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fixed degree. These conditions are weaker than the ordinary dif-

ferentiability given in previous works. More precisely, we consider ~ AMS CLASSIFICATION
differentiable functions in the sense LP. 41A28;41A10

1. Introduction

Letxj € R,1 < j < k, k € N, and let B; be disjoint pairwise closed intervals
centered at x; and radius » > 0. Let M be the space of equivalence class of
Lebesgue measurable real functions on I := UjlleBj.

Let 2 < p < oo and LP(I) be the space of functions h € M such that
fI |h|P ﬁ < 00, where |I| is the Lebesgue measure of I. If h € LP(I), we consider

the L? norm
1
1\»
Ikl == </|h|p—> .
P ]

Foreach0 < € < 1,wealso put [|h]pe = [|h||p, where h¢ (t) = h(e(t—x;) +x;),

t € B;. Therefore,
llpe = (/ L )‘1’
be Ie |Iel ’

where I = U]I'czl Bj with Bj¢ = [x; — re, x; + re].
Let K be a closed convex subset of LP(I), and let f,f, € LP(I). A function

hpe = hpe(fi,f2) € Kis called the best simultaneous approximation (b.s.a.) to
fiand f> from K in LP(I¢) (LP-b.s.a.), if
he)
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Existence and uniqueness theorems for the b.s.a. are given in [20, Corollary 3.5].

If the net {h,¢} has a limit in K as € — 0, this limit is called the best
simultaneous local approximation (b.s.La.) in LP to fi and f, from K on {x1, . . ., x}
(LP-b.s.l.a.).

For n € N U {0}, we will denote by IT" the class of algebraic polynomials of
degree at most .

In 1934, Walsh proved in [21] that the Taylor polynomial of degree n for an
analytic function f can be obtained by taking the limit as € — 0 of the best
Chebyshev approximation from IT" to f on the disk |z| < €. The concept of
best local approximation has been introduced and developed by Chui et al. in
[4] for a single function. Later, several authors [2, 3, 12, 16, 22] have studied this
problem.

On the other hand, the subject of simultaneous approximation also has been
extensively treated. Existence, uniqueness, and characterization theorems can
be seenin [11, 15, 19].

In [13], the authors proved that the L2-b.s.a. to two functions is identical with
the best L2-approximation to the mean value of the functions. It is well known
that the LP-b.s.a., in general, does not match with the best L?-approximation to
the mean of the functions [14]. However, it is useful to know whether they are
close when we have a small enough domain.

In [10], the authors have studied the asymptotic behavior of a net of b.s.a. on
the intervals [—¢, €] to N functions from I1", respect to the norm Z]i s =
hllpes 1 < p < 00,as€ — 0. They showed that if the functions f; are sufficiently
differentiable, the set of cluster points of the net is a convex compact set and it is
contained in the convex hull of the Taylor polynomials of the functions at zero.

The problem of best simultaneous LP-approximation to two functions from
1" it was considered again in [6, 7]. The authors proved that the LP-b.s.a. to
two functions on an interval converges to the Taylor polynomial of degree n
of the mean value of functions when the measure of interval tends to zero.
Best simultaneous LP-approximation for many intervals was also considered in
[7, 8]. In these papers, interpolation theorems for the LP-b.s.a. to two functions
were given. As a consequence, they obtained that a net of LP-b.s.a. is uniformly
bounded on compact sets, when the measure of the domain tends to zero.
Moreover, the authors proved that the set of cluster points of the net is contained
in the set of solutions of a discrete minimization problem. More results about
these topics can be seen in [9]. In all these works, the ordinary differentiability
of functions is assumed.

In this paper, we generalize several results presented in [6]-[10] relative to
b.s.l.a. We study the asymptotic behavior of a net of b.s.a. to two functions from
a convex set in LP(I), 2 < p < 00, as € — 0. In the particular case, where
K = I1", we given some results about the existence and characterization of the
b.s.La. in L to two functions, under weaker conditions of differentiability. More
precisely, we consider differentiable functions in the sense L?.
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We remark that it is important to find the limit of the b.s.a., since as such
it provides useful qualitative and analytic information concerning the b.s.a. on
small regions, which is difficult to obtain from a strictly numerical treatment.

2. Asymptotic behavior of the b.s.a. from a convex set

In this section, we study the asymptotic behavior of the net {4} of LP-b.s.a. to
two functions f; and f, from a convex set K on I, as € — 0.

We consider the function G, : R — R and H, : R? — [0, +00) defined by
Gp(t) = |tP~Lsgn(t) and

1— |)ZC|P_1 sgn(x)sgn(y)

xfp 2 :
1— ‘ p ‘ sign(x)sgn(y)

if |x[ > |y,

Hy(x,y) = L= sn@sgn(y) (1)
N —— if x| < yl, x # 5,
1— )f sgn(x)sgn(y)
-1 ifx=y.
It is easily seen that for all x, y € R,
Gp(x) — Gp(y) = (x — y)Hp(x, y). (2)
Let ap, By : [0, 1] — [0, 4+-00) be given by
1 — !
— ift#1 14 P!
pn=,1=r T and g = .
p—1  ift=1 T
A trivial verification shows that
1
<o) <p-—1 and 3 <Bpt) <1, tel01] (3)

To prove the next lemma, we use the following property of real numbers.
Lemma 2.1. It verifies that
1
2

Proof. From (1) and (3), we have

X~y
2

lx +yl + |x — y| = 2max{|x], [y]}, xy€R. (4)
x+y‘

p-2 x—y[\P 2
) =men=e-o(2+F2)

xy€R. (5)

x+y
2

1
5 max{lad, yIP~% < Hp(x,y) < (p — 1) max{|x], [y|}f 2.
So, (5) it is valid by (4). O
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The following theorem is an immediate consequence of [18, Theorem 1.6].

Theorem 2.2. Let K be a closed convex subset of LP(I). Assume f1, f, € LP(I) such
that Epe # 0 for some €. Then hy ¢ is the unique element in K satisfying

I Ep,e Ep,e

Epé Ep,é
X(l’lpg—h)mio h e K.

