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We analyze the lowest achievable temperature for a mechanical oscillator (representing, for ex-
ample, the motion of a single trapped ion) which is coupled with a driven quantum refrigerator.
The refrigerator is composed of a parametrically driven system (which we also consider to be a
single oscillator in the simplest case) which is coupled to a reservoir where the energy is dumped.
We show that the cooling of the oscillator (that can be achieved due to the resonant transport of
its phonon excitations into the environment) is always stopped by a fundamental heating process
that is always dominant at su�ciently low temperatures. This process can be described as the non
resonant production of excitation pairs. This result is in close analogy with the recent study that
showed that pair production is responsible for enforcing the validity of the dynamical version of
the third law of thermodynamics (Phys. Rev. E 95, 012146). Interestingly, we relate our model
to the usual ones used to describe laser cooling of a single trapped ion and reobtaining the correct
limiting temperatures for the limits of resolved and non-resolved sidebands. Our findings (that also
serve to estimate the lowest temperatures that can be achieved in a variety of other situations)
indicate that the limit for laser cooling can also be associated with non resonant pair production.
In fact, as we show, this is the case: The limiting temperature for laser cooling is achieved when
the cooling transitions induced by the resonant transport of excitations from the motion into the
electromagnetic environment is compensated by the heating transitions induced by the creation of
phonon-photon pairs.

PACS numbers:

I. INTRODUCTION

Cooling is a fundamental task to achieve precise con-
trol of individual quantum systems, and thus crucial in
the development of quantum technologies. Atoms, op-
tical cavities, mechanical resonators, and electronic sys-
tems must often be cooled to ultra low temperatures in
order to avoid spurious thermal excitations and achieve
the desired degree of control. Trapped ions are cooled
down close to their motional ground state as the first
step of any quantum algorithm [1–4]. In this context,
it is important to understand what are the lowest tem-
peratures that could be achieved by the di↵erent cooling
schemes that one can use[1, 5, 6].

The study of the ultimate limit for cooling is, there-
fore, not only an interesting fundamental question, but
also a question which is important from a practical point
of view. This question has been recently addressed in
the context of the emerging field known as “Quantum
Thermodynamics” [7–12]

From a fundamental perspective, an e↵ort has been
made to derive the third law of thermodynamics from
first principles. In fact, the impossibility to achieve per-
fect ground state cooling in finite time (Nernst unattain-
ability principle) has been formally demonstrated. How-
ever, these proofs, are not of practical significance (as the
lower bounds in achievable temperatures are too low in-
deed) and do not necessarily o↵er a direct insight on what
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FIG. 1: The model. A motional mode is cooled by coupling
it to a refrigerator consisting of a driven harmonic oscillator,
which acts as a work medium which is externally driven. This
oscillator is itself coupled with a bosonic reservoir, which is
where all entropy is finally dumped.

might be the physical processes imposing the limitations
for cooling in actual implementations [9–12].
In this paper we focus on the analysis of the ultimate

cooling limit of a class of refrigerators which are exter-
nally driven (a situation which is the most important
one in practical realizations). We recently presented a
detailed analysis of the behavior of a class of quantum
refrigerators [13] (linear, externally driven fridges) for
which it is possible to identify a very general process as
the one responsible for imposing the fundamental limi-
tation for cooling: Such process is nothing but pair cre-
ation (a process which is relevant, as discussed below,
in other areas of physics and is closely related with the
main mechanism behind the so called dynamical Casimir



