
Expert Systems with Applications 38 (2011) 1723–1737
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
SWAM: A logic-based mobile agent programming language for the Semantic Web

Marco Crasso *, Cristian Mateos, Alejandro Zunino, Marcelo Campo
ISISTAN Research Institute, UNICEN University, Campus Universitario, Tandil (B7001BBO), Buenos Aires, Argentina
Also Consejo Nacional de Investigaciones Cientficas y Tcnicas (CONICET), Argentina

a r t i c l e i n f o a b s t r a c t
Keywords:
Semantic Web
Ontologies
Web services
Mobile agents
Logic programming
0957-4174/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.eswa.2010.07.098

* Corresponding author at: ISISTAN Research In
Campus Universitario, Tandil (B7001BBO), Buenos A
2293 440363.

E-mail address: mcrasso@conicet.gov.ar (M. Crasso
Once a big repository of static data, the Web has been gradually evolved into a worldwide network of
information and services known as the Semantic Web. This environment allows programs to autono-
mously interact with Web-accessible information and services. In this sense, mobile agent technology
could help in efficiently exploiting this relatively new Web in a fully automated way, since Semantic
Web resources are described in a computer-understandable way. In this paper, we present SWAM, a plat-
form for building and deploying Prolog-based intelligent mobile agents on the Semantic Web. The article
also reports examples and experimental results in order to illustrate as well as to assess the benefits of
SWAM.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The creation of the Web started early in the 90s. It quickly
became popular among developers because it hid the diversity of
software and hardware existing by then. This information space
was designed to be fully distributed and without a central control.
Basically, the Web maintains links or associations between the var-
ious documents that could be located and retrieved from any site
of the Internet. The mechanism for browsing the Web is widely
known: a user consults and interprets documents by reading HTML
pages that are rendered by a special application, this is, the Web
browser.

Years ago, the Web started to evolve into a worldwide network
of annotated information and services (Shadbolt, Berners-Lee, &
Hall, 2006). The objective of this new Web is to achieve automatic
interaction between applications and Web resources. Particularly,
Web Service technologies (Curbera et al., 2002; Vaughan-Nichols,
2002) provide the basis for standard ways of specifying well-
defined, Web-accessible interfaces to access Web programs and
resources. Basically, Web Services can be thought as a number of
applications that interact by borrowing representational languages
and transport protocols from established Internet technologies. In
this sense, nowadays, the Web is not only concerned with informa-
tion sharing but also with providing an evolved infrastructure for
hosting programs that are autonomously exploited by user appli-
cations, including intelligent agents.
ll rights reserved.

stitute, UNICEN University,
ires, Argentina. Tel./fax: +54

).
Web Services represent a suitable alternative to enable for sys-
tematic interactions of applications across the WWW. Web Ser-
vices essentially rely on XML, a widely adopted structured
language for information interchange that guarantees platform
independence. Furthermore, on top of XML, several standard
XML-based languages for invoking and describing services have
been developed. WSDL (Curbera et al., 2002; W3C Consortium,
2007b) is an XML-based specification for describing Web Services
as a set of callable operations over SOAP (Curbera et al., 2002;
W3C Consortium, 2007a) messages, a high-level communication
protocol also based on XML. From a WSDL specification, any user
application can determine how to use the functionality an individ-
ual Web Service provides.

In the last past years, an increasingly number of Web Services
have arisen, mainly in the context of e-commerce. For example,
many popular Web sites such as Google,1 Flickr2 and eBay3 offer
Web Services for applications that expose the same information a
user can access using a regular Web browser. Moreover, Amazon4

delivers a set of Web Services that together interface a pay-
per-use, reliable and scalable cluster computing platform for
resource intensive applications. In addition, sites such as www.
xmethods.com do not provide Web Services but offer a sort of ‘‘yel-
low page” by maintaining pointers to external services provided by
other sites.

As the number of publicly available Web Services grows, sev-
eral registries of services spring. A service registry represents a
crossroad in the path of providers and consumers. Providers can
1 Google Code http://code.google.com.
2 Flickr Services http://www.flickr.com/services/api.
3 eBay http://developer.ebay.com/DevProgram/index.asp.
4 Amazon Web Services http://aws.amazon.com.

http://code.google.com
http://code.google.com
http://dx.doi.org/10.1016/j.eswa.2010.07.098
mailto:mcrasso@conicet.gov.ar
http://code.google.com
http://www.flickr.com/services/api
http://developer.ebay.com/DevProgram/index.asp
http://aws.amazon.com
http://dx.doi.org/10.1016/j.eswa.2010.07.098
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

1724 M. Crasso et al. / Expert Systems with Applications 38 (2011) 1723–1737
use the registry to publish their services, while consumers can
use it to find services that match their needs. After discovery, a
consumer must bind (i.e. to connect) his application to the (usu-
ally remote) Web Service in order to interact and interchange
data with it. UDDI (Curbera et al., 2002; OASIS Consortium,
2004) defines a standard mechanism for searching and publishing
WSDL-described Web Services. By means of UDDI, a Web Service
provider registers information about the services he offers, thus
making them available to potential clients. The information man-
aged by UDDI ranges from WSDL documents describing services
interfaces to data for contacting service providers (e.g. location,
email addresses, etc.). Basically, UDDI standardizes and extends
the idea behind sites such as www.xmethods.com to offer service
browsing capabilities to users.

Currently, the above ‘‘publish-find-bind” process is fully han-
dled by human developers. Unfortunately, the ‘‘find” and ‘‘bind”
operations still present many limitations that hinder the adoption
of Web Services. On one hand, common materializations in the
software industry for service registries do not supply developers
with a full-featured discovery support. For example, UDDI supports
only keyword-based search and category browsing of Web Ser-
vices. This limitation is also present in contemporary keyword-
based, service search engines such as seekda.com. Clearly, finding
proper services – i.e. those fulfilling the functional expectations of
the client – through UDDI is a time-consuming task when the num-
ber of services is large, which is the case of massively distributed
environments such as the Web. Furthermore, binding an applica-
tion to a Web Service requires developers to interpret its associ-
ated WSDL description and to provide the necessary boilerplate
code to programmatically contact the service and execute its oper-
ations. When following this approach to Web Service invocation,
developers are responsible for obtaining the service endpoint and
datatype definitions, and employing low-level communication li-
braries for consuming the service. Alternatively, developers can
employ frameworks for invoking Web Services, such as the DAIOS
(Leitner, Rosenberg, & Dustdar, 2009) or the CXF (Apache Software
Foundation, 2009), which provide programming abstractions to
deal with Web Service access and invocation. In the end, develop-
ers must not only literally decipher each service’s intended pur-
pose and invocation details but also prepare their applications to
consume selected services.

In order to facilitate the connection of Web Service consumers
and providers, there is an increasing need for automating the
way programs interact with services. Specifically, the focus should
be on the ‘‘find” and ‘‘bind” operations. First, to find proper services
automatically, a novel direction proposes to enhance Web Service
descriptions using a non-ambiguous and computer-understand-
able format. By assuming that services are precisely described, it
is expected that any application can autonomously understand
the concepts involved within the set of tasks a Web Service per-
forms or even the contents of a Web information source. Precisely,
the Semantic Web effort proposes to annotate service descriptions
with non-ambiguous concept definitions from shared ontologies
(Martin et al., 2007; Paolucci, Kawamura, Payne, & Sycara, 2002).
This allows applications to autonomously understand, from such
semantically enhanced Web Service descriptions, the functional
capabilities of any Web Service and the involved interaction mech-
anisms it prescribes (e.g. protocols). The idea behind the Semantic
Web is fairly simple: every Web resource (services and information
sources such as pages, files, databases and so on) is annotated with
precise descriptions of its semantics, known as metadata. Applica-
tions then use these metadata to understand the properties and the
capabilities of those annotated Web resources. These annotations
are often expressed in standard semantic languages such as RDF
(W3C Consortium, 2004) and OWL (Antoniou & van Harmelen,
2003).
The intelligent agent paradigm has been historically conceived
to have a fundamental role in materializing the vision of user appli-
cations that autonomously understand such metadata (Hendler,
2001). Particularly, software agents (Hendler, 2001) – this is,
autonomous software programs that perform tasks on behalf of
users – can exploit the semantics of Web Services to supply con-
sumers’ applications with the knowledge necessary to bind them
to external Web Services automatically. Moreover, due to the mas-
sively distributed nature of the Semantic Web, mobile agents (or
agents able to migrate within a network to interact with locally
accessible resources (Fortino, Garro, & Russo, 2008)) have proper-
ties that make them even more suitable for exploiting the potential
of open information environments. In fact, mobile agents have
been proposed for exploiting Cloud infrastructures (Douglis,
2008), a recent model for highly scalable distributed computing.
Some well-known advantages of mobile agents with respect to or-
dinary agents are support for disconnected operations, heteroge-
neous systems integration, robustness and scalability (Lange &
Oshima, 1999).

Despite the advantages mobile agents offer, many challenges
remain in order to glue them with Web Services technology.
Still, most of these challenges are a consequence of the nature
of the WWW, since from its beginnings Web content has been
mainly designed for human use and interpretation (McIlraith,
Son, & Zeng, 2001). In other words, there is a need for a proper
support for semantic service discovery for mobile agents. In
addition, there is still a lack of proper programming mecha-
nisms so that mobile agents can autonomously take advantage
of the capacities of Web Services and resources. These facts, to-
gether with the inherent complexity of mobile code program-
ming compared to traditional non-mobile systems, have
hindered the massive adoption of mobile agent technology
and limited its usage to small applications and academic proto-
types (Douglis, 2008).