For Ep ¢ # 0, we will denote by v, . the weight function given by

1
Vpe ‘= ﬁHp(fl - hp,e hp,e —fz) (6)
Ep,e
We consider the seminorm on L (I) defined by

1
uw%=(/mﬁﬁ),hewm.

Given g,h € LP(I), we will denote by )’17; (g, h) the one-sided Gateaux
derivative of the seminorm || - ll,, atgin the direction h, i.e.,

_ hpe
P 810 = / 1

Lemma 2.3. It verifies that

(®=2?
[vpel 2, = =277 -
Proof. By the monotonicity of norm || - | o Lemma 2.1 and the Minkowski
et
inequality, we have
2 h+h h—f

B ||VPEH I ) ( TP e+

1t 1 L —
=p-n) B R (®)

2 2 pe

By the inequalities of Minkowski and Clarkson, respectively, we have

‘ h+h h-f
2 2 |,

- h+h h—15H

=1 2 T2

— hp,e +

— hp,e

P j23
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l
< [ h+th hp,e f1 — A |F
2 p,e 2 e
=
< (272 (U = hpelthe + 1o = Bpellhe) )" =27 Bpee  (9)
From (8) and (9), we obtain (7). O

We observe that if E,c = 0, then f; = f, on I, and hence h ¢ is the best

approximation to fith +f 2 in the LP norm on I.. We can now establish a relationship
between the b.s.a. to two functions and a weighted best approximation to the
mean value of the functions whenever E, . # 0.

Theorem 2.4. Let K be a closed convex subset of LP(I). Assume f1, f, € LP(I) such
that E, ¢ # 0. Then hy is a best approximation to ]# from K with respect to
“ ' ”vp,e» ie.,

ﬁ;ﬁ—h  heKk

Vpe

Vp)g

Proof. Let h € K. According to (2), the definition of v, ¢, and Theorem 2.2, we

get
+ +
ymciﬁ—%m%—ozﬁ(zﬁ—@J%ehﬁi
= / 2Ep p—2 (GP(fl hP)‘f) — Gp(hp,e _](2)) (hp,e — )m
l_hpe> <hpe_f2)) pé
= G ~ -G : (h h)——
f( P( Epe e e oL
:%/ Si=hpe|” Sg (1 hpe)
2 Ie Epe EPE
fo—hpe b1 <2 hp€> 1
+ - sg hye —h)— > 0. 10
Epe . )"V (10
Now, the proof immediately follows from (10) and Theorem 2.2. O

The following result provide us a useful and important property for a red
{hp,} of b.s.a. to two functions from a convex set in LF(I). It will be used to
study the asymptotic behavior of the net of b.s.a.

Theorem 2.5. Let K be a closed convex subset of LP(I). Assume f1,f, € LP(I) such
that Epe # 0. Then
1 =2 2

|h = hpel,, < (p—D22 > fmztfz L

, hek.
X3
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Proof. Let h € K. From (10), we have fle <ﬁ; z_ hp,6) (hpe — h)% > 0, and

SO
=, = [ (B2 = b) b = 0228

Vpe 2 I

By the Hoélder inequality;, it follows that

1 1

3 2
h—hy| </ LTI (s 0 I P i
H P,GHVP,E— L 2 |I€|% ( p,e)|16|%
+
= e N . (an
Vp,e

Since 1% + 1%2 = 1, applying the Holder inequality, we obtain

h+h _n 2
2 Ve
:/fl-l-fz_hz"p_,e:f f1+f2_h2 1 Vpe
Ll 2 Ze | I 2 ; e2
€ € Le| [Ie| »
h+£h 2
<R el
pe r
In consequence, from (11) and Lemma 2.3, we see that
(p-2?
|h = hpe], < Jﬂ_h <(p_1)%2PT -M_h _
Pellvee = 2 = 2
Vpe ps€ D

An immediate consequence of this result is the following corollary.

Corollary 2.6. Let K be a closed convex subset of LP(I). Assume fi,f, € LP(I)
such that Epe # 0,0 < € < €. If there are c € N U {0} and h € K such that

J# _ h” — O(%) ase — 0, then ||h — hy, va = O(e) ase — 0.
pe ¢

Remark 2.7. We observe thatif fj = f, on I, for some 0 < €9 < 1,thenf; = f,
hth

on I and h, ¢ is the best approximation to <5 in the Lf norm, 0 < € < ¢o.
In consequence, if there are c € N U {0} and h € K such that # - h‘ =
p.€

O(e), then [|h — |, . = O(e%), as € — 0.

Next, we give a result about behavior of the error. The proof is mutatis
mutandis the same as for [9, Theorem 4.1].
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Theorem 2.8. Let K be a closed convex subset of LP(I). Assume f1,f, € LP(I). If
there are c € N U {0} and h € K such that # — hH = 0(c“) ase — 0,
p-€

then

Epe = 2P + 0@ as € — 0.

X3

h-h
2

Furthermore, E, . = O(1) ase€ — 0.

Next, we state our main result about asymptotic behavior of the net {h} of
IP-bs.a,ase — 0.

Theorem 2.9. Let K be a closed convex subset of LF(I). Assume f1,f, € LP(I).
If there are c € N U {0} and h € K such that lim i{)lf e |A _f2HP€ # 0 and
€e— >

flszZ - h” = O(¢°) as e — 0, then
pe€

(/ |h— hpc| |f1 f2|p2|1|>%— ( i sz_l> as € — 0.

(12)
Proof. We claim that
— P2 (=22 2
f}h—hp,e\z L PRl LAY BT
I 2 |Ie| 2 ps€

Indeed, sinceliminf e~ ||y — f2||, . # O, there exists €y > 0 such that E,, # 0
€—0 bs€ ’

and Hf1 —szpe # 0,0 < € < €. From Lemma 2.1 and Theorem 2.5, we obtain

1
1 P21 \?
(/ ’h—hp,e}zﬁ |1_|>
I ZEP:G €

= ||h_hp’€HVP’e <@- 1)22( 25) A ;—fz h

h—-F
2

b

pe

and so we get (13).

