
 

Available online at www.sciencedirect.com 

 

Procedia Materials Science (2014) 000–000  

www.elsevier.com/locate/procedia 

 

2211-8128 © 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the scientific committee of SAM - CONAMET 2013. 

International Congress of Science and Technology of Metallurgy and Materials, SAM - 
CONAMET 2013 

TiO2 Coatings in Alkaline Electrolytes Using Anodic Oxidation 
Technique  

Alex Iván Kociubczyka,*, María Laura Veraa,b , Carlos Enrique Schvezova,b,               
Eduardo Herediac, Alicia Esther Aresa,b 

aInstituto de Materiales de Misiones - IMAM (CONICET-UNaM), Félix de Azara 1552. (N3300) Posadas-Misiones. Argentina. 
bFacultad de Ciencias Exactas, Químicas y Naturales. Félix de Azara 1552. (N3300) Posadas-Misiones. Argentina.                                      

cInstituto de Investigaciones Científicas y Técnicas para la Defensa (CITEDEF). (B1603ALO) Villa Martelli-Buenos Aires  Argentina 
 

Abstract 

For the construction of a new design of mechanical heart valve a Ti-6Al-4V alloy was selected and coated with TiO2 due to it 
corrosion resistance and biocompatibility. A required feature on surfaces in contact with blood it is a low level of roughness (Ra 
≤ 50 nm) that not favor the formation of blood clots. One technique that can be used to obtain smooth coatings of TiO2 is the 
electrochemical anodic oxidation technique using pre-spark oxidation voltage. The phenomenon of spark produces porous oxides 
and roughness higher than desired. The beginning of the spark voltage depends on the electrolyte used. The present work 
compares the coatings obtained by anodic oxidation of the Ti-6Al-4V alloy applying different voltages (from 10V to 50V), using 
as electrolyte an aqueous based alkaline solutions of NaOH and KOH, at different concentrations (0.1M, 1M and 2M) and 
Ca(OH)2 at a concentration of 0.02 M, using a constant current of 50mA to achieve the desired voltage. Morphological analysis 
of the different oxides is performed using optical microscopy, and roughness measurements using a profilometer. The phases 
present were analyzed by X-ray diffraction technique with a glancing angle of 1º. By varying the applied voltage coatings of 
different interference colors were obtained. The morphology and roughness of the obtained oxides varied according to the 
applied voltage in each experience. With KOH and NaOH 1M the spark occurred at 46V and 41V, respectively. The start voltage 
of the spark decreased to 34V and 29V, respectively, when the electrolyte concentration increase from 1M to 2M. In pre-spark 
conditions oxides were of an average roughness of 22 nm. After the spark, the oxides became with roughness of 700 nm, limiting 
the oxidation conditions for the desired application. Anatase and rutile phases were not detected in the coatings, which would be 
amorphous or with crystalline fractions undetectable by XRD. 
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1. Introduction  

For the construction of a new mechanical heart valve design, a Ti-6Al-4V alloy, called Tigrade 5, ASTMB367, 
was selected for its good formability, and machinability, corrosion resistance and biocompatibility [Amerio (2006)]. 
These last two properties are mainly due to the formation, at room temperature, of TiO2 natural oxide, which can 
reach a thickness of 2 to 10 nm. However, this natural coating surface has poor mechanical properties, such as low 
hardness, and low wear and abrasion resistance [Leyens and Manfres (2003), Lutjering and Williams (2007) and 
Alajdem (1973)]. Therefore, it is convenient to coat the alloy with a layer ofTiO2 with controlled dimensions and 
characteristics to improve its performance.  

Some of the characteristics required by coatings that should be in contact with blood are the homogeneity and a 
low level of roughness (Ra ≤ 50 nm), so that they interact the least possible with blood cells, in order not to promote 
blood clots (thrombosis) [Amerio et al (2006)]. Another property that influences the bio and hemo compatibility of 
TiO2 coatings is their crystalline structure. At low pressure, TiO2 can present three crystalline phases: anatase, rutile 
orbrookite. According to the literature, both amorphous phases, such as anatase and rutile would be biocompatibles. 
Some authors argue that the decreasing order of biocompatibility ofTiO2 phases isrutile>anatase>amorphous [Maitz 
et al (2003)]. For this reason, the choice of crystalline coatings would be preferable for the intended application. 