In this sense, we believe there is a need for a mobile agent
development infrastructure that addresses these problems and,
at the same time, preserve the key benefits of mobile agent tech-
nology for building massively distributed applications (Douglis,
2008). To cope with this, we propose SWAM, a platform for build-
ing and deploying Prolog-based mobile agents on the Semantic
Web. SWAM defines a mobile agent execution model that allows
programmers to easily create and deploy mobile applications with-
out worrying about Web Services location or access details. Fur-
thermore, in order to consider the semantics of services, SWAM
provides an infrastructure for semantic matching and discovery
of Semantic Web Services (Mateos, Crasso, Zunino, & Campo,
2006). This infrastructure aims at enabling for a truly automatic
interoperability between SWAM agents and Semantic Web Ser-
vices along with little development effort. As we will explain later,
Prolog is central to our approach, since it has been recognized as an
excellent choice for developing intelligent agents as well as
exploiting semantic information.

This article is organized as follows. The next section describes
SWAM, focusing on its syntax and its mobile agent execution mod-
el. Section 3 describes the semantic discovery subsystem of SWAM.
Section 4 presents an example application to illustrate the interac-
tion model between mobile agents and Semantic Web Services
promoted by SWAM. Section 5 reports an evaluation of SWAM.
Section 6 discusses relevant related works. Finally, Section 7 pre-
sents concluding remarks and future works.
2. SWAM

SWAM (Semantic Web-Aware MoviLog) is a language for pro-
gramming Prolog-based mobile agents and deploying them in the

http://www.xmethods.com

M. Crasso et al. / Expert Systems with Applications 38 (2011) 1723–1737 1725
Semantic Web. SWAM is built upon an extension and a generaliza-
tion of MoviLog (Mateos, Zunino, & Campo, 2007; Zunino, Mateos,
& Campo, 2005). MoviLog is a platform for building intelligent mo-
bile agents on the WWW following a strong mobility model (Mil-
anés, Rodriguez, & Schulze, 2008), where agents’ execution state
is transferred transparently on migration. Besides providing basic
strong mobility primitives, an interesting feature of SWAM is the
notion of Reactive Mobility by Failure (RMF) (Zunino et al.,
2005), notion not exploited by any other tool for mobile agents.
Conceptually, a failure is defined as the impossibility of an execut-
ing mobile agent to find some required resource at the current site
(Zunino et al., 2005).

SWAM execution units are mobile agents called Brainlets. Each
Brainlet carries Prolog code that is organized in two sections: pro-
tocols and clauses. The former section declares rules that are used
by RMF for managing mobility. Specifically, protocols are the inter-
faces or descriptions of those resources which may trigger RMF-
like mobility. On the other hand, the clauses section defines agent
behavior and private data. Syntactically, the code of a Brainlet has
the following form:

PROTOCOLS

% Prolog facts representing protocols
CLAUSES

% Prolog rules implementing agent behavior
RMF states that when a predicate declared in the PROTOCOLS
section of an agent fails, SWAM moves the Brainlet and its execu-
tion state to a site that contains definitions for the predicate and
then resumes the Brainlet’s execution. Not all failures trigger
mobility, but only failures caused by predicates declared in the
PROTOCOLS section. The idea is that normal predicates are evalu-
ated with the regular Prolog semantics, but predicates for which
a protocol has been declared are treated by RMF so that their fail-
ure may cause migration. To distinguish between Prolog failures
with the traditional semantics and failures handled by RMF, we
will refer to the latter as m-failures.

Let us take a closer look at the SWAM language. For instance,
the following code:

PROTOCOLS

protocol (aFunctor, [arity (2)]).
CLAUSES

anotherFunctor (Y):-. . .

aQuery:-aFunctor (X,Y), anotherFunctor (Y).
?-aQuery.
5 An agent is sent back to its origin when it finishes its entire execution, regardless
the execution is successful or not.
implements a Brainlet whose behavior is governed by the rules in-
cluded in the CLAUSES section. Section PROTOCOLS states that
every clause whose functor is ‘‘aFunctor” and arity is two will be
treated by RMF. In this way, when the evaluation of aFunctor (X,Y)

fails, the agent will be transferred to a site that contains definitions
for that clause. Then, in case of a successful evaluation of aFunctor

(X,Y) at the remote site, the agent will attempt to solve another-

Functor (Y) according to the standard Prolog evaluation semantics;
otherwise the evaluation of ?-aQuery will fail, because of the failure
of aFunctor (X,Y).

Next is another example, presenting a Brainlet whose goal is to
collect temperature values from different distributed sites and
then to calculate the average of these values. Each measurement
point is represented by a site with a sensing process that periodi-
cally stores the last measurement Value in a local database as a
temperature (Value,Unit) predicate. The SWAM code implementing
the Brainlet is:
PROTOCOLS

protocol (temperature,[arity (2)]).
CLAUSES

% Computes average and performs unit conversion
average (List, Avg):-. . .

% Collects temperature values
getTemp (Curr, List):-

temperature (Value, Unit),
currentSite (S),
not (member (measure (Value,_,S), Curr)),
getTemp ([measure (Value,Unit,S)|Curr], List).

% All sites have been visited
getTemp (Curr, Rev):-reverse (Curr, Rev).
average (Avg):-

getTemp ([], List),

average (NewList, Avg).
% Brainlet’s main goal

?-average (Avg).

The idea of the program is to force the Brainlet to visit all avail-
able sites, locally getting on each site the last measured tempera-
ture. The potential activation point of RMF is the temperature

(Value,Unit) predicate. PROTOCOLS declares that the evaluation of
temperature (Value,Unit) must be handled by RMF. As a conse-
quence, if the evaluation of this predicate fails at a site S, RMF will
move the Brainlet to a site containing definitions for temperature/2
(i.e. predicates with functor ‘‘temperature” with two arguments).
The evaluation of getTemp will end successfully once all the sites
offering temperature/2 have been visited.

For the sake of explaining the execution of the program, we will
consider a network comprised of three SWAM-enabled sites. The
idea is to trigger mobility upon m-failures of predicates tempera-
ture/2 and therefore forcing the Brainlet to visit the three sites
S1, S2 and S3. We launch the program from S1 by invoking ?-average

(Avg). The code behaves the same as a regular Prolog program up to
the point when getTemp evaluates temperature for the second time.
In this case, the evaluation of temperature fails because the value
stored at S1 has been already collected. Considering that tempera-

ture has been declared as a protocol, an m-failure occurs. Then,
RMF searches for sites providing temperature/2 so as to migrate
the agent and to try to reevaluate the goal there. Note that there
are two options, either S2 or S3. Let us assume RMF selects S2. Then,
after the migration to S2, getTemp collects the local temperature
until no more choices are available. At this point, another m-failure
occurs and RMF selects S3. After evaluating once at S3, temperature

m-fails again. As there are not more options left for migrating the
agent, evaluation of getTemp ends. Then, the average of the values
[temperature (Value1,Unit1), temperature (Value2,Unit2), tempera-
ture (Value3,Unit3)] is computed, thus causing the evaluation of ?-

average (Avg) to finish. Finally, the agent is automatically returned5

to its origin (S1).
In the example, the agent visits all sites containing temperature

values. This behavior is not forced by SWAM, but by getTemp, be-
cause it evaluates all available temperature predicates so as to
make not(member(. . .)) true. In other words, when an m-failure oc-
curs, RMF moves the mobile agent to one particular site, leaving
remaining alternatives as backtracking points.

It is worth noting that SWAM does not restrict the programmer
to make use of RMF for handling mobility. Instead, by declaring
protocols the programmer is able to select which predicates of a
Brainlet’s code can trigger mobility. At an extreme, a Brainlet

1726 M. Crasso et al. / Expert Systems with Applications 38 (2011) 1723–1737
may not declare any protocol. This does not imply that mobility is
not available, but it is in charge of the programmer as in most lan-
guages for mobile agent programming. Indeed, protocol declara-
tions allow the programmer to use RMF and traditional proactive
mobility at the same time, depending on his requirements.

The next subsection explains the underlying execution model of
SWAM in detail. Then, Section 2.3 describes its policy program-
ming support.
2.1. Generalized reactive mobility by failure

RMF (Zunino et al., 2005) was mainly designed to automate
mobility decisions such as when and where to move a Brainlet.
However, blindly moving an agent every time some required re-
source is not locally available can lead to situations where perfor-
mance is bad (Zunino, Mateos, & Campo, 2005; Mateos et al., 2007).
An illustrative example of this fact arises when the size of a Brain-
let is greater than the size of a requested resource. Clearly, it is con-
venient to transfer a copy of the resource from the remote site,
instead of moving the Brainlet to that site. Another example takes
place when the requested resource is a Web Service, because a
transfer is not feasible, and hence the proper way to use it is by
invoking the service, thus only inputs and outputs are transferred.
Finally, the interaction of an agent with a large database can be
better done by moving the agent to the provider site, and then lo-
cally interacting with the data. In this case, database access by copy
is unacceptable because it might use too much network
bandwidth.

SWAM improves RMF by defining a new execution model
named GRMF (Generalized Reactive Mobility by Failure) which in-
cludes extra methods for accessing resources besides agent mobil-
ity. GRMF supports proper methods for interacting with Web
resources, such as remote invocation, for the case of Web Services,
and mirroring of resources, for the case of data and code. From the
point of view of the mobility model, GRMF generalizes RMF, since
remote invocation implies control flow migration, and replication
can be considered as a form of resource migration. From the re-
source access point of view, GRMF extends RMF. GRMF provides
decision mechanisms for selecting an access method based on both
resource types and environmental conditions, such as the total free
memory available at a given site, the network transfer rate and so
on.