By Theorem 2.8, we have = O(1) ase€ — 0. Now, according to (13)

Epe
”fl_fZ ”p,s
and the hypothesis, we complete the proof of (12). ]

Remark 2.10. Corollary 2.6 and Theorems 2.8 and 2.9 remain valid if O(¢) is
replaced by 0(¢“"!) as € — 0, everywhere.
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3. Existence of b.s.l.a. in LP spaces from I1"

In this section, we study the behavior of net {h,} of b.s.a. to two functions f;
and f, in LP(I¢) when K = I1",n € NU {0}, as € — 0. We will show that under
some suitable conditions on smoothness of f; and f;, the b.s.La. exists, is unique,
and is characterized as the solution of a certain optimization problem involving
only the values of the functions and its derivatives up to a order depending on
n and k at the points x1, . . ., Xk.

We recall the following pointwise smoothness condition which was intro-
duced by Calderén and Zygmund in [1]. Let m € N U {0}, f € LP(I) and let
a be an interior point of I. We say that the function f € t),(a) if there is h € 1™
for which

1 a+e %,

<— If — h|p) =o0(e™) as € — 0. (14)
2¢ Jo—e

The number 1 (a) € R is called the m-th LP-derivative of f at a and denoted

by ﬁm) (a). When m = 0, then h = h(a) is also called LP-limit of f at a. If ﬁm) (a)

exists, then it is unique. Moreover, all the derivatives fp(s) (), 0 < s < m, exist,
and

1 ate f(r) .
z—f|f R

r=0

1
P\ »p

=o0(e°) as €—>0, 0<s<m.

(15)
To prove the next lemma, we use the following property of real numbers.

|1x19 — |2/9] < =2l f0<qg=1 <R (6
glx —z|||x|97  + 2|97} if1 < g < o0

Lemma 3.1. Let m € N U {0} and f € tpm(a). The following conditions are
equivalent.

(a) (z)m—Oor(lz)m>0andf(’)(a):0,05ifm—l;

q

®) 5 a—+€ If|* - (a) —a)"| | =o0(™)ase — 0, forallg e R, 0 <

q=7p;
(c) 1111%) = a_+€ ef—m = |y|% forallq € R, 0 < q < p, wherey = (mq +

(m)
—= (@)

1) qum,“ .

Proof.

(a) = (b) Letqg € Rbesuch that 0 < g <p,and we write B, = [a—€,a+€].
From (15) and Lemma [17, Lemma 1.12.3], it follows that

1 e
(L] b

9\ q
) =o0(") as e€— 0. (17)
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If 0 < g < 1, from (16), it follows immediately that

I

Em

q

T " @) (- —aym

m! em

1

2e Bae

(m) q
1
< (Z/B P_f”mfa)(. — o™ )

and so (b) holds by (17). Now assume 1 < g < 00. According to (16), the Holder
inequality and the Minkowski inequality we have

q
1 1 @ -an
2¢ Jp,, || €™ m! e
_ q-1
— 2 Ba’eq em m! en e m! emn
a L
< if S B @c—am [\’
=4 2¢ Jp,, €™ m! emn
~
—1|7=1
lf F1 IR @ c—am [T
X | — — +
2¢ Jp,, || €™ m! emn
(m) N
1 "(a !
<qe " —f i ()(-—a)’“
2e Jp,, m!
q-1 -1
l/ L A T lf £7@ ¢ —aym [\
X JR— —_— JR—
2¢ Jp, |€™ 2¢ Jp,. | m! em
Since
1
(m) q\ g (m)
1A @ —aym 1A @)
i = 1 q =
<2€ fgm m! en (mq +1) m! o
and
1 £\ 1 " (a) 7 1
—/ Sl ) =e —/ —L——c-a" | +bl
2e Jp,, |€™ 2e Jp,, m!
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1

.
o )q < |yl + 1,0 < € < €. Therefore,

1
1\ q
).

] . 1
there is €g > 0 that satisfies (Z f Bac

£

Em

1@ =’

m! em

1
2€ Bae

1 f(m)(a)
q—1,—m p . m
=2qQ+yD* e (26 fa,e ',/ | (—a

0 < € < €, and thus (b) holds by (17).

(b) = (¢) It is clear from the inequality

(ifmffj—ww

q
_ i/ S if £ @ —a
[\ 2e By | €™ 2¢ Jp,. | m! em
q
L S| A" @ (¢ —ay
~ 2€ Jp,, ||€m m! em '
1

(c) = (a) Suppose m > 0. By the hypothesis (i 5. mp)p = o(e™ 1) as
€ — 0. Therefore, from (15), we havef(l)(a) =0,0<i<m-—1. O

From now on, by simplicity, we put r = 1 and we make the assumption
n+1l=kc+d, ceNU{0}, 0<d<k

Lemma 3.2. Let m € N U {0} be such that m < c. Assume f € tﬁq(xj), 1<j<k
The following conditions are equivalent.

(a) (z)m—Oor(lz)m>Oandf(z)(x])_o 0<i<m—1,1§j§k;

N mp1y (m)
(b) lim ¢ e = Cﬂﬁ(ﬂ)

m!lkP

Proof. We observe that

k

1 1 f I
M fllpe = —/ I
kll’ ;26 B | €

(a) = (b) From Lemma 3.1 we deduce that lim._, i f B
f ””(x,)

f p

Em

72 , and so (b) holds.
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(b) = (a) Suppose m > 0. By the hypothesis ||f ||y = o(e™ ase — 0. So,
1 z f ‘l’
— Py < —/ Pl =o@E™ ) as e— 0.
(s f ) = (Xa ) v
]_
In consequence, from (15), we obtainf;i) (x)=00<i<m—-1,1<j<k [

As an immediate consequence from Lemma 3.2 and Theorem 2.8 we have the
following remark.

Remark 3.3. Let m € N U {0} be such that m < c. Assume f1,f, € tfn(xj),
1<j<kIf@m=0or(i)m > 0and (fi —f)) (x) =0,0 <i<m—1,
1 <j <k, then Epe = O(e™) ase — 0.

