Γ P used in each case (the fitting
was always performed for S and P > 0), as well as
the standard error, σ , calculated as

σ =

√√√√√√√
n∑

i=1

⎡
⎣ln

⎛
⎝

2π∫
0

π∫
0

exp
(

3
2
�Q:

(
σσ − δ

3

))
sin θdθdϕ

⎞
⎠ −

N∑
i=2

biIi (Γ S, Γ P)

⎤
⎦

2

n
(5)
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Table 1. MS free energy density fitting coefficients.

Γ Smax Γ Pmax Γ max b2 102 b3 103 b4 103 b5 102 σ Γ NI SNI

2.8 0.6 4.8 0.154 3.11 −3.81 – 0.33 4.559 0.456
2.8 1 4.8 0.151 3.01 −3.05 – 0.62 4.576 0.452
2.8 1 4.8 0.148 4.14 −2.37 −2.44 0.15 4.539 0.452
2.8 2 4.8 0.149 3.66 −2.45 −1.34 0.46 4.561 0.491
3.5 0.6 5.26 0.156 2.75 −3.74 – 0.42 4.555 0.404
3.5 1 5.26 0.154 2.61 −3.11 – 1.19 4.609 0.46
3.5 1 5.26 0.147 3.85 −2.03 −1.88 0.32 4.57 0.496
3.5 2 5.26 0.147 3.67 −2.31 −1.40 0.96 4.581 0.499
4.2 0.5 5.85 0.158 2.34 −3.35 − 0.57 4.56 0.351
4 0.6 5.71 0.151 3.01 −2.47 −0.878 0.64 4.587 0.491
4.25 1 5.92 0.147 3.33 −1.86 −1.24 0.71 4.622 0.519
4.5 0 6.1 0.154 3.06 −3.85 – 0.301 4.58 0.437
4.5 2 6.1 0.143 3.52 −1.63 −1.33 1.74 4.655 0.576

Note: The coefficients in the sixth row (bold italic), are used in Figure 1; the coefficients in the second-to-last
row (bold italic) are used in Figure 2. The dash in the column corresponding to b5 implies that for those
cases four terms were used.

where N is the total number of points. Nine equidis-
tant values of S and four equidistant values of P have
been used to perform the fitting and calculate σ in
all cases. From the maximum value of Γ S, a maxi-
mum value of Γ was calculated (and included in the
table) considering that the equilibrium value of S is
a function of Γ . This means that if the coefficients
are used for a value of Γ higher than this limit, the
value of Γ S calculated at equilibrium will be outside
the range of the fitting.

The accuracy of the approximation for all the
sets of coefficients reported in Table 1 is good when
used in the indicated range; if used outside these
ranges the accuracy becomes lower and even unphys-
ical results (like S > 1) can be obtained. It can be seen
that the two least accurate approximations are the
one plotted in Figure 1 (which is still a good approx-
imation), and the one corresponding to the broadest
range of S and P used. The fitting is always much
more accurate than the Taylor expansion; for exam-
ple, the standard error for the fourth-order Taylor
expansion (calculated in the same way that for the
fittings) in the range Γ S < 2.8, Γ P < 0.6 is 0.43,
as opposed to 0.0033 for the fourth-order fitting.
In some cases, the fitting was performed in similar
ranges using both four and five terms, for compar-
ison. It can be seen, by comparing the values of σ ,
Γ N and SNI, that when using a fifth-order term the
fitting is much improved, especially when the range of
P is larger. As the values of Γ or P increase, the accu-
racy of the fitting with a given number of polynomial
terms decreases, so more terms are necessary.

The optimal set of coefficients will depend on the
conditions that are being simulated which will deter-
mine the relevant ranges of Γ S and Γ P. A broad
range of values is covered in Table 1, but if the

relevant values for a specific simulation were outside
the ones reported then a new fitting should be per-
formed, probably using a higher-order polynomial.

As a representative application, Figure 2 shows
a comparison of the equilibrium order parameter S
as a function of dimensionless temperature (Γ −1),
calculated with the numerical solution, the Taylor
expansion and the fitting using four terms in both
cases. Again, the values calculated with Taylor
expansion are far from the exact values, while the
approximation provided with the fitting is much
better.

It is worth noting that the equilibrium state pre-
dicted by MS free energy in the absence of external
fields, flow or surfaces is always uniaxial (P = 0).
Considering any of these effects would imply the
addition of extra terms to the free energy which can

0

0.2

0.4

0.6

0.8

1

0.16 0.18 0.2 0.22 0.24

S

Γ−1

Figure 2. Equilibrium value of S as a function of Γ −1

(dimensionless temperature), calculated by solving numeri-
cally the integral in the MS expression (full), with a fourth-
order Taylor expansion (dash), and with a fourth-order
least-squares fitting (dot).
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lead to biaxial stationary points. For example, in
the presence of surfaces, the inclusion of gradient
terms in the free energy density can lead to a station-
ary solution including topological defects, and in the
vicinity of these defects a biaxial state can be found.
Defects can also be generated during the dynamic
evolution of the system towards the equilibrium, and
dynamics simulations are usually performed using a
fourth-order LdG free energy [22, 23].

These results are not restricted to pure LCs and
can be used when modeling LC solutions. The MS
theory for a binary mixture, where the volume frac-
tion of liquid crystal is φ, is written as [3, 17, 18]:

fMS = 3
4
Γ 2φ2Q:Q

− φ ln

⎛
⎝

2π∫
0

π∫
0

exp
(

3
2
Γ φQ:

(
uu − δ

3

))
sin θdθdϕ

⎞
⎠ ,

(6)

fLdG−MS = 3
4
Γ φ2I2 (S, P) + φ

N∑
i=2

biIi (Γ φS, Γ φP) .

(7)

As the summation, which is the relevant term for the
fitting, is the same as before except that the variables
change from Γ S and Γ P to Γ φS and Γ φP, the same
coefficients bi reported in Table 1 are to be used, but
the polynomial is expressed in terms of Γ φS and
Γ φP, and the ranges reported in Table 1 are ranges
of Γ φS and Γ φP.

3. Conclusion

A new strategy for approximating the MS free energy
with a polynomial (LdG) expression was devised and
implemented with least-squares fitting of the numer-
ical solution of the non-analytical part of the free
energy. Biaxiality, important in defect cores and in
the presence of external fields, was taken into full
account. The new approach was compared with the
usual fourth-order Taylor expansion strategy. It has
been shown that the fitting performs much better
than the Taylor expansion, allowing a very accurate
approximation using a very simple, computationally
convenient expression. In this way, the simplicity
and convenience of the LdG theory can be con-
served, but accuracy is not sacrificed as in the case
with the Taylor expansion. It has been shown that
these results can also be used for LC solutions and
blends. Finally, this strategy is not restricted to MS
free energy; in principle the same procedure could

be applied to any other phase transition theory,
provided that the free energy can be evaluated (ana-
lytically or numerically) as a function of the relevant
order parameters.
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