When an m-failure occurs, there may be many sites offering the
needed resource. SWAM is able to decide an ordering for accessing
sites if a Brainlet needs visiting more than one of them. In addition,
since depending on the nature of a resource several access meth-
ods may be suitable, SWAM can apply different tactics to select
the most convenient one. Both, ordering sites and choosing an ac-
cess method are decided by SWAM through policies. Policies are
decision mechanisms based on platform-level metrics such as net-
work traffic, nearness between sites, agent size, CPU load, among
others. For example, one may specify that any access to a certain
large database should be done by moving the mobile agent where
the database is located, rather than performing a potentially time
and bandwidth-consuming copy operation of the required data
from the remote site. Besides, SWAM lets the programmer to de-
fine custom policies for adapting GRMF to fit specific application
requirements.
6 This property is mandatory, since within a WSDL definition a single Web Service
may be composed of more than one operation.
2.2. Protocols

As explained before, protocols are descriptors or logical pointers
a Brainlet uses to reference the set of resources it could need along
its lifetime. Protocols must be declared in the PROTOCOLS section
of a Brainlet code with the following Prolog structure:
protocolðresourceKind; ½prop1;prop2; . . . ; propn�; accessPolicyÞ

where:

� resourceKind is a literal (Prolog atom) representing the category
which the resources referenced by the protocol belong to. A cat-
egory stands for any kind of resources made accessible to Brain-
lets, such as files, databases, code libraries, Prolog clauses and
Web Services. For example, protocol(file,[name(index.html)],_)
refers to all resources of type ‘‘file” whose name is ‘‘index.html”.
� The second argument of the protocol corresponds to the list of

properties the desired instances must match, which allows a
Brainlet to reference different subsets from the set of resources
belonging to the resourceKind class. Each property is a Prolog
fact A(B), where A is the property name, and B contains the
property value (e.g. the pair ‘‘name” and ‘‘index.html” in the
previous example).
� Finally, accessPolicy contains the identifier of the policy used by

the agent to choose a unique instance of the resource when
more than one are available and to select the access method.
Remaining instances are left as backtracking points. This policy
must be declared in a POLICIES section, as will be explained
later. A ‘‘none” value indicates that all access decisions over
the referenced set of resources are fully delegated to GRMF.

As one might expect, every resource kind defines its own set of
properties for describing resource instances. For example, a proto-
col for a Web Service resource should include the operation name,6

input arguments and outputs. The following SWAM code declares a
protocol describing a Web Service for searching Web pages based
on one or more keywords:

protocol (webService,[operation (keywordSearch), in

([keywords (K)]),out (_)],none)

Roughly, the previous declaration enables GRMF to act when-
ever a generic search service cannot be found at the local site.
When this occurs, GRMF searches for published Web Services
including an operation whose name matches ‘‘keywordSearch”,
such as the ones provided by Google or Amazon. Also, the search
is constrained to those operations with one argument (keywords)
but does not restrict the operation output (i.e. the Prolog fact rep-
resenting the search result). Moreover, since no access policy has
been specified for the protocol, the runtime of GRMF is in charge
of selecting an appropriate method for contacting services. Note
that a different protocol for a specific search pattern – such as a
hardwired list of keywords – could be declared, just by replacing
the variable K with the desired values. This is useful for applying
different user-defined policies for accessing different subsets of
service instances.

As the reader can see, some attributes of the Web Service such as
the server address or the transfer protocol are not specified. The
information needed for contacting a search service instance is
encapsulated in its associated WSDL file and is extracted and used
by SWAM at runtime when a specific instance is selected. We call
this kind of attributes the hidden properties of a resource, this is,
descriptive information accessible only to the SWAM platform and
therefore not taking part in the protocol matching process. Hidden
properties and public properties (WSDL document location; opera-
tion, in and out in our example, respectively) must be supplied by
providers when they publish a service or a resource in SWAM.

One of the main benefits of consuming Web Services using
SWAM is that it deals with seamlessly incorporating external

M. Crasso et al. / Expert Systems with Applications 38 (2011) 1723–1737 1727
services into users’ applications. Upon a Web Service that fits a
protocol declaration is located, SWAM interprets its associated
WSDL document and invokes its functionality. Besides freeing
developers of providing the necessary boilerplate code to consume
a service, SWAM shields service consumers from all non-functional
aspects of service binding.

One of the main limitations of the aforementioned support for
consuming Web Services, on the other hand, is that having syntac-
tic-based protocol specifications requires that consumers and pro-
viders use the same signature to request and offer services,
respectively. Obviously, this is a very brittle approach in decentral-
ized environments like the WWW. In the end, only those services
that exactly match the protocol description can be used. In order
to overcome this restriction, we exploit semantics-based descrip-
tions of services and requests, or protocols in the context of GRMF.
SWAM introduces another kind of resources named semanticWeb-
Service, which stands for Web Services which have been semanti-
cally described using shared ontologies. To indicate the need of a
semanticWebService resource, a developer should write the proper-
ties of the expected service using concepts from the same shared
ontologies. For example, let us suppose that a developer uses the
concepts ‘‘s:KeywordBasedSearch” and ‘‘s:KeywordList” to seman-
tically describe the operation and inputs of a desired service, then
the code of the protocol would be:

protocol (semanticWebService, [operation (‘s:Key-

wordBasedSearch’) in (‘s:KeywordList’), out (_)],
none)

By assuming that both publishers’ services and (agent) discov-
erers’ protocols are precisely described, it is expected that connect-
ing them would be simplified. Clearly, one limitation of this
semantics-based approach to matching protocols and queries is
that it requires to describe them using the same concepts. Section
3 will present a semantic similarity scheme that addresses this
limitation.

Another example is presented next, which consists of a mobile
agent for distributed text file search. In particular, the Brainlet has
to find the files whose name is ‘‘Book.html” containing the string
‘‘Semantic Web”. For simplicity, wild cards are not supported.
The code that implements the agent is (let us ignore for the time
being the contents of the POLICIES section):

PROTOCOLS

protocol (file, [name(X)], none).
POLICIES

% empty section
CLAUSES

searchForFiles (FileName, Text, Files):-

assert(filesFound ([])),
findFiles (FileName, Text),
retract(filesFound (Files)).

findFiles (FileName, Text):-

file([name(FileName)], FileProxy),
analizeFile (Text, FileProxy), !, fail.
findFiles (_,_).
analizeFile (Text, FileProxy):-

searchText (Text, FileProxy),
getURI (FileProxy, FileURI),
saveResult (FileURI).

% asserts a new result
saveResult (FileURI):-

retract(filesFound (Temp)),
assert(filesFound ([FileURI|Temp])).
% Checks whether FileProxy contains Text
searchText (Text, FileProxy):-. . .

?-searchForFiles (‘‘Book.html",‘‘Semantic Web",

Result).

In this case, the agent defines one protocol that declares the
need for accessing, at some point of its execution, one or more in-
stances of a ‘‘file” resource. The protocol indicates that those in-
stances must have their ‘‘name” attribute as a public property.
Every time the agent evaluates a rule requiring a file, GRMF will
handle the request.

The example shown includes a new section named POLICIES.
This is the place where programmers can define custom heuris-
tics for resource retrieval (in this case, files). For example, it
could be convenient to select the access method according to
the file size. If it exceeds a certain size, the agent could migrate
to the site where the file is located rather than transferring the
file, because this latter approach might waste network band-
width. In the next subsection, we will explain how to state these
decisions.

The Brainlet begins its execution by evaluating ?-searchForFiles.
When a predicate fails accessing a file, SWAM asks the current site
for the list of remote resource instances matching the protocol re-
quested. To be more specific, SWAM searches for those instances
which have been tagged with the ‘‘file” resource category with a
public ‘‘name” property. As the agent does not declare any policy
for accessing files, SWAM chooses any instance from the list and
a proper access method. When the file predicate is reevaluated,
SWAM uses another item of this list. Once all items have been con-
sumed, the predicate cannot be further reevaluated, and the file
searching process ends. After this, the agent is moved to the site
from where it was initially launched.

The actual access to every file instance is requested through the
predicate file (name (FileName), FileProxy), which filters via standard
Prolog unification those files whose name is not the same as File-

Name. Moreover, the FileProxy variable is instantiated with a plat-
form-supplied object that hides the real location of the file and
provides a handler to read its contents.

2.3. Customizing GRMF

SWAM allows programmers to customize the way mobile
agents interact with resources to fit specific applications particu-
larities. SWAM provides support for programming complex rules
for accessing resources based on platform-level metrics. Policies
are declared in a special section of a Brainlet’s code named POLI-
CIES. Each policy has a unique identifier and code implementing
its behavior. In this way, the same rule can be referenced from
more than one protocol, thus allowing reuse of policies.

Upon an m-failure, SWAM searches for the resource instances
that match the protocol of the predicate that m-failed. Then, if the
protocol references an existing policy, SWAM evaluates this pol-
icy to decide the particular resource instance that will be ac-
cessed, and the particular access method that will be used. The
programmer specifies these decisions by declaring two separate
Prolog rules, both with the same identifier and with the following
structure:

sourceFrom (PolicyName, resource (Id1, Host1),

resource (Id2, Host2), Result):-. . .

accessWith (PolicyName, resource (Id, Host),

MethodA, MethodB, Result):-. . .

1728 M. Crasso et al. / Expert Systems with Applications 38 (2011) 1723–1737
The first rule defines the logic to select the desired resource in-
stance among any pair of candidates. Similarly, the second rule
contains the behavior for choosing an access method given any pair
of valid access methods (MethodA and MethodB). By valid we mean
a method that SWAM considers suitable for accessing a specific
kind of resource. For example, SWAM does not consider a copy
operation for accessing a large database. In addition, the global re-
source identifiers (i.e. Id1 and Id2) are included as arguments of
each rule. Note that this feature is useful to obtain information
about a resource and thus to specify constraints over its size, avail-
ability or cost.

We will extend the example of the file searcher Brainlet previ-
ously discussed. Suppose for instance that the agent has to use the
following policy for accessing files: ‘‘access the file instance located
at the host with the best bandwidth. In addition, if the Brainlet size
is less or equal than the file size, access the file via migration”. The
rules that are necessary for coding this policy are:

sourceFrom(#1, resource(_, Host1), resource(_, Host2),
H):-
transferRate (Host1, T1),
transferRate (Host2, T2),
minimum (T1, T2, Host1, Host2, H).

accessWith(#1, resource (Id, Host1), move,_, move):-
agentSize (AgentSize),
resourceSize (Id, FileSize),
AgentSize<=FileSize.
The rule sourceFrom estimates the transfer rate between the cur-
rent agent location and each remote host and then binds H with
the address of the host to which the local site experiments the best
network transfer rate. On the other hand, accessWith selects the
move method for accessing a file provided the Brainlet’s size is less
or equal than the file size. It is worth noting that transferRate, agent-

Size and resourceSize are built-in predicates offered by the policy
support of SWAM, which also provides various metrics related to
environmental conditions such as CPU, memory and storage
availability.