Forh € " and fi, f; € £, (%)), 1 < j < k, we write

(m)
dpi(fi. o, h) = r?lgllsz (fi - (x])

Here, IT™! = {0}. We consider a basis of I1", {ug} 1=v<k U {We}1<¢<q which

0<s<c—1

P
—(—x)" —g

satisfies
(Z)(x]) = 3(1])(sv)a W((gi)(xj) =0, 0<i<c—1 1<j= k,

where § is the Kronecker delta function. Let A be the cluster point set of the net

{hp,e}-

Theorem 3.4. Let m € N U {0} be such that m < c. Assume f1,f» € tfn(xj),
1 <j<klIf(i)m=0or(ii)) m > 0and (f —fz)g)(xj) =0,0<i<m-—1,
1 < j <k, then A is contained in the set M(f1,f2) of solutions of the following
minimization problem:

k
min Y d(fi,fo,h) :=E
hEl_I”jzl P (18)

(i+f)y) ()
2

with the constrains h® (xj) = ,0<i<m—11<j<k

If m = 0, no constrain on I1" is assumed.

Proof. Lethg € A, then there exist some sequence € |, 0such that k¢ converges
to hyp. Set1 <j < kand 1 <[ < 2. From the Minkowski inequality, we have

1
. o
I (), @ Y
e fy e - e

i=0
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1
1 2\’
=50 [, 1=t

1
O P\ p
1 " (fl)p (x7) ‘
+ | — -y ——(—x) . 19
2y 1! ;} (=) (19)

1
We observe that (é f B Vl — hpe |P )p = O(Ep,). If (i) or (ii) holds, according
to Remark 3.3, we get £, = O(e™) as € — 0. In consequence, (15), (19) and
the change of variable x — x; = €(y — x;), y € Bj imply that

1
0] P\ p
m (fi), (%) .
/Bh;)g ZPTE’(-—xj)’ =0(™), as € — 0.
; !

i=0
From the equivalence of the norms on [1", there exists a constant M’ > 0 such
that [fnax |h(’)(x)| <M (f |h|p) h € T1". Hence ‘(fl hpe) (x])e’ m‘ =
O(l) as e — 0, and so
Bpe () = 0(1) and  (fi = hpe)y (x) = O™,
0<i<c¢c—1, as € — 0. (20)
Since
(i -y () =0, 0<i<m-—1, (21)

we deduce that lim._, (fl — hp,e);’) (xj)ei_'” = d;j,;0 < i < m— 1, for some
subsequence, which we again denote in the same way. Thus,

" (fi— hpe)y ()

lim - €M — xj)i =: hyj, uniformly on B;, (22)
e—>0 4 il
i=0
— 1) (x:
where hj; = w( x)™ + Z d’]( — xJ)’ Expanding (h,¢)€ by its

Taylor polynomial at x; up to order m — 1 we obtain

€ " (fi = hpe) ()
}Jl(,) R ()
=" (f)° (t)—Z €T — ) — (=)

o (fz)(’) () |
=e ") @) — Z PT]el_m(t — xj)’

i=0
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m (fi - hpé)(l) (x})

Z g z—m(t . xj)i

i=0
(m) (m)
Y (x;) R E @) ;
7t~ xp) LT (- ), (23)
! m!
t € Bj, where &j(t) € Bj. Set
1
() P\ p
i (fz) .
Me = Zf e () — (= xp)!
i= 0
and
h(””(x) h”’”(&()) ay
By (23) and the Minkowski inequality, we have
1
P\ p

) (fz hpe>“<xj> I

e Ui~ hpel - Z/ e~ )
JzO

< Ale + Qe. (24)

Clearly, lim¢_,o ;e = 0 by (15), and lim¢_,g o = 0. Therefore, (22) and (24)
yield

tim e i — by,

(i — ho) " )<xJ>

m—1 di' .
= Z/ = x)" 4+ Z i_'](. —x)' . (25)
i=0

On the other hand, let 1 € TI” be such that h® (%)) = (fl)l(j) (%), 0 <i <
m — 1, 1 <j < k. Then there exist two sets of real numbers (independent of €),
say {csy} 1<v<k and {be}1 <.<4, that satisfies

m<s<c—1

k c—1

(fl (S) (ey)usy + Z bew, + Z Z CsyUsy.

1 s=0 y=1 s=m

,_.

m—

M»

1%

m—1

We choose {csy} 1=v<k such that gj = > C’J( — x])’ verifies that

0<s<m—1 i=0
(fi — h) 0 (x;) (Gi=hp" ) g

p](fl)fZ)h) xj)m—gj
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We consider the following net of polynomials in IT",

k m—1 k c—1
8 = Z Z ((fl)}(:) (xy) — CSVE ) Ugy + Z bew, + Z Z CoyUsy.
v=1 s=0 y=1 s=m

From (21) we observe that géi) (xj) = (fl)}(;) (xj) — cijem_i, 1<j<k0<ic<
m—1,1 < | < 2. Expanding g¢ by its Taylor polynomial at x; up to order m — 1,
we get

g(’)( ) .
_m(fl ge) () =€ m(f (t)_z J zm x]')l

(m)
(i) m
_ &T’(t — x;)
@
m (fi), (%) .
=e " (fl)6 (t) — Z pTe’_m(t - xj)’
i=0
(m)
P P () DO
+g+ Pm—!(t—xj) e
where 7(t) € Bj¢. By the Minkowski inequality, we obtain
1
P\ p
(x,) - m’(njo))
Hfl &e Hpe Z/ (- _xj)m+(gj <Ale-
As g converges to h uniformly on I, as € — 0, we have
( ) p
lim €~ b ) 26
lim €™ |fi = ge |, Z —— (= x)" +g| . (26)

Since hy ¢ is the b.s.a. to f; and f2 from IT1" in LP(I.), (25), and (26) leads to

k (fl hO (m) (X) m—1 di' ‘
> mﬁm<zz/ LRI Sh 1
j=1 =0

j=1 I=1

p

2
= lim e Z ”fl hpe ‘P < lime P Z Hfl — &e Hg,é
I=1

e—0

L2 | =my ) '
=zzﬁ —— -yt
j = J
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for all h € I1" such that h(i)(xj) = (fl)(i) (x),0<i<m-11=<j<k
According to (20), we get h(()i) (x) = (f );0 (x),0<i<m-1,1=<j<kand

so (21) shows that hy € M(f1, f2). O

Next, we establish a result which be need later.