One technique that can be used to obtain homogeneousTiO2 coatings with low roughness is the electrochemical 
anodic oxidation technique, with oxidation voltages below the production spark discharge phenomenon which 
produces porous oxides and a much rougher surface than desired. This phenomenon leads to a variation of the 
technique known as anodic oxidation with Anodic Spark Deposition by means of which porous oxides several 
microns thick can be obtained [Vera et al. (2009) and Songa et al (2009)]. The voltage at which the spark starts 
varies with the nature and concentration of the electrolyte employed [Sul et al (2001), Liu et al (2004), Kuromoto et 
al (2007) and Vera (2013)]. Also, this phenomenon is associated with the production of crystalline coatings 
[Diamanti (2007), Vera (2013)]. 

From the above, the primary objective of the present work is to define appropriate conditions (type of electrolyte, 
concentration and applied voltage) to obtain smooth and uniform coatings of TiO2 by anodic oxidation of Ti-6Al-4V 
alloy in alkaline electrolytes, to be used in the construction of cardiovascular devices. Further, this research aims at 
analyzing the structure of the coatings obtained and the response of current density versus time for each voltage 
applied in relation to the phenomena during the oxidations. 

2. Experimental  

As substrates to performing oxidations (2 cm x 1cm x 0.2 cm) samples of Ti-6Al-4V alloy metallographically 
prepared were used by following these steps: cleaning and cutting the material, mounting or inclusion of a piece in 
acrylic for manipulation; coarse and fine roughing with SiC abrasive papers of decreasing grain size from # 240 to     
# 2500; intermediate polishing with 1 micron diamond paste and ethylene glycol, final polishing with silica 
suspension and peroxide to speculate termination. Once samples were removed from the acrylic, they were cleaned 
with water and commercial detergent and were sprayed with alcohol and dried with hot air. 
Coatings were obtained by JMB CC-LPS-360DD source of DC power supply, which is a source of two modules 
where each one can work with a current of 0 - 3 A and voltages from 0 to 60 V or be connected in series and / or 
parallel. The source was connected to an electrochemical cell, consisting of a platinum cathode and an anode of the 
material to oxidize, immersed in a corresponding alkaline electrolyte. 
Various alkaline solutions were used as electrolytes: sodium hydroxide (Na OH) and potassium hydroxide (KOH) in 
concentrations of 0.1M, 1M and 2M and calcium hydroxide (Ca(OH)2) in 0.025M concentration because of low 
water solubility of  this substance. 
    Each electrolyte oxidation was performed at 10V, 30V and50V. Combining the source a galvanostatic and 
potentiostatic process of growth was scheduled so that at the beginning a constant current of 50 mA was used until 
the voltage reached the desired pre-set value which was held constant for 1 minute once it was achieved. 

Voltage and current density as a function of oxidation time were recorded in all oxidations. Immediately after the 
oxidation, test samples were washed in demineralized water and dried with hot air. 

Surface observations of the coatings were performed on an optical metallographic Arcanomicroscope.  
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To measure the roughness if the coatings a Time GroupTR200 profilometer was used. Two measurements of 
samples were performed in each direction (longitudinal and transverse)  

The phases present in the coatings were analyzed by X-ray diffraction (XRD) using a Philips PW 
3710diffractometer with a CuK(CuK1,5418 Å) wavelength, using a Philips  thin-film accessory allowing 
operation with a ground-beam geometry with incident angle of 1 °. 

3. Results and Discussion 

3.1. Analysis of the variation of voltage and current density with oxidation time 

 Figure 1 shows curves of voltage and current density variations versus time of oxidations carried out with KOH 
at different concentrations. In Figures 1 (a), (b) and (c) (above), the variation curves of voltage versus time are 
presented. Also, in Figures 1 (d), (e) and (f) (below) the corresponding variations of the current density versus time 
are displayed. 

Fig. 1. Voltage variation curves versus time (a, b and c) and current density as a function of time (d, e and f) for 
0.1M, 1M and 2M KOH electrolyte.  

On curves of voltage variation in Figure 1(a) and current density in Figure 1 (d) corresponding to the oxidations 
with0.1MKOHat 10V, 30V and50V it can be seen that during the first seconds of oxidation the current density was 
kept constant, while the voltage gradually increased until the pre set value for each oxidation time. The voltage was 
kept constant at that value and the current density began to decrease to a value which is substantially constant at the 
end of the process. This is due to the fact that for a given voltage value, the thickness of the oxide layer increases to 
a maximum value, also increasing its resistance to current passage. Oxide growth is stopped when the resistance 
increases to such an extent that the value of the current flowing decreases to a constant value but different from zero. 
Current flow indicates that reactions and dissolution of the oxide growth still occur. Controlling step in the oxide 
growth would become the titanium or oxygen diffusion through the coating, so that the speed is reduced 
significantly compared to the onset of oxidation, and to practical purposes the thickness of the oxide reaches a 
threshold, indicating that it depends on the applied voltage [Sharma (1992)].  