2.4. Runtime support

SWAM is based on GRMF, a generic execution model able to
automate decisions on when, how and what site to contact to
satisfy agents resource needs. GRMF is based on the idea that an
SWAM−enabled Site 1

PNS AgPNS Agents

Brainlet Non−local
resource access
request (i)

Matching list of
resources and
valid access
methods (ii)

Resource instance
and access method
selection (iii)

(iv

(iv)(b) Invo

(iv)(c) Move

Non−local
interactions
between
protocol agents

Fig. 1. Overview
entity external to the Brainlet helps this latter to handle m-failures.
Those entities are stationary agents called PNS (Protocol Name
Servers) agents.

Each site capable of hosting Brainlets (i.e. a SWAM-enabled site)
has one or more PNS agents. PNS agents are responsible for manag-
ing information about protocols offered at each site and for return-
ing the list of resource instances matching a given protocol under
demand. A site offering resources registers with its local PNSs the
protocols associated with these resources. For example, when pub-
lishing a Web Service, the protocol-related information associated
with the service – i.e. operations, valid inputs and delivered outputs
– must be supplied by the user to the hosting SWAM site. As a con-
sequence, the local PNS agents announce the newly added protocol
to other sites of the network. Announcement is performed by means
of GMAC (Gotthelf, Zunino, Mateos, & Campo, 2008), a communica-
tion protocol of our own specially designed to provide efficient mul-
ticast messaging to mobile platforms in open environments.

Fig. 1 depicts the SWAM runtime support. When an m-failure
occurs, SWAM queries local PNS agents for sites offering the
needed resource (step (i) in the figure), getting a list Li of hidden
properties (resource size, provider host, etc.) of the instances
matching the agent request (step (ii)). As pointed out before, hid-
den properties – unlike public ones – are not visible from protocols.
In other words, protocol declarations are not allowed to include
properties such as ‘‘size”, ‘‘host”, ‘‘availability” and so on. However,
hidden properties can be accessed by programmers through SWAM
built-in predicates in order to specify custom resource access pol-
icies, as shown in Section 2.3 through the policy for accessing files.
Note that, in that case, the file size is queried by means of a
‘‘resourceSize” built-in predicate.

Taking Li as an input, SWAM creates a list of pairs L = ha,bi,
where a represents the resource instance identifier, and b are the
valid methods for accessing that instance. Based on the list L, the
following tasks are performed (step (iii)):

1. Instance selection: SWAM selects from the input list the site
from where the resource will be retrieved. In other words, an
item from the list of instances is picked, leaving the remaining
items as backtracking points to ensure completeness. If defined,
the policies coded by the programmer are evaluated.

2. Access method selection: SWAM chooses the access strategy tak-
ing into account the current platform-level execution condi-
tions such as CPU load and network traffic. If present, policies
declaring custom access strategies are also evaluated.
Brainlet
ResourceResource

Proxy

SWAM−enabled Site 2

ents

)(a) Copy

ke

of GRMF.

M. Crasso et al. / Expert Systems with Applications 38 (2011) 1723–1737 1729
Finally, the platform uses the selected method for accessing the
resource instance as shown in steps (iv)(a), (iv)(b) and (iv)(c) of
Fig. 1. These steps are sketched using dashed lines to denote that
only one of them is performed.

Up to this point, we have explored the programming and execu-
tion models of SWAM for implementing mobile agents, focusing on
the application-level and the middleware-level mechanisms by
which agents indicate and contact external resources that are re-
quired to perform their tasks. Particularly, resource needs are indi-
cated by means of protocols, this is, structured descriptions of the
properties of external resources such as files, libraries and services.
In order to effectively access Web Service resources we have
implemented a support for semantic discovery, which addresses
the tasks of managing, querying and reasoning about protocols
and Web Service metadata. The next sections focus on describing
this support.
3. Semantic matching in SWAM

Semantic matching allows agents to take advantage of ontolo-
gies by using reasoners. An ontology explicitly represents the
meaning of terms in vocabularies and the relationships between
these terms (Berners-Lee, Hendler, & Lassila, 2001). Moreover, a
reasoner is a software component that infers knowledge that is
implicitly conveyed in ontologies. For example, let us suppose we
have an ontology representing the relationships ‘‘John is Mary’s
father” and ‘‘Mary is Ben’s mother”. Then, if we supply a reasoner
with the rules ‘‘father (x,z) ^ parent (z,y) ? grandFather (x,y)”
and ‘‘mother (x,y) [father (x,y) ? parent (x,�y)”, the reasoner
would infer that ‘‘John is Ben’s grandfather” from the ontology.

Indeed, one of the most powerful uses of ontology-based rea-
soning, and a key enabler for agents on the WWW, is in the area
of Web Services. Old approaches to managing machine-to-machine
interactions over the Web have been mainly focused on providing
standard to make sure an agent knows the interface and invocation
details of a service before the interaction actually takes place.
However, this is very inflexible, since those bindings must be stat-
ically supplied by the programmer, rather than let the agent to
dynamically perform this task. In this sense, the Semantic Web
aims at offering machine-readable ontologies and reasoning tools
to allow agents to autonomously find services whose exposed
functionality fits agents’ needs.

We have designed a Prolog-based reasoner implemented as a
set of rules for computing semantic likeness between any pair of
concepts from a shared ontology. This support is used by SWAM
agents in order to determine the set of Web Services which best
suit their semantic service requests. In the next subsections, we
present our matchmaking support and reasoner.

3.1. Matching concepts

Ontologies are used to describe data and services in a machine-
understandable way. In automated Web Service discovery systems,
agents usually try to locate a sufficiently similar service to accom-
plish their current goal. The problem is indeed to define what ‘‘suf-
ficiently similar” means. We propose to compute the similarity
between a needed protocol and published services from the simi-
larity, or degree of match, between individual concepts that de-
scribe their public properties and constituent elements,
respectively. Therefore, the rest of this section describes how to
determine the degree of match between any pair of concepts.

The degree of match between two concepts depends on their
distance in a taxonomy tree. A taxonomy may refer to either a hier-
archical classification of things, or the principles underlying the
classification. Almost anything (objects, places, events, etc.) can
be classified according to some taxonomic scheme. Anatomically,
a taxonomy is a tree-like structure that categorizes a given set of
objects. Like (Paolucci et al., 2002), we define four degrees of sim-
ilarity between two concepts X and Y as follows:

� exact if X and Y are individuals belonging to the same or equiv-
alent classes.
� subsumes if X is a subclass of Y.
� plug-in if Y is a subclass of X.
� fail occurs when none of the previous degrees apply.

Definition 1 states the degree of similarity in terms of OWL
operators.

similaritydegreeðX;YÞ ¼

exact if X equivalentClass Y ;

subsumes if X subClassOf Y;

plug-in if Y subClassOf X;

fail otherwise

8>>><
>>>:

ð1Þ

Although this scheme is very general and can be used to compute
similarity between any pair of concepts, it has a drawback, which
we will explain through an example. Fig. 2 illustrates how to use
this similarity scheme for measuring the degree of match of four
concept instances. In the figure, the names of the concepts have
been chosen to denote their belonging classes. For example, con-
cepts a1 and b1 are instances of classes A and B, respectively. Since
C is a subclass of B, in the left side of Fig. 2 we labeled the similarity
between c2 and b1 as ‘‘plug-in”. Moreover, we labeled the similarity
between c2 and a1 as ‘‘plug-in”, because C (indirectly) subclasses A
as well. Note that though c2 is intuitively more similar to b1 than to
a1, this cannot be derived by employing the similarity scheme of
Definition 1. Thus, we have enhanced this scheme by taking into ac-
count the distance between any pair of concepts in the taxonomy
tree, as shown in the right side of the figure. Accordingly, the new
similarity labels between c1 and b1 is ‘‘plug-in, 1”, and ‘‘plug-in,
2” for c1 with a1. Therefore, although these similarity labels share
a qualitative value, the labels state that c2 is hierarchically closer
– i.e. more similar – to b1 than to a1.

We have implemented in Prolog an algorithm to compute these
enhanced similarity scheme between two arbitrary pair of con-
cepts. Roughly, the algorithm consists of Prolog rules for comput-
ing the taxonomic distance between concepts. The recursive
nature of Prolog fits very well for implementing this enhanced sim-
ilarity scheme.

The rule match (X,Y,L,D) returns the distance D between a con-
cept X and a concept Y under label L. In this sense, accepted values
for L are ‘‘exact”, ‘‘plug-in”, ‘‘subsumes” and ‘‘fail”, while D may
take any positive integer as value. Note that having a hierarchical
distance equals to zero means that the two concepts are equiva-
lent, since they are at the same position in the taxonomy. The rule
for computing the distance of equivalent classes is:

matchðX;Y;exact;0Þ : �equivalentClassðX;YÞ:

As we will show in next section, the antecedent of the rule is an
appropriate Prolog translation of the OWL constructor ‘‘equivalent-
Class”. Distance between a class and its directly related superclasses
is defined as 1. Similarly, the distance between a class and its di-
rectly related subclasses is defined as 1. The rules associated with
these two cases are:

match (X,Y,subsumes,1):- isSubClassOf (X,Y).
match (X,Y,plug-in,1):- isSubClassOf (Y,X).

Calculating the distance between indirect subclasses requires to
vertically traverse the taxonomy tree and computing the

X

P

A

B

C

x1

c2

a1

b1

c1

Simple metric

X

P

A

B

C

x1

c2

a1

b1

c1

plug−in, 2

plug−in, 1
exact, 0

Enhanced metric

exact

plug−in
plug−in

instance Of subClass Of

subClass Of

instance Of subClass Of

subClass Of

Object
property

Object
property

X

z Instance z

Concept X

Keys:

Fig. 2. Enhanced degree of match.