Lemma3.5. Letm € NU{0} besuch thatm < ¢, andletf,,f, € tfn(xj), 1<j<k
Assume (i) m = 0 or (ii)) m > Oand(fl—fz)(l)(xj) =00<i<m-11<j<k
If ho, hy € M(f1,f2), then

W) =), 0<i<m 1<j<k (27)
In addition, if m < ¢ — 1 we have
, (i
h (x) = (fl erfz> (x), O<i<m, 1<j<k (28)
p

Proof. Let ho,h; € M(f1,f2). Then there exist (go1,- - ->Lok)> (€11>- - ->g1k) €
"1 x ... x T~ ! such that

() p
(fl) hﬁ”’)(x)
E= / W 09 m - Le—xm—g)| |
0<s<1
LetY =TI" x " ! x ... xI"™ L, Z=M"x---xIMandletp : Z —

1

[0, +00) be the norm defined by p(z,...,2) = ( =1 fB |Z]|p) .Let A, T" be
the convex sets in Y and Z given by

. + X
A= {(h,gl,...,gk) eY:hx) = M%,Ofifm—l,l gjfk} and
R (x1) m R (xi0) m
F={( p_ (=x)" =g - C—x)" —ge):(hg,....8) €Ay
1
It is easy to see that the norm v(vi,v2) = (p(11)? + p(v2)P)? is strictly
) (x1) ) (k)
convex on Z x Z. Set vi = Ul e = x)™,. ..,(flpm—,xk(' - Xk)m),
)(m)( ) )(m)( ) (m)
vy = (GZ A ( — . T~ Xk)m) and u; = (—hs ).~

x)™ = gls- s B (xk)(

best approximation to (v, v;) from the convex set {(u,u) : u € I'} respect
to v. Since this problem has a unique solution [18, Theorem 1.14], we have

(m) (m)
h{ (x,) hy" (x)( —x)™ —g1j1 < j < k, and so (27) holds.

x)™" — gsk) € I'. We observe that (ug, us) is a

(- x])m — 80j =
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Now, assume m < ¢ — 1 and let go € M(fi,f2). Clearly, there exists h3 € IT"
such that h(l) (%) = (1+f2) (xj),0 < i <m,1 < j < k. An straightforward
P

computation shows that

2 I+1 (m) p
-1 —
d;’fj(fl,fz,hﬁ = | ) (ﬁ 2f2>p () —x)™
2 _ (m) p
- _'/ (fl fz) G — x)"
m: Bj 2 p
and hence
k k (m) p
m 2 I — m
de,j(fl,fz,h3) = A ( 2f2> () (- —x)™| <E.
j=1 j=1"%i p
So, h3 € M(f1,f2), and consequently (28) holds by (27). O

Forc e Nandfi,f; € tf_l(xj), 1 < j < k, we will denote by
Aj = {i:OfiSc—land(fl —fz)f,i)(xj);éo}.

If Aj # 0, we write mj = min A; — 1, otherwise m; = ¢ — 1. We define m =
m(fy,f2) ;=min{m; : 1 <j < k}L.Ifc=0andfi,f € tg(xj),l <j <k, we put
m = —1. Observe that —1 <m < ¢ — 1,and if m > —1, then
(i —f)) ) =0, 0<i<wm l<j<k
We complete the study by considering four cases:
Q) m=c—1;
Q) m=c—2andd = 0;
(3 m=c—2andd > 0;
(4) m<c-—3.

Cases (1) or (2)

We will now show the existence and characterization for the LP-b.s.l.a. to two
functions f; and f, from IT", in the case (1) or (2).

Theorem 3.6. Assume fi,f, € LP(I). Consider the following condition:
(@) fi.fo € tf(xj), 1<j<kandc=0;

b) ffpetl (x)1<j<km=c—2andd=0;

(©) fi.fa € tf(xj), l1<j<km=c—1andd > 0.
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If (a), (b) or (c) holds, then there exists the LP-b.s.l.a. to fi and f, from T1" on
{x1,...,xx}, and it is the unique solution of the minimization problem given in
(18).
Proof. Let1 <j < kand1 <[ < 2. Asin the proof of Theorem 3.4, we have
Ky () = O(1)  and
(fi= hpe)y () = O™, 0<i<c—1, as e—0. (29

Therefore, if (a), (b), or (c) holds, then the net {h, ¢} is uniformly bounded on I,
and so A # (). Now, we observe that under our assumptions, the problem (18)
has a unique solution by Lemma 3.5, and so we conclude that there exists the
LP-b.sla.to f; and f, from 1" on {x1, . . ., x¢}, and it is the solution of (18). [

Cases (3) or (4)

For f1,f» € tf_l(xj), 1 <j < k, we observe that the (m + 1)-th LP-derivative of
f1 and f; at x; exist, because m + 1 < ¢ — 1 in the cases (3) or (4).
Next, we establish two results which be need later.

Lemma 3.7. Assume fi,f € tffl(xj), 1 < j < k. Consider the family of
measurable sets given by

1
Cie == {t € Bj\ |:xj — g) |

‘(f fZ)F-H)( 1)‘

] ‘ (h —f)®

m+1

>§j}, 0<e<l,

where & =
€ < €.

. Then there exists €g > 0 such that |Cj¢| > %, 0 <
P (m+1) _ _ 3
roof. If (fi — f2)p (xj)) = 0, then |Cj¢| = 7,0 < € < 1. Suppose that

(h — fz)(mH)(xj) # 0. By Lemma 3.1, we deduce that

+1
h—f| |fi-py )
em+1 (m + 1)!
converges in measure to 0 on Bj as € — 0.
1 1
Aj,e = tEBj\ Xj — 8, ]-l-
- ‘gﬁ — )

(m+1)!