The same behavior is repeated on oxidations performed at 10V with 1M and 2M KOH, as shown in Figures 1 (b) 
and (e) and in Figures 1 (c) and (f), respectively.  
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In Figures 1(e) and (f), in the curves of current density corresponding to the oxidations with1M and 2MKOH it 
can be seen at 30V that increasing the current density within a few seconds it was possible to achieve the desired 
voltage of 30V(Figure 1(b) and (c)). This behaviour may be due to a phenomenon called breakdown, which is the 
point at which the electric field (between the internal and external interfaces of the oxide) is so high that cannot be 
supported along the entire thickness, and therefore which produces oxide dielectric breakdown in some places 
resulting in localized cracks and pores, causing decrease in strength and hence increased current density [Kuromoto 
(et al) (2007)].  

In experiments with1M and 2MKOH in which the voltage was preset at50V it can be seen that the voltage did not 
remain constant with time (Figure 1(b) and (c)). Experimentally, this coincided with the onset of electrical 
discharges with chip on the anode that occurred due to dielectric breakdown of the film described previously 
(breakdown). The high potential difference between the cathode and anode caused that established arcing between 
the different parts of the coating, resulting in localized spots of micro-plasma that produced an increased of current 
density [Diamanti (et al) (2010)], not stabilized as oxidations, produced at lower voltages. This intermittency was 
due to break cycles-bare substrate-oxidation [Vera (2013)]. This phenomenon began to spark with1MKOH with 
46Vand2MKOH with 34V. When working with the highest concentration (2M) spark phenomenon was constant and 
prevented to reach the preset voltage of 50V as shown in the corresponding curve in Figure 1(c).  

Fig. 2. Voltage variation curves versus time (a, b and c) and current density as a function of time (d, e and f) for 
0.1M, 1M and 2M NaOH electrolyte.  

 

Figure2 shows the variation curves of voltage and current density over time for different concentrations of 
NaOH. Figures 2 (a), (b) and (c) above, present the variation of voltage curves versus time. In Figures 2 (d), (e) and 
(f) below the corresponding variations of the current density as a function time are displayed. Figures 2(a) and (d), 
corresponding to the oxidations performed at 10V, 30V and50Vwith0.1MNaOH, followed the characteristic 
behavior of potentiostatic growth of anodic oxide previously described to oxidations conducted at the same voltages 
with 0.1MKOH. Figure 1(a) and (d) above also holds to oxidations conducted at 10Vwith 1M NaOH and 2MNaOH.  

In Figures 2(b) and (e), in the curves for the oxidation to 30Vwith 1M NaOH similar results as obtained and 
described for the same voltage with 1MKOH (Figures 1(b) and(e)), in which the breakdown causes localized 
cracking and consequent increase in the current density, may be observed. In the same Figures 2 (b) and (e), in the 
curves for the oxidation to 50Vwith 1M NaOH and in Figures 2(c) and (f), in the curves for 30Vand50V it is noted 
that voltage curves do not remain constant over time. Furthermore, Figures 2(b) and (c) show the curves of 50V do 
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not reach such value because with 1M NaOH (Figure 2(b)) the spark is started a t41V and 2M NaOH (Figure 2 (c) ) 
the spark began at 29V. In the latter case, the spark was observed even in the experience corresponding to 30 V.  

 

 

Fig. 3. Voltage variation and current density curves with time corresponding to 0.025M Ca(OH)2.  

Figures 3 (a) and (b) show the variation curves of voltage and current density versus time for 0.025M Ca(OH)2, 
which follow the characteristic behavior of anodic oxide growth describing potentiostatic oxidations performed 
previously with 0.1M KOH (Figure 1(a) and (d)) and was also observed in the oxidations performed with 0.1M 
NaOH (Figure 2(a) and (d)). 

Table 1 clearly shows the decrease in the spark starting voltage with increasing concentration of the alkaline 
electrolyte used.  

Table 1. Oxidation voltage of five samples in different electrolytes. 

Electrolytes KOH NaOH Ca (OH)2 

Concentration [M] 0.1 1 2 0.1 1 2 0.025 
Beginning of the spark 
voltage [V] 

> 50 46 34 > 50 41 29 > 50 

3.2. Color and morphology of coatings  

In Figures 4, 5 and 6shows the optical micrographs of coatings obtained with KOH, NaOH and Ca(OH)2 
respectively, with different electrolyte concentrations and voltages oxidation. It is noted that different interference 
colors obtained depending mainly on the applied voltage. In previous works the same authors of the present work, it 
has been shown that there is a direct relationship between color and coating thickness [Vera et al (2009) and Vera 
(2013)].  
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Fig. 4. Micrographs of coatings obtained with KOH.  