1730 M. Crasso et al. / Expert Systems with Applications 38 (2011) 1723–1737
associated inheritance depth. Basically, distance for indirect sub-
classing is defined recursively by the following rules:

isSubClassOf (X,Y,1):- subClassOf (X,Y).
isSubClassOf (X,Y,D):- subClassOf (X,D), isSubClas-

sOf (Z,Y,D2), D is D2 + 1.

Finally, the matching rules for indirect subclasses are built on
top of the rules for traversing the taxonomy:

match (X,Y,subsumes,D):- isSubClassOf (X,Y,D).
match (X,Y,plug-in,D):- isSubClassOf (Y,X,D).

For simplicity, the matchmaking support for concept properties
is omitted. Nevertheless, it is implemented in a similar way to the
scheme for classes previously discussed. The next subsection ex-
plains how we translate OWL constructors, such as ‘‘equivalent-
Class” or ‘‘subClassOf”, onto Prolog.
3.2. Representing ontologies in Prolog

Our Prolog-based reasoner is built on top of the OWL-Lite lan-
guage (Antoniou & van Harmelen, 2003). Interestingly, OWL-Lite
is easily translatable to Prolog, since its semantics are equivalent
to Description Logic, which is a decidable fragment of first-order
logic (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider,
Table 1
OWL-Lite to Prolog correspondence.

OWL-Lite
primitive

Prolog representation Description

Class Class (X) X is a class
rdfs:subClassOf subClassOf (X,Y) X is a subclass of class Y
rdf:Property property (X) X is a property
rdfs:subPropertyOf subPropertyOf (X,Y) X is a subproperty of property

Y
Individual individualOf (X,Y) X is an instance of class Y
inverseOf inverseOf (X,Y) X is inverse to property Y
equivalentProperty equivalentProperty

(X,Y)
X is equivalent to property Y

equivalentClass equivalentClass (X,Y) X is equivalent to class Y
Relationships triple (X,Y,Z). X is related to Z by property Y
2003). Table 1 shows the Prolog counterpart for some of the
OWL-Lite sentences supported by our reasoner.

RDF triples are the core-blocks to express OWL-Lite construc-
tors in Prolog. An RDF triple is a structure triple (subject,prop-

erty,value) stating that subject is related via property to value.
OWL-Lite features such as cardinality, range and domain con-
straints over properties are also translated to triples. For example,
triple (author, domain, book) and triple (author, range, person) define
that author can be applied to instances of class book with an in-
stance of class person as value, while triple (‘A Tale of Two Cities’,

author, ‘Charles Dickens’) states that Charles Dickens wrote a book
named A Tale of Two Cities.

Most OWL-Lite features can be directly mapped as facts, which
represent RDF triples. However, we build some rules for wrapping
these facts, in order to improve the readability of the Prolog source,
such as:

triple (X,‘rdfs:subClassOf’,Y):- subClassOf (X,Y).
triple (X,‘owl:equivalentClass’,Y):- equivalent-

Class (X,Y).

Contrarily, there are two OWL-Lite features that cannot be di-
rectly mapped onto facts but require to use Prolog rules. OWL-Lite
inequality and transitive sentences are supported through the fol-
lowing rules:

triple (Y,I,X):- inverseOf (P,I), triple (X,P,Y).
inverseOf (P,I):- triple (P, ‘owl:inverseOf’, I).
triple (X,T,Z):- transitive (T), triple (X,T,Y),

triple (Y,T,Z).
transitive (T):- subClassOf (T, ‘owl:Transitive-

Property’).

The first rule states that a concept Y is related to a concept X by
property I whenever X is related to Y by a property P inverse to I.
For example, if wrote and author were inverse properties, then triple

(‘Charles Dickens’, wrote, ‘A Tale of Two Cities’) holds. The last rule
handles transitive relationships between concepts. For example,
if taller_than is a transitive property and John is taller than Paul
and this latter is taller than George, then John is taller than George.

For exemplification purposes, the left side of Fig. 3 depicts a
simple ontology for documents, while the right side of the figure
illustrates its associated Prolog representation. The ontology

Graphical view

Thing

Document

Thesis

subClass Of

subClass Of

Article

subClass Of

Section

owl:string

Person
title, language

section

advisor

subClass Of

subClass Of

content

Prolog view
class(document). class(thesis).
class(article). class(person).
class(section). class(owl:string).
subClassOf(document,thing).
subClassOf(thesis,document).
subClassOf(article,document).
subClassOf(person,thing).
subClassOf(section,thing).
triple(document,title,owl:string).
triple(document,language,owl:string).
triple(document,section,section).
triple(document,author,person).
triple(thesis,advisor,person).
triple(section,content,owl:string).
triple(author,rdfs:range,person).
triple(advisor,rdfs:range,person).
−−More−−

author

Fig. 3. An ontology for generic documents.

7 A successful match between two concepts occurs when its similarity is greater
than a application-given threshold.

M. Crasso et al. / Expert Systems with Applications 38 (2011) 1723–1737 1731
defines that thesis and article are both a document having one
author. A thesis has also an advisor. Both author and advisor are
properties whose values are instances of person. A document com-
prises a title, a language and sections. Finally, every section has con-
tent. In the previous rules, two new concepts appear: Thing and
owl:string. Thing is the parent class of all OWL classes, since every
class direct or indirectly inherits from it. Furthermore, OWL in-
cludes some built-in datatypes such as owl:string, owl:long,
owl:boolean, to name a few, which allow to define literal properties.

3.3. Semantic Web service discovery

To perform a semantic search of Web Services instead of a less
effective keyword-based search (e.g. by service name), an agent
needs computer-interpretable descriptions about the functionality
of services. Additionally, agents should semantically describe the
services they need. Ontologies can be used for representing such
descriptions. In this sense, OWL-S (Martin et al., 2007) is a collab-
orative effort which aims at creating a worldwide standard service
ontology represented in OWL. OWL-S consist of a set of predefined
classes and properties for representing services. OWL-S is intended
to describe Web Services and how they must be invoked. On the
other hand, SWAM allows agents to describe their service needs
as a special kind of resources: semanticWebServices, as explained
in Section 2.2. In order to manage OWL-S based descriptions of
Web Services and match then onto SWAM protocols, we have built
a semantic discovery infrastructure, which is shown in Fig. 4.

One of the main components of our semantic discovery system
is its repository of shared ontologies. This repository stores the
concepts used for semantically describing published Web Services.
The current prototype of our service registry is based on an OWL-S
sub-ontology named Service Profile, which offers support for
semantic descriptions of functionality, arguments, preconditions
and effects of Web Services. The repository of shared ontologies
not only keeps previously used concepts but also allows publishers
to reuse these concepts. In this way, a publisher can describe the
functionality of his services and their input/output parameters in
terms of concepts from this shared ontology repository. Instead,
when none of the concepts of the shared ontologies database fits
for describing a service, the publisher is allowed to add new ones.
Upon publishing a Web Service, the service provider must also pro-
vide the URL of the corresponding WSDL document. We maintain a
record that associates each WSDL document with the concepts in-
volved in the semantic description of the corresponding Web Ser-
vice in the Semantic Descriptions Database (SDD).

Discoverers, on the other hand, interact with our registry of
Semantic Web Services by means of search requests. A search
request is basically a semantic search expression given by a collec-
tion of hproperty,expected_valuei pairs describing the desired con-
ceptual value for some specific relationships within the Service
Profile ontology. As we will explain later in this section, to rank
candidate services we employ three properties from the Service
Profile ontology: (1) operation functionality, (2) inputs and (3) out-
puts. Consequently, a search expression must partially or fully in-
clude the functionality, inputs and outputs that the discoverer
expects to obtain from candidate services. These expressions,
which may come from SWAM agents or conventional client appli-
cations, are appropriately translated to a Prolog query combining
RDF triples and the match rule of Section 3.1. In general, such a Pro-
log query looks like:

triple (X, property, V), match (V, expected_value, L,
D).

with L and D representing the degree of match between V, i.e. the
value of X for property, and the expected_value for that property. For
example, the protocol of Section 2.2, which states that a Brainlet
needs a Web Service for doing keyword-based searchers, generates
the Prolog query:

?:-triple (Sx,‘owls:hasInput’,V0), match (V0,

‘s:KeywordList’,L0,D0),
tripe (Sx,‘owls:functionality’,V1), match (V1,

‘s:KeywordBasedSearch’,L1,D1).

where Sx represents the identifier of a service that has an input
semantically similar to a s:KeywordList concept with a hL0,D0i
degree of match, such as hsubsumes,2i, and whose functionality
matches into s:KeywordBasedSearch.

The semantic search engine (SSE) is the component of our reg-
istry in charge of processing and handling search requests, per-
forming the discovery process and returning back the results.
Processing a request means to translate it to a Prolog query. After
processing a request, the SSE searches for Web Services that
semantically matches7 the requested conceptual functionality, in-
puts and outputs. To do this, the SSE compares the derived semantic
query against the semantic descriptions of the published services.
Likewise, the SEE exploits concept relationships, such as subclassing
and equivalence, which have been also stored in the repository of
shared ontologies. Then, a ranking algorithm is used to sort these

1732 M. Crasso et al. / Expert Systems with Applications 38 (2011) 1723–1737
results. The current materialization of the SSE has a default sort cri-
terion which gives priority to the resulting degree of match between
service functionality and outputs; however, this criterion can be
changed dynamically. If two results have the same similarity, simi-
larities are computed on their inputs to check that the requester is
able to properly invoke any of the two services. Algorithm 1 de-
scribes the main steps of the proposed ranking algorithm.
Algorithm 1. Ranking algorithm

1: procedure SORTRESULTS(result1,result2)
. Returns the first result

2: if result1.operation.degreeOfMatch >
result2.operation.degreeOfMatch then

3: return result1
4: end if
5: if result1.operation.degreeOfMatch

< result2.operation.degreeOfMatch then
6: return result2
7: end if
8: if result1.output.degreeOfMatch > result2.output.

degreeOfMatch then
9: return result1
10: end if
11: if result1.output.degreeOfMatch < result2.output.

degreeOfMatch then
12: return result2
13: end if
14: if result1.input.degreeOfMatch > result2.input.

degreeOfMatch then
15: return result1
16: end if
17: if result1.input.degreeOfMatch < result2.input.

degreeOfMatch then
18 return result2
19: end if
20: end procedure
To better illustrate the notions exposed up to this point, the
next section describes an example of a Semantic Web Service-en-
abled application coded with SWAM. We will put emphasis on
how to implement SWAM agents that make use of protocols to
semantically describe required Web Services.