( xj)m-i-l

Set
h-—®

Em—i—l
< éj} -

(t . xj)W-ﬁ-l
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It follows immediately that lim¢ ¢ |Aje| = %. Since Aje C Cje, the proof is
complete. ]

Lemma 3.8. Assumefi,f, € tf_l(xj), 1 < j < k. Consider the family {Cj e }o<e<e,
of Lemma 3.7. Then there exists a constant s > 0, non depending on €, such that

1Alloo,C;e 3
L}>— 0<e<e, hell (30)
s

— b

{te Cic : |h(t)] >

Proof. We observe that the statement is obvious for constant polynomials. For
0 # h(t) = Y o, cst’, we denote g(t) = MO From Lemma 3.7,1Ciel = %,

max |c|”
0<s<n

0 < € < €. By the continuity of the measure, there is 8 = B(Cj¢,g) > 0 such
that

3

mm%}
p

From the equivalence of the norms on IT", there exist constants M, M’ > 0 such
that

{te Cie : Ig(t)] >

0 <M < |iglloos; < M, (32)

thus using (31), we obtain

3
< —

=3 (33)

HtEC' ] (t)|>%/}
]’E’g :3

Suppose that {8} is not bounded. Then there are subsequences {Cj,} and {g;} C
I1" such that ) = B(Cj;, &) — ooasl — oo.From (32), thereis a subsequence
of {g7}, that we denote in the same way, which converges to a polynomial gy €
IT"\{0} on B;. Let 0 < s < l|golloc,B; verifying

15
[{t € B : 1g0(1)| > s} = ¢ (34)

Denote C = {t € B; : |go(t)| > s}. Clearly, there exists a nonnegative integer I
such that
M s
— < p—
B2

Then we get

S
and lgo(®] — @Ml < 5, 1=l teEB;

M/
cn Cj,eC {tECj,6:|gl(t)| > F}, 1> 1Iy. (35)
1

Since |Cj\C| < |B)\C| < %6 by (34), according to (33) and (35), we have
1 1 7

> |CNCie|l =|Cie]l = 1Cie\C| = = — — = —,
> | jel =1Giel =1Ge\Cl =2 5 — 7= ¢

| W
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which is a contradiction. Therefore, the set {8} is bounded. So, from (31) we
obtain (30) with s = sup{S}. OJ

Letf1,f» € tffl(xj), 1 <j <k.Since —1 < m < ¢ — 2, we see that the set
T(fifo) = {is 1 =) < kand (i — ) ) # 0]
is nonempty. Now, we establish a main result of this section.

Theorem 3.9. Assume fi,f, € LP(I).
(@) Iffi,f2 € tf(xj), 1 <j<k andd > 0, then for every 0 < i < c — 1, we have

(@) )
o) = 01, (B52 —hye) () = 0,

JeTiLp) as € —0
(l) . . b .
(552 o) ) = 0™,
j & (. f2)
(36)
(b) Iffi.f2 € tf_l(xj), 1 <j<kandd =0, then forevery0 < i < c— 1, we
have
® .
(552 o) @) = 01D, e ifinfo)
I()i) . > as € — 0.
(42 ) 050 = O™ 170, g w(ffo
(37)

Proof. We prove (a); the proof of (b) is similar, mutatis mutandis. Letj € t(f1,f2)
and let {Cj ¢ }o<e<¢, be the family of Lemma 3.8. Since J# € tf(xj), 1<j<k
there exists g € I1" such that

f1+f2_g

5 =0() as €—0, (38)

ps€

and

‘ 6
g(l)(xj):<f1;_ﬁ) (), 0<i<c—1, 1<j<k
p

As (g —hp)€ € I1" on Bj, Lemma 3.8 implies that there exists a constant s > 0,
non depending on ¢, such that

n@—%@wm@1
N

3
>—, 0<e<eg.
8

{t (S Cj,e : |(g— hp,e)é(t)l =
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According to the change of variable x — xj = €(y — x;), y € Bj, from Lemma 3.7,
we have

-2
[ le=t’ = Ii—szhg hpo | | P2l
p—2
> (g — hpe)} 0 <€ < e
k- Jg,
367
> 8k 511§ — hpe)© ||ooc]€ (39)

By Lemma 3.2, lim._, o e =D f; —fallpe # 0andlime oe™* Hfl —hh Hp’é =
+00. So, (38), (39), and Theorem 2.9 imply that

1@ = hpe)€lloog, = O(€%) as € — 0. (40)
Letii =n+1land B, = {t — xj : t € Bj}. Since ‘Eﬂ = 1, from [5, Theorem

1.3], there exists a constant y > 0, depending on n and B, such that

‘h(i)(0)| Y . n B s
- < Ep7 |hlloo,rs, 0<i<mn, hell”, EC BjwithlE| >0,
1!

Since h = (g — hp)(-€ +x) € M"andE = {t —x; : t € Cic} C By with
|E| = |Cje| = 3, we obtain

e =m0V
. |E| Il = 1 |n||(g 15, 10,

< 2"y g = hp) ooy

0 <i<mn0 < e < €. From (40) we obtain ‘(g — hp,e)(i)(xj)| = O(¢ ") as
€ - 0,0<i<candso

hi)(xj) = O(1) and

() )
(fl -;fz — hpf) (x) =0(""), 0<i<c—1, as e—0.
p
_ ()
According to (29), we have h}(,fﬁﬂ) (xj)) = O(1) and (flzsz - hp,e) (x) =
p

O™ 1= 0 <i<c—1,j ¢ t(fi,fr),ase€ — 0.Sincem +1 < c— 1,
the proof is complete. ]

Let us mention an important consequence of Theorem 3.9. We prove the
existence and characterization of the LP-b.s.l.a. when k = 1.
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Theorem 3.10. Assume fi,f € th (x1). Then there exists the LP-b.s.La. to f1 and
fo from I1" on {x1}, and it is the unique g € T1" defined by the n+ 1 interpolation

conditions
‘ )
() = <f1 ifz) (x1), 0<i<n
P

Proof. Ask = 1,thenn+1 = ¢,d = 0,and 7(f;,2) = {1}. According to
Theorem 3.9 (b), we have (ﬁ+f2 - hpg> (x1) =o0(e™),1 <i<mn,ase — 0.
This completes the proof. ]

Let hp € A. Under the same hypotheses of Theorem 3.9, if (3) or (4) holds,
from (28), (36), and (37) it follows that

W = (142)" @) 0size-1 jethif
h<’><1>—(f‘+f2) (), 0<i=T+1 jéT(fif).

Ifn+1=ke,m+1 < c—2,and #(t(f1,f2)) < k, the above conditions do not
uniquely determine the polynomial /y. Does it remain valid the last equality for
m+1 <i<c—1landj ¢ t(f1,f2)? The answer is no, as shown in the following
example.