Fig. 5. Micrographs of coatings obtained with NaOH.  

Fig. 6. Micrographs of coatings obtained with Ca (OH)2.  

In this figures it can be observed that coatings have a predominantly uniform color with small portions of 
different tones, quasi-homogeneously distributed over the surface. This staining pattern may be attributed to grow 
oxides of different thickness over grains with different crystal orientations of and  phases of Ti-6Al-4V alloy 
employed as substrate [Vera (2013)]. Beyond small in homogeneities of colors, related to substrate texture, color 
uniformity of coatings over the whole of each sample is noteworthy, including the edges thereof, so that it highlights 
the absence variations in the thickness due to edge effects.  

The colors obtained for each voltage are identical to those reported in the literature for oxidations performed on 
the same substrate using H2SO4as electrolyte [Vera et al (2008)] and over pure commercial titanium (1 ASTM 
grade) using alkaline electrolytes as studied here [Sul et al (2001)]. 

This shows that for the experiments carried out with the same type of electrolyte, at the same voltage and varying 
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the concentration of the electrolyte, the interference colors obtained are slightly intensified with increasing 
concentration. This could be attributed primarily to variations in rates of formation of rust, due to changes in the 
conductivity of the electrolyte concentration, which can cause a change in the stoichiometry of the oxide. Another 
reason why the color of the oxide may vary, would be the formation of different fractions of crystal structures, 
which causes changes in density and refractive index of the oxide films formed [Colaccio et al. (2010) and Sul et al 
(2001)].  

In the micrographs of the oxides obtained with 2MKOH at 50V (Figure4) and 1Mand 2MNaOH at 50V (Figure 
5), dark spots on the colored background are observed. That is evidence for the formation of spark, product of 
located travel of the sparks on the anode surface. It is worth noting the qualitative difference between the localized 
spark observed in alkaline electrolytes with respect to widespread spark on the entire surface that occurs when using 
acidic electrolytes, as observed in previous works [Vera (2013), Kuromoto et al (2007)].  

Regarding the roughness measurements, the previously polished substrate to oxidation, they showed an average 
roughness of 20 nm, and once oxidized in conditions of voltage below the spark production, the oxide coatings were 
of an average roughness of 22nm and coatings obtained under post-spark resulted with a roughness of 700nm 
(measured in localized areas where there was the spark). These roughness values limit the oxidation conditions for 
the desired application, that is, the use of pre-spark oxidation conditions. 

. 

3.3. Structure of coatings  

Diffractograms in Figure7 shows that in all the samples analyzed, 0nly peaks corresponding to and  phases of 
Ti-6Al-4V (TiG5) appear in all alloy employed as a substrate, whose diffractogram is comparatively placed on the 
same Figure 7. This may be due to the fact that coatings are amorphous or that the crystalline fraction and / or the 
thickness of coatings are insufficient to identify crystalline phases by the XRD technique employed.While there is 
agreement in that the amorphous coatings are also biocompatible [Maitz et al (2003)], several reports indicate that a 
mixture of anatase and rutile is the most suitable for haemocompatible applications [Huang et al (2003), Schvezov et 
al (2010)], a reason why we intend to conduct heat treatments coatings obtained in pre-spark that fulfilled preset 
roughness conditions as a technique to crystallize in anatase and / or rutile phase.  

 

 

Fig. 7. X-ray diffractograms of samples oxidized with different electrolytes and voltages.  

4. Conclusions 

The study of anodic oxidation of Ti-6Al-4V alloy in alkaline electrolytes at different concentrations for 1 minute, 
at constant voltage, yielded the following conclusions: 

To obtain homogeneous coatings, amorphous and with low roughness, the voltage to work with is directly related 
to the type of electrolyte and its concentration, and must be less than the production of spark because this 
phenomenon causes the appearance of electrical shock sparks at the anode, forming a coating with a high degree of 
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roughness which would favor the formation of blood clots. These electrical discharges initiated at a certain voltage 
depending on the electrolyte and its concentration, show that the higher the concentration the lower the voltage at 
which electrical discharge begins. It was found that the effect of spark discharge is a localized phenomenon to 
working with these alkaline electrolytes. However, working with low enough voltage so that discharges by sparks do 
not appear, has resulted in an amorphous coating which reproduces the surface roughness of the substrate and in 
compliance with the desired values for the application of the manufacture of cardiovascular devices.  
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