4. A sample application

Let us suppose we are deploying a network composed of
SWAM-enabled sites, where some of these sites offer Web Services
for translating different types of documents (academic articles,
forms, reports and so on) to a target language. Every time, a client
wishes to translate a document, a Brainlet is asked to find the ser-
vice that best adapts to the type of document being processed. In
order to add semantics features to the model, all sites publish
and search for Web Services by using SWAM, and services are
annotated with concepts from the ontology presented in Section
3.2.

We also assume the existence of different candidate Web Ser-
vices for handling the translation of a specific kind of document.
For example, translating a plain document may differ from trans-
lating a thesis, since a more smart translation can be done in this
latter case: a service can take advantage of a thesis’ keywords to
perform a context-aware translation. Nevertheless, note that a the-
sis could be also translated by a Web Service which expects a doc-
ument concept as an input argument, as thesis concept specializes
document according to our ontology.
When an agent receives a new document for translation, it pre-
pares a semantic query. Here, the Brainlet is asked to translate a
thesis to English. Fig. 5 shows the activities performed by the com-
ponents involved in the translation process (the involved concepts
are in italics). Before submitting the Web Service query, the Brain-
let sets the desired service output as a thesis. Also, the Brainlet sets
the target language as English and the source document type as
thesis. Then, the semantic search process begins. SWAM its seman-
tic matching capabilities to find all existing translator services. Let
us suppose two services are obtained: a service for translating the-
ses (S1) and a generic service (S2) for translating any type of
document.

After finding a proper list of translation Web Services, SWAM
sorts this list according to the degree of match computed between
the semantic query and services descriptions and returns this new
list back to the agent. In the example, the degree of match against
S1 is greater than that of S2, because S1 outputs a thesis (exact
matchmaking) while S2 results in subsumes matchmaking with
distance one.

PROTOCOLS

protocol (webService,[name (translate),in

([thesis,english]), out (thesis)],none).
CLAUSES

% The Prolog structure representing some thesis
thesis ([title (‘Title’),
author (‘Author’),
language (spanish),
advisor (‘Advisor’),
sections([. . .])).

?-translate (TargetLang, Res):-

In = in ([thesis,TargetLang]),
Out = out (thesis),

webService([operation (translate), In, Out],

WSProxy),
thesis (Th),
executeService (WSProxy, [Th, TargetLang], Res).
The above SWAM code implements the Brainlet discussed so
far. When the webService(. . .) predicate of the CLAUSES section is
reached, SWAM contacts its underlying semantic discovery subsys-
tem to find candidate services that semantically match the Brain-
let’s request. The evaluation of the predicate returns a proxy
(WSProxy) which is used to effectively invoke the resulting Web
service. As explained before, the way this Web Service is actually
contacted (i.e. migrate to the service location or invoke it remotely)
is governed by access policies, in this case managed by the under-
lying platform as we have not configured a custom policy for
accessing the service.

To sum up, the Brainlet has obtained a Web Service for execu-
tion using data semantic information rather than syntactic descrip-
tions. To imagine a non-semantic matching scenario, assume that a
syntactical categorization of services for translating documents is
defined. Such a categorization would typically have a tree-like
structure with a root node labeled ‘‘Document translator”. The root
would have two child nodes labeled ‘‘Article Translator” and ‘‘The-
sis Translator”, respectively. Without a semantic description about
the type of documents each service is able to translate, the only
way to find proper services is by their name, a pure syntactic and
rigid mechanism. In this way, the logic to determine which service
is appropriate for translating each type of document in terms of re-
quired inputs and delivered outputs remains hardcoded in the
agent code. Furthermore, when a new type of document unknown
to the agent is added, its implementation might need to be
rewritten.

Shared
Ontologies

Inquiry
API

A SWAM−enabled
site asks for semantic

Web Services (ii)

Semantic
Search
Engine
(SSE)

Semantic Web Services Registry
Web Application

Semantic
Descriptions

Database
(SDD)

A Web application asks for
semantic Web Services

Asks the
SSE (iii)

SWAM−enabled Site 1

PNS Agents

Brainlet

Non−local resource
semanticWebService
request (i)

Matching list of
Semantic Web
Services (iv)

Fig. 4. SWAM and its Semantic Web Service discovery infrastructure.

Prepare Query Prepare Result

Find Web Services

I need a translator
service to translate
this thesis to English

Op: translator
In: thesis
Out: thesis

SWAM

Service 1 (S1)
Op: plug−in,1
In: exact, exact
Out: exact

Service 2 (S2)
Op: plug−in,1
In: subsumes,1; exact
Out: subsumes,1

?:− triple(Sx,’owls:operation’,Vx), match(Vx,translator,Lx,Dx)
triple(Sx,’owls:hasInput’,Vx), match(Vx,thesis,Lx,Dx)
triple(Sx,’owls:hasOutput,Vx), match(Vx,thesis,Lx,Dx)

Brainlet

Fig. 5. A Brainlet for thesis translation.

M. Crasso et al. / Expert Systems with Applications 38 (2011) 1723–1737 1733
5. Experimental results

The next subsections report some experimental results ob-
tained with a SWAM application for air ticket booking (without
semantic matching of services) and several matchmaking simula-
tions using its semantic discovery support. Basically, the first set
of experiments assessed the performance of SWAM agents when
interacting with Web Services, without considering semantics.
On the other hand, the second set of experiments evaluated the
performance of the semantic discovery support of SWAM.

5.1. An air ticket booking application

We developed several SWAM agents to solve a constraint prob-
lem in the air travel domain described in Martínez and Lespérance
(2004). The goal of the application is to book an airplane ticket for
traveling between two given cities according to certain domain
business rules and user preferences. Examples of business rules
are flight and seats availability, whereas examples of users’ prefer-
ences are constrains over the ticket cost or air companies. We as-
sumed the existence of Web Services for querying the availability
of flights, seats, flight costs, and for booking a flight. The list of
the operations offered by these Web Services are:

1. findFlight (Co, Origin, Destination, DepartureDate, ArrivalDate):
Checks the existence of a flight in a company ‘‘Co” for the
desired cities and dates. The service returns the ID of the first
flight fulfilling the criteria.
2. checkSpace (Co, flightID): Checks whether ‘‘flightID” has avail-
able seats.

3. checkCost (Co, flightID): Idem (2) for the cost of a flight.
4. bookFlight (Co, flightID): Books a flight and returns the ticket ID

back to the client.

In addition, we considered a fixed set of companies, known by
the Brainlet implementing the application. For simplicity, the uni-
verse of constraints users may specify were grouped in five catego-
ries, which led to five different variants and hence implementations
of the main problem:

� Problem BPF (Book Preferred Flight): The Brainlet must book the
flight offered by the user’s preferred company whenever it is pos-
sible; otherwise, the agent should book a flight in any company.
� Problem BMxF (Book Maximum Flight): This problem involves a

different constraint: the user specifies a maximum price that
he is willing to pay for a ticket.
� Problem BPMxF (Book Preferred Maximum Flight): This problem

considers not one but two user-defined constraints, namely pre-
ferred company and maximum price and can be seen as a mix
between the BPF and BMxF.
� Problem BBF (Book BestFlight): This variant represents an optimiza-

tion task where the user wants to book the cheapest flight available.
� Problem BBPF (Book Best Preferred Flight): The Brainlet must book

the cheapest flight available, but if two flights have the same
price, the agent should favor the one offered by a given pre-
ferred company.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70 80 90 100

Av
er

ag
e

ex
ec

ut
io

n
tim

e
[s

ec
on

ds
]

Number of companies

BBF
BBPF

Fig. 8. Performance of BBF and BBPF (SWAM).

1734 M. Crasso et al. / Expert Systems with Applications 38 (2011) 1723–1737
We compared the performance of the SWAM solutions to the air
ticket problem with equivalent implementations using IG-JADE-
PKSLib (Martínez & Lespérance, 2004; Martínez, 2005), a toolkit
for the development of multi-agent systems for Web Service com-
position and provisioning. IG-JADE-PKSLib is based on conven-
tional AI planning techniques to perform service selection, which
is a rather different approach to ours and therefore an interesting
base for comparison.

The results of the IG-Jade-PKSLib implementations for the dif-
ferent variants of the flight booking problem are shown in Fig. 6.
These results were extracted from Martínez and Lespérance
(2004) and Martínez (2005). The experiments were performed on
a XEON 3.0 GHz with 4 Gb RAM under Linux. The figure shows
the average execution time for five runs of each variant of the
problem with a different number of companies (varying from 2
to 10). All times are expressed in seconds. In terms of performance,
IG-JADE-PKSLib behaves reasonably well in BPF, BMxF and BPMxF,
as service selections are performed in less than five seconds for five
or less air companies. However, it can be seen from the figure that
the implementation of these variants do not scale well for ten or
more companies. Furthermore, BBF and BBPF were too slow in
the tests, so we decided to left them out of the graphic.

Figs. 7 and 8 show the average execution times (five runs) of the
SWAM implementations of each variant of the booking problem. In
this case, the tests were conducted on a Pentium 4 2.2 GHz with
 0

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8 9 10

Av
er

ag
e

ex
ec

ut
io

n
tim

e
[s

ec
on

ds
]

Number of companies

BPF
BMxF

BPMxF

Fig. 6. Performance of BPF, BMxF and BPMxF (IG-Jade-PKSLib).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

Av
er

ag
e

ex
ec

ut
io

n
tim

e
[s

ec
on

ds
]

Number of companies

BPF
BMxF

BPMxF

Fig. 7. Performance of BPF, BMxF and BPMxF (SWAM).
1 Gb RAM under Linux. The Web Services were deployed on the
Apache Tomcat Web server, running on a second machine under
Sun Java Virtual Machine (JVM) 1.5 (build 19).