Example 3.11. Let p = 4 and n = 3. Consider x; = (—l)j,j =12 filx) =
(x—1)* and fo(x) = (x — 1)°. We observe thatk = ¢ = 2,d = 0,7 = —1, and
2 ¢ 1(f1,f2). Using Wolfram Mathematica software with the above information,
we illustrate in Table 1 the asymptotic behavior of a net {h,;-1} of b.s.a. to f; and
f> from IT? in L* ([-1) as | — oo, 1 € N.

Table 1. bsa.in L* (I-1).

/ hyj1(x) = ax® + b2+ ax +d
2 —2.3469x3 + 2.0082x2 + 0.8135x + 0.4454
3 —2.3299x%3 + 1.8377x2 4 0.5457x + 0.3818
10 —2.3188x3 + 1.6970x2 + 0.3388x + 0.3242
100 —2.2998x3 + 1.7004x2 4 0.3000x + 0.2999
1000 —2.3000x3 4 1.7000x2 + 0.3000x + 0.3000

b.s.a.: best simultaneous approximation.

We see that h'Y

1
e 1(1) does not converge to 0 = (#) (1) as I — o0, and so
p

the L*-b.s.La. does not interpolate to the mean value of f; and f; at x; up to order

1,j=1,2.

Now, we will show the existence and characterization for the L?-b.s.l.a. to two
functions f; and f, from IT1" when #(t (f1,f2)) = k.
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If n +1 = ke, the following theorem can be proved in a similar way to
Theorem 3.10.

Theorem 3.12. Assumed = 0, f1,f» € tf_l(xj), 1 <j<klIf#(f,f) =k
then there exists the LP-b.s.La. to f1 and f, from I1" on {x1, ..., xx}, and it is the
unique g € I1" defined by the n + 1 interpolation conditions

‘ 0)
g(’)(xj)=<f1§f2) (), 0<i<c—1, 1<j<k
p

For the case d > 0, we need the following lemma.

Lemma 3.13. Assumed > 0and f1,f, € tf(xj), 1 <j < k. Let wy be the function
given by

(m-H) (x]) p—2

a P)(P 2) (. ,)W-H

C()p =2 XBj,

2(m —I— D!

where A is the number deﬁned in Lemma 3.2. If #(t(f1.f2)) = k, then vj
2
converges weakly to wp in LP=2(I), for some sequence € | 0, where v, was

introduced in (6).

Proof. By (36), there exists a sequence € | 0 and hy € I1" such that hy
converges to hg, uniformly on I,

G
lim h(c) (x) = h(c) (xj) and hm htp —hpe (x)e'™ " = djj,

€— 2 »

0<i<c—1, 1<j<k (41)

Thus,

Gli_)mo p e — xj)i = hj, uniformlyon B;,  (42)
i=0 :
c—1 A (f1+f2 —h ) (x])
where hj = "’( — xJ)’ —— (- — x))“. From (15) it follows that
i=0
Aith\?
—(fith G—Z Meic( —x;)! converges in measure to 0 on B;
2 i=0 i ’ ° )

(43)
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as € — 0. Expanding (h,¢)€ by its Taylor polynomial at x; up to order c, we
obtain

(1)
— —c(fl +f2) (t) — Z PG( J) 1 C(t—x]’)i

Iy (s ©) +
J PRI ])c_ —c (fl f2> (t)
(#) )
- ., Tt = xj)
i!
i=0
0]
(fﬁz—fz — hp’e)p () '
+> - €t — x)!
i=0
(© (C)
e (%) < (&j(1))
e e . L T (49)
t € Bj, where &j(t) € Bje. According to (41)- (43) we get
eli_r)r%) e ¢ (fl -;-fz — hp,€> =hj, aeon B; (45)

for some subsequence, that we again denote by €. From (15), we deduce that

Gh-fr _ G — 5 ()

Ho emtl (m+1)!

(-—xj)mﬂ, a.e.on B; (46)

for some subsequence, which we again denote the same way. Since —1 < m <
¢ — 2, (45) and (46) imply that

lim (fl hp e) — lim (hp € f2)
e—0 em'H TS0 Em—i—l
(f f)(m+1)(x) -
= 2@ D) ]('—xj) 1 ae on Bj, (47)

By (2) and mean value theorem, we have
27— € €
o — ( Lpe P H (i —hpe)” (hpe — o)
pe T\ gm+l P emtl 7 cmtl

E,e \*7F
_ € _ p—2 .
= <€m+1> (p—DInel™, on B
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(h=hpe) ® g (pe =)0 (47),

with 7¢(f) in the segment of extremes e g

Theorem 2.8 and Lemma 3.2 show that

(i — 5 ()
2 + 1))

p—2
(-pG=2 _
ehE}) vp€ =2 AP (- — x;)" ! , ae.on B,

2
Finally, from Lemma 2.3, we deduce that v;, . converges weakly to w in LP~2 (I).
The proof is complete. ]

Theorem 3.14. Assumed > 0, f1,f> € tf(xj), 1 <j<kIf#(t(f1,f2)) =k, then

there exists the LP-b.s.La. to fi and f, from I1" on {x,, . .., xx}, and it is the unique
solution ofthefollowing minimization problem in RK:

(f 14/ h);C) (%) 2

with the constrains h(i)(xj) = <f1+f2> (x),0<i<c—1,1<j<k

—2
min Z }(ﬁ fz)(m+l)( j)‘p

hel‘[” ;

(48)

Proof. Let

©)
(M2 — ) )
Ue = Z 3 P €7 —x)"| Ve

i=0

From (36) and Lemma 3.13, there exists a sequence € | 0 and hy € I1" such
that hp converges to ho, uniformly on I, and

lim u, = |hi|* w,, a.e. on B;,
e—0 € |]| P J

(J# — h0>(6) (%)

d;i .
where hj = TGt Y X)L (49)
Set
1
. 2 3
fit+h @
K . e ( ) (x:)
o (fit 2 e
)\‘6 — Z/I; € C(fl 2f2) _Z i'P ¢! C( x])l V;é
and
1
k (c) © 2 2
hp.e (%)) — hp e (§5())
Oc = Zé 5 i ! (- xj)c v;,s
=1 '
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Since 1%2 + 1% = 1, Holder inequality shows that
1
, N
fAth (1)( r
c x~)
4 ( 2 ) 7 ,
S| [ Xl (IR e
JJ i i=0 ’
%
<Dopele,,
In the same manner, we can see that
1
AL
By () —h(”@]()) N
<2 =] | el

where &;(t) is the number given in (44). By Minkowski inequality and (44), it
follows that

—c|ht+Lr L
AL
2 Ve
1
k
—c fl +f2 h ‘I €
= Z € 5 p,e ‘Vp,e
j=1 B;
1
() 2 2
k ¢ (fl_;fz —hp,e) (%))
2| e
j=1"8i |i=0 i ’
1
k 2
—0c — e = Z/ Ue — Oe — Ae (50)
j=1"8

) (@)
On the other hand, let 4 € I1" be such that 4 (%) = (#) l (%), 0 <i <
p
¢ —1, 1 <j < k. Then there exists a set of real numbers (independent of €), say
{be}1<e<q> that satisfies

—1

=y (fl +f2)()<xv)uw Zb We.

v=1 s=0

Seti = min (- = x)° = gl where If1) = fy [TPIC = x) ™00

and let {csy} 1<v<k be such that Zf;& CI—’,]( - xj)i is the best approximation to

(f1+f2 h>( )( 0;S<C_l

c!

(- — x)¢ from 1~ ! respect to | - ll - We consider the following
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net of polynomials in 1",

k c—1 (s) d
Z Z ((fl +f2) (xy) — Csvec_s) Usy + Z bewe.
e=1

v=1 s=0

We observe thatgl)(x]) = (M) (%) —cje 1 <j<k0=<i<c—1
Expanding g¢ by its Taylor polynomlal at x; up to order c, we get

O]
—c + —c + 8e ( ) z c i
¢ (flzfz— )(t)— (fl f2> () - §: et — )

EC) i(t
s,
‘ fit+h @
+ : ( 2 ) ) :
— € (fl 2f2> (t) — Z(; i!P 6z—c(t_xj)z
(©
’#) ()
Z T —x) + Tt x)
C)
(77;( ))( P (51)

where 7;(t) € Bje. Since hy is the b.s.a. to fi and f, from I1" in LP(I;), by
Theorem 2.4, Minkowski inequality, (50) and (51), we obtain

1
k 2
+ +
que o — e <€ f12f2_hp’e e—c¥_€
j=1Bi Vpie Vp.e
< e+ e llypes (52)
A+h\©
c—1 ) e (xj)
i=0
lime 08 = h, unlformly on I, we have
(442 - n) “ () o1
Cis ‘
ell_l)l})fe = 3 P (-—xj)C—I—XO: i—l!](-—xj)l =:¢j, uniformlyon B;
=

By the inequalities of Minkowski and Holder and Lemma 2.3, we get

f [fe Ve —/ il wp
B; B
= ‘/ (lfel2 - |<ﬂj|2)1/f,,6 —/ |§0j|2(a)p - Vf,,e)
B B;
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2 2 2 2
< f(Lfel — loj )vgg + f ol wp—f PR
Bj j Bj
=2
2 2,2 ? 2 2
' €
< /ILfeI — lojl”|2 _/I IP2 + / 7 wp—/ (7]
B B; B
(-2? » ’
= 2 2,8 2 2
<@-D2 ¢ /Ilfel —lgil“l2 )] + / il wp—/ |91V
B; B; B

k 2
and so lim¢_,¢ ||f6||vp’€ = (> fBj |¢)j|2wp> by Lemma 3.13. According to
t

>

Lemma 2.3 and (15), we see that lim¢_,¢g 0 = lim¢_,9Ae = 0. Therefore, the
Fatou Lemma, (49) and (52) lead to

K <f1+f2 _ h()) (x))

1
T2 E K2
J c!

2 3
=T |
2(m + 1)!

(© 2
K (@—ho)p (%))

!
Bj C!

1 [~]
—

(- —x)° +Z (- — %)

1
p—2\ 2

(. _ ,)m-l—l

|- — 2y ()
2(m + 1)!

© 2
k (# — h) (Xj) c—1 Ci '
| [ P e e D ey
. B: C. . 1!
j=1 7 i=0
m -2\ 2
. (f fZ)( +1)( Xj) (- — x;)™+1 !
2(m +1)! J
ir =TV
= 2(m+1)!
2 3

+ (c)
(J¥ B h)p 05) ] i (1) (p—2)
X/B 5 (- —x)) —I—Z ( — X)) —xj P
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—

At .\ _
. k E ( h) (x]) (i —fz)f,mﬂ)(xj) P
- p j c! 2(m + 1)! ’

(1-p)(p—2) 2 . F+1)( 2) %
where 7 = 2 7 APT% Askj = qénnlcn (f < — gl? Iy D e d)’)

1 <j <k, wehave

© 2
> (fl th —ho) )
j=1

© 2
(fl +Ah h) x)

forallheH”suchthath(l)(x) (1+f2> (x),0<i<c—1,1<j<kSo,

(i — ) (2

(i — ) P a2,

=2

j=1

hg is a solution of (48).
Finally, we observe that the problem (48) is equivalent to find the best approxi-

mation to ((f s 2) (x1), . <f1 1 2) (xk)) from the convex set

(i)
= {(h@(xl), B9 th e " and 9 (x)) = (fl erfz) (x)),
p

Ogisc—l,lgjgk}

’(fl_

p—2
f )(MH) (x%) ‘ ) (If ¢ = 0, no constrain on I1" is assumed). Since this problem

p—2
respect to li(Rk)—norm, where u© = ()(fl — fz)z(,mH)(?q)‘ ,

has a unique solution [18, Theorem 1.14], we conclude that there exists the L?-
b.sla. to f; and f, from IT" on {x1, . . ., X}, and it is the solution of (48). O

Remark 3.15. We observe that if m < ¢ — 2, the limit of vf,,e as € — 0 does not
depend of dj;, given in (41), which guarantee a unique minimization problem.
However, from (45) and (46), it does not occur if m1 = ¢ — 1. So Theorem 3.14
cannot be used for this case.
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