As the reader can see, SWAM performed excellent, even when
running on less powerful hardware. Unlike IG-JADE-PKSLib, all
solutions (i.e. BPF, BMxF, BPMxF, BBF, BBPF) scaled well and per-
formed in the order of few seconds. As expected, the worst execu-
tion times were obtained from BBF and BBPF variants, because they
are the most computationally demanding problems. Specifically,
the agent must find out the company that offers the least expen-
sive ticket, which in turn requires checking prices in every com-
pany. All in all, these results are very encouraging since they
suggest that using SWAM to simultaneously consume several
Web Services does not lead to losing performance while maintain-
ing both the benefits of Prolog for declaratively implementing mo-
bile agent applications and the good features of GRMF and
protocols for easily interacting with external Web Services.
5.2. Semantic matchmaking simulations

We evaluated the performance of our semantic approach to ser-
vice discovery, in terms of response time, with regard to different
sizes of the Semantic Description Database (SDD) component (i.e.
the number of semantically annotated published Web Services).
We developed a number of simple SWAM applications (without
relying on mobility) that performed semantic search requests. Both
the discovery infrastructure and all test applications were de-
ployed on an Intel Pentium 4 working at 2.26 GHz and 512 MB of
RAM, running Sun JVM 1.5 under Linux.

To fed the SDD, we first created two ontologies. The domains of
these ontologies were stock management and car selling, respec-
tively. Afterward, based on these two ontologies, we automatically
created service descriptions and supplied them to the SDD. Each
service description consisted of three properties: input, output
and functionality. For example, the concepts involved in a service
providing a quote for a sport car are cs:sportcar = input, cs:quo-
te = output and cs:car_quoting = functionality (‘‘cs” is the abbrevia-
tion for the ‘‘car selling” namespace).

Then, we published 100, 1000 and 10,000 semantic service
descriptions. For each variant given by the three SDD sizes, we sep-
arately performed 200 search requests and took the elapsed times.
Searches were simulated using randomly generated conditions and
expected results. As mentioned above, searches were performed
locally, this is, both the test applications and our registry of Seman-
tic Web Services were deployed on the same machine. This was

Table 3
Performance of our semantic registry: Summary.

Number of published Web Services 100 1000 10,000

Average response time (ms) 2.37 12.65 149.33

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160 180 200

Ex
ec

ut
io

n
tim

e
[m

illi
se

co
nd

s]

Search number

100 Services
1000 Services

10,000 Services

Fig. 9. Performance of our semantic registry: average search time.

M. Crasso et al. / Expert Systems with Applications 38 (2011) 1723–1737 1735
done to avoid the noise introduced by network communication so
as to accurately evaluate the retrieval performance of the discovery
system.

Table 3 summarizes the resulting average response time for
600 random searches (i.e. 200 per test case). From the table, we
can observe that the average performance of our discovery infra-
structure was below 150 ms, even with 10,000 Web Services
stored in the SDD. Graphically, Fig. 9 shows the relation between
the size of the SDD and the search time. It is worth mentioning
that the peaks of the curves are a consequence of overhead intro-
duced by the JVM garbage collector. Nevertheless, the upper
bounds of the response times are excellent regardless the size
of the database.
6. Related work

There is an interesting body of efforts that has been being done
on agent toolkits for leveraging Web Services. Some of the most
relevant of such toolkits to our work are ConGolog (McIlraith &
Son, 2002), IG-JADE-PKSLib (Martínez & Lespérance, 2004; Martí-
nez, 2005) and MWS (Ishikawa, Tahara, Yoshioka, & Honiden,
2005; Ishikawa, Yoshioka, & Honiden, 2005). Despite some inter-
esting advances towards the integration of agents and Web Ser-
vices have been made, current proposals have the following
problems: bad performance/scalability (IG-JADE-PKSLib), no/lim-
ited mobility (IG-JADE-PKSLib, ConGolog) and lack of support for
common agent requirements such as knowledge representation,
reasoning and high-level communication (MWS). Furthermore,
none of the previous platforms provide support for semantic
matching and discovery of Web Services. Another work close to
ours is SmartResource (Katasonov & Terziyan, 2007), a platform
for programming service-oriented multi-agent systems that is
implemented on top of the JADE (Bellifemine, Caire, Poggi, &
Rimassa, 2008) agent platform. Mobile agents are implemented
in an XML-based language that extends RDF called S-APL (Semantic
Agent Programming Language). This, however, makes SmartRe-
source more difficult to adopt since logic-based languages (e.g.
Prolog) are commonplace in agent programming.
Furthermore, there are a number of mobile agent-based plat-
forms that address the problem of service access in wireless
environments. Concretely, Baousis, Spiliopoulos, Zavitsanos, Had-
jiefthymiades, and Merakos (2008) follows a framework-based ap-
proach to integrate mobile agents and Semantic Web Services, and
therefore forces developers to have expertise on the framework be-
fore exploiting its capabilities. Similar to our agents, the structure
of a mobile agent comprises code, data and migratory/cloning pol-
icies, plus some extra elements (e.g. an embedded semantic match-
ing engine) that potentially makes them more heavier in terms of
network resource usage than SWAM agents. Moreover, Terziyan
(2005) and Adaçal and Benner (2006) follow the idea of using mo-
bile agents to enable for mobile Web Services. Contrarily, we tackle
the problem of simplifying the development of mobile applications
and their interaction with stationary Semantic Web Services.
Unfortunately, Adaçal and Benner (2006) does not handle service
semantics, while the soundness of the approach proposed in Terzi-
yan (2005) has not been corroborated experimentally yet.

Also, there are some proposals for semantic matching, publica-
tion and discovery of Web Services (Chiat, Huang, & Xie, 2004; Hor-
rocks & Patel-Schneider, 2004; Sivashanmugam, Verma, Sheth, &
Miller, 2003). One major limitation of these approaches is that
their matching schemes do not take into account the distance be-
tween concepts within a taxonomy tree. As a consequence, similar-
ity related to different specializations of the same concept are
wrongfully computed as being equal. The most relevant work to
the service matching approach of SWAM is the OWL-S Matchmaker
(Kawamura, Hasegawa, Ohsuga, Paolucci, & Sycara, 2005), an
UDDI-compliant semantic discovery and publication system. The
OWL-S Matchmaker includes a semantic matching algorithm that
is based on service functionality and data transformation descrip-
tions which are made in terms of service input and output argu-
ments. However, the OWL-S Matchmaker does not support
taxonomic distance between concepts either.

Another interesting approach to semantic discovery of Web Ser-
vices is proposed in Li and Horrocks (2004). Here, a Web Service is
described using a OWL-S profile or by employing an extension of
an existing one. Semantic similarity between two given services
is therefore computed by comparing their associated profile meta-
data rather than matchmaking their input and output concepts. A
service request must contain the class associated with the ideal
service profile (i.e. the one preferred by the requester), which is
matched against published profiles. The drawback of this approach
is that it may be a cumbersome task for discoverers to build a ser-
vice profile extension that properly describes their needs.

Finally, Bener, Ozadali, and Ilhan (2009) is another contempo-
rary approach to discovery of Semantic Web Services. Functionally,
the underlying matchmaking algorithm proposed in this work is
very similar to ours. Particularly, the algorithm exploits the meta-
model for Web Services defined by the OWL-S Service Profile and
introduces a similarity scheme that considers taxonomic distance.
However, the most significant difference between (Bener et al.,
2009) and our approach to Semantic Web Service discovery is
the idea of sharing ontologies. Specifically, Bener et al. (2009)
incorporates the notion of independent ontologies, whereas we
encourage sharing ontologies among service publishers.

The scheme adopted by Bener et al. (2009) allows publishers to
describe their services using new concepts upon publishing a ser-
vice, instead of encouraging them to inspect those concepts that
were used in the past and, in turn, reuse or extend them, as our ap-
proach does. Then, many inconsistencies may spring, e.g. two ser-
vices that produce the same output, but the former is described
using cs:Car and the latter by means of cs2:Automobile. In this
example, the outputs of the services will be treated as being differ-
ent, unless their publishers explicitly indicate that cs:Car and
cs2:Automobile are equivalent concepts. To mitigate this kind of

1736 M. Crasso et al. / Expert Systems with Applications 38 (2011) 1723–1737
inconsistency, Bener et al. (2009) also takes into account lexical
relations from WordNet between the names of a pair of concepts.
However, as the underpinnings of the WordNet (Fellbaum, 1989)
-based approach to bridge different concepts lie in the syntax of
concept names, names without any representative keywords may
deteriorate the retrieval effectiveness of the proposed similarity
scheme.
7. Conclusions

Intelligent mobile agents have the ability to infer, learn, act and
move. Many researchers agree that they will play a key role in pro-
viding backbone technology to truly materialize the Semantic Web
vision. In this light, our research aims at providing tools and plat-
forms for easily building mobile agents and for allowing these
agents to autonomously interact with Web Services. We have
introduced SWAM, a language for programming Prolog-based mo-
bile agents on the Semantic Web. A major difference between
SWAM and other mobile agent toolkits is its support for reactive
access to resources by failure, which reduces development effort
by automatizing mobility and resource access decisions. In addi-
tion, its semantic matchmaking and discovery support helps agents
to autonomously find and invoke Web Services. We have shown
the practical usefulness of SWAM through a number of benchmark
experiments. As explained, SWAM agents perform very well with
respect to related approaches. Similarly, performance tests con-
ducted on its discovery support gave promissory results.

Unlike previous work, SWAM defines a more precise semantic
matchmaking algorithm, which is implemented on top of a Pro-
log-based reasoner that offers semantic inference capabilities over
the decidable OWL-Lite ontology language. Our semantic infra-
structure enables for the development of mobile agents that inter-
act with Web-accessible functionality published across the WWW.
This leads to the provisioning of an environment where every site
can publish its capabilities as Semantic Web Services to which
agents can find and access in a fully autonomous way.

There are some issues that are subject of future work. On one
hand, we are developing more SWAM applications to assess its
benefits from a software engineering perspective. For example,
we are rebumping the Chronos (Zunino & Campo, 2009) mobile
agent-based distributed meeting scheduler to exploit Web Services
as well as semantic annotations. We are conducting research to-
wards incorporating reasoning support for a more powerful and
expressive language than OWL-Lite, such as OWL DL or OWL Full.
However, this is rather challenging, as it is necessary to elaborate
a convenient solution to address the ‘‘decidability versus expres-
sive power” trade-off inherent to the sublanguages of OWL and
to incorporate proper mapping rules into our Prolog-based rea-
soner or a bridge for querying a description logic reasoner. On
the other hand, the Shared Ontologies database of our semantic
registry must be extended to provide a framework to semantically
describe, publish and discover other types of Web resources apart
from Web Services, for example pages, blogs and other agents.
Thereby, a software agent would be able to autonomously interact
with Web Services or any kind of Web resource whose content
and/or capabilities are defined in a machine-interpretable way. In
addition, since the centralized nature of the discovery infrastruc-
ture may lead to scalability issues, we are extending the P2P facil-
ities of GMAC (Gotthelf et al., 2008) with decentralized Semantic
Web Service discovery.
References

Adaçal, M., & Benner, A. B. (2006). Mobile Web Services: A new agent-based
framework. IEEE Internet Computing, 10(3), 58–65.
Antoniou, G., & van Harmelen, F. (2003). Web ontology language: OWL. In S. Staab &
R. Studer (Eds.), Handbook on ontologies in information systems. International
handbooks on information systems (pp. 67–92). Springer-Verlag.

Apache Software Foundation (2009). Apache CXF: An open source service
framework. <http://cxf.apache.org>.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F. (Eds.).
. The description logic handbook: Theory, implementation, and applications.
Cambridge University Press.

Baousis, V., Spiliopoulos, V., Zavitsanos, E., Hadjiefthymiades, S., & Merakos, L.
(2008). Semantic Web Services and mobile agents integration for efficient
mobile services. International Journal on Semantic Web & Information Systems,
4(1), 1–19.

Bellifemine, F., Caire, G., Poggi, A., & Rimassa, G. (2008). JADE: A software framework
for developing multi-agent applications. Lessons learned. Information and
Software Technology, 50(1–2), 10–21.

Bener, A., Ozadali, V., & Ilhan, E. (2009). Semantic matchmaker with precondition
and effect matching using SWRL. Expert Systems with Applications, 36(5),
9371–9377.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific
American, 284(5), 34–43.

Chiat, L. C., Huang, L., & Xie, J. (2004). Matchmaking for Semantic Web Services. In
IEEE international conference on services computing (SCC 2004). IEEE Computer
Society.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., & Weerawarana, S. (2002).
Unraveling the Web Services Web: An introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing, 6(2), 86–93.

Douglis, F. (2008). Ideas ahead of their time. IEEE Internet Computing, 12(5), 4–6.
Fellbaum, C. (1989). WordNet: An electronic lexical database. Bradford Books.
Fortino, G., Garro, A., & Russo, W. (2008). Achieving mobile agent systems

interoperability through software layering. Information and Software
Technology, 50(4), 322–341.

Gotthelf, P., Zunino, A., Mateos, C., & Campo, M. (2008). GMAC: An overlay multicast
network for mobile agent platforms. Journal of Parallel and Distributed
Computing, 68(8), 1081–1096.

Hendler, J. (2001). Agents and the Semantic Web. IEEE Intelligent Systems, 16(2),
30–36.

Horrocks, I., & Patel-Schneider, P. F. (2004). A proposal for an OWL rules language. In
13th international conference on World Wide Web (WWW 2004). New York, NY,
USA: ACM Press.

Ishikawa, F., Tahara, Y., Yoshioka, N., & Honiden, S. (2005). A framework for
synthesis of Web Services and mobile agents. International Journal of Pervasive
Computing and Communications, 1(3), 227–245.

Ishikawa, F., Yoshioka, N., & Honiden, S. (2005). Mobile agent system for Web
Service integration in pervasive network. Systems and Computers in Japan,
36(11), 34–48.

Katasonov, A., & Terziyan, V. (2007). SmartResource platform and semantic agent
programming language (S-APL). In Multiagent system technologies – 5th German
conference (MATES 2007), Leipzig, Germany. Lecture notes in computer science
(Vol. 687, pp. 25–36). Berlin/Heidelberg: Springer.

Kawamura, T., Hasegawa, T., Ohsuga, A., Paolucci, M., & Sycara, K. (2005). Web
Services lookup: A matchmaker experiment. IT Professional, 07(2), 36–41.

Lange, D. B., & Oshima, M. (1999). Seven good reasons for mobile agents.
Communications of the ACM, 42(3), 88–89.

Leitner, P., Rosenberg, F., & Dustdar, S. (2009). Daios: Efficient dynamic Web Service
invocation. IEEE Internet Computing, 13(3), 72–80.

Li, L., & Horrocks, I. (2004). A software framework for matchmaking based on
Semantic Web technology. International Journal of Electronic Commerce, 8(4),
39–60.

Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K., et al.
(2007). Bringing semantics to Web Services with OWL-S. World Wide Web,
10(3), 243–277.

Martínez, E. (2005). Web Service composition as a planning task: An agent-
oriented framework. Master’s thesis, Department of Computer Science, York
University.

Martínez, E., & Lespérance, Y. (2004). IG-JADE-PKSlib: An agent-based framework
for advanced Web Service composition and provisioning. In AAMAS-2004
workshop on web services and agent-based engineering. New York, NY: Morgan
Kaufmann Publishers.

Martínez, E., & Lespérance, Y. (2004). Web Service composition as a planning task:
Experiments using knowledge-based planning. In ICAPS-2004 workshop on
planning and scheduling for web and grid services. Whistler, British Columbia,
Canada: Morgan Kaufmann Publishers.

Mateos, C., Crasso, M., Zunino, A., & Campo, M. (2006). Adding Semantic Web
Services matching and discovery support to the MoviLog Platform. In M. Bramer
(Ed.), Artificial intelligence in theory and practice – IFIP 19th World Computer
Congress, Santiago, Chile. IFIP international federation for information processing
(Vol. 217). Boston, MA, USA: Springer.

Mateos, C., Zunino, A., & Campo, M. (2007). Extending MoviLog for supporting Web
Services. Computer Languages, Systems & Structures, 33(1), 11–31.

McIlraith, S., Son, T. C., & Zeng, H. (2001). Semantic Web Services. IEEE Intelligent
Systems – Special Issue on the Semantic Web, 16(2), 46–53.

McIlraith, S. A., & Son, T. C. (2002). Adapting Golog for programming the Semantic
Web. In D. Fensel, F. Giunchiglia, D. L. McGuinness, & M.-A. Williams (Eds.),
Proceedings of the 8th international conference on principles and knowledge
representation and reasoning (KR-02), Toulouse, France. New York, NY: Morgan
Kaufmann.

http://cxf.apache.org

M. Crasso et al. / Expert Systems with Applications 38 (2011) 1723–1737 1737
Milanés, A., Rodriguez, N., & Schulze, B. (2008). State of the art in heterogeneous
strong migration of computations. Concurrency and Computation: Practice and
Experience, 20(13), 1485–1508.

OASIS Consortium (2004). UDDI version 3.0.2, UDDI Spec Technical Committee
Draft. <http://uddi.org/pubs/uddi_v3.htm>.

Paolucci, M., Kawamura, T., Payne, T. R., & Sycara, K. P. (2002). Semantic matching of
Web Services capabilities. In First international semantic web conference on the
semantic web. Springer-Verlag.

Shadbolt, N., Berners-Lee, T., & Hall, W. (2006). The semantic web revisited. IEEE
Intelligent Systems, 21(3), 96–101.

Sivashanmugam, K., Verma, K., Sheth, A. P., & Miller, J. A. (2003). Adding semantics
to Web Services standards. In L. Zhang (Ed.), IEEE international conference on web
services (ICWS 2003). IEEE Computer Society.

Terziyan, V. (2005). Semantic Web Services for smart devices based on mobile
agents. International Journal of Intelligent Information Technologies, 1(2), 43–55.

Vaughan-Nichols, S. J. (2002). Web Services: Beyond the hype. Computer, 35(2),
18–21.
W3C Consortium (2004). RDF (Resource Description Framework). <http://
www.w3.org/RDF>.

W3C Consortium (2007). SOAP version 1.2, W3C Candidate Recommendation.
<http://www.w3.org/TR/soap>.

W3C Consortium (2007). WSDL version 2.0, part 1: Core language, W3C candidate
recommendation. <http://www.w3.org/TR/wsdl20>.

Zunino, A., & Campo, M. (2009). Chronos: A multi-agent system for distributed
automatic meeting scheduling. Expert Systems with Applications, 36(3, Pt. 2),
7011–7018.

Zunino, A., Mateos, C., & Campo, M. (2005). Enhancing agent mobility through
resource access policies and mobility policies. In V ENIA – XXV Congresso da
Sociedade Brasileira de Computacão (SBC), San Leopoldo, RS, Brasil.

Zunino, A., Mateos, C., & Campo, M. (2005). Reactive mobility by failure: When fail
means move. Information Systems Frontiers – Special Issue on Mobile Computing
and Communications, 7(2), 141–154.

http://uddi.org/pubs/uddi_v3.htm
http://www.w3.org/RDF
http://www.w3.org/RDF
http://www.w3.org/TR/soap
http://www.w3.org/TR/wsdl20

	SWAM: A logic-based mobile agent programming language for the Semantic Web
	Introduction
	SWAM
	Generalized reactive mobility by failure
	Protocols
	Customizing GRMF
	Runtime support

	Semantic matching in SWAM
	Matching concepts
	Representing ontologies in Prolog
	Semantic Web service discovery

	A sample application
	Experimental results
	An air ticket booking application
	Semantic matchmaking simulations

	Related work
	Conclusions
	References