2

e↵ect, DCE [13, 14]). In fact, our work analyzed a family
of linear machines consisting of arbitrary harmonic net-
works which are parametrically driven while connected
with an arbitrary number of bosonic reservoirs, prepared
at arbitrary temperatures and characterized by generic
spectral densities (see below). The exact solution of this
model (obtained without using common approximations
such as the weak coupling limit between the system and
its environments, the rotating-wave approximation or the
Markovian assumption) was used to obtain expressions
for the dissipated work and the heat currents flowing
from each reservoir into the system. A close examina-
tion of this exact solution illuminates the fact that the
creation of excitation pairs is dominant at su�ciently low
temperatures and is the process enforcing the third law.
Interestingly, in our work it was shown that an analysis
based on the use of master equations derived in the weak
coupling limit would fail to incorporate this fundamen-
tal process (because of the fact that the non resonant
pair creation processes are not of leading order in the
coupling between the system and its environments ). It
was also shown that by neglecting this fundamental term,
which induces heating of all reservoirs at su�ciently low
temperatures, the third law could indeed be violated, as
suggested and discussed in Ref. [15].

Here, we take advantage of the analysis presented in
Ref. [13] and apply it to analyze the limit for cooling a
single oscillator (this is possible since, as we mentioned,
the results contained in Ref. [13] are valid for environ-
ments with arbitrary spectral densities). Analyzing the
cooling limit for a single oscillator is relevant in several
contexts, such as in the case of cold trapped ions [16],
trapped atoms [17], or micromechanical oscillators [3].
The very simple model we will analyze and solve can be
naturally viewed as a thermal machine, or a thermal re-
frigerator (see Fig. 1). The machine is composed of a
working medium (a parametrically driven harmonic os-
cillator) that is in simultaneous contact with two reser-
voirs. One of these reservoirs has a single harmonic mode
that we want to cool. The other reservoir (typically rep-
resenting the electromagnetic field) is where the energy
is dumped. As we will see, the model presented here
is an interesting analogy to other more realistic models
for laser cooling. Notably, this simple model is su�cient
to derive the lowest achievable temperatures in the most
relevant physical regimes (and to predict their values in
other, still unexplored, regimes). Moreover, it enables a
simple interpretation of the heating process limiting laser
cooling as the non resonant creation of phonon-photon
pairs. The model also enables us to conclude that in
any laser cooling process there should be a photon pair
production process associated with it, which is closely
analogous to the pair production process present in the
DCE. In fact, as we show below, our analysis will enable
us to estimate the rate of photon pair production that is
associated to the typical laser cooling mechanisms with
optical frequencies and analyze the possibility of detect-
ing them.

The paper is organized as follows: In Section 2 we
present our model to understand laser cooling as a ther-
modynamical process. We solve the long time dynamics
of the model and study its thermodynamical properties.
In Section 3 we apply this model to study the cooling of a
single motional degree of freedom. We compute the heat
currents in this case and find the lowest temperatures
that can be achieved. Not only we analyze the two most
relevant regimes (Doppler cooling and sideband resolved
cooling) but also present possible generalizations where
much lower temperatures may be accessible. In Section 4
we analyze the nature of the spectrum of excitations that
are created in the photonic reservoir during laser cooling.
We show that the photonic spectrum not only consists
of two peaks (corresponding to photons emitted during
cooling and heating transitions) but also has a broad con-
tribution arising from photon pairs created directly from
the driving by a process which is closely connected with
the DCE. We finally summarize our results in Section 5.

II. A QUANTUM REFRIGERATOR AS A
MODEL FOR LASER COOLING

We will present here a simple model that will enable
us to study the lowest temperature that can be achieved
by laser cooling. In such case, an atom (typically, a two
level atom) is illuminated with a laser and three types of
degrees of freedom are coupled between each other. The
internal (electronic) levels of the atom (a system that
we will denote as S below) couple with the quantized
electromagnetic field (whose modes act as an environ-
ment which we denote as EB below). The internal modes
also couple with the motional degrees of freedom of the
atom, which we consider as an harmonic oscillator and
denote as EA below. The coupling to the laser induces
transitions between the atomic levels. Such levels e↵ec-
tively act as a pump (which is driven by the power of
the laser) that takes energy out of EA and dumps it into
EB . We will describe a very simple model to study this
situation, which has the virtue of being exactly solvable.
The main simplification is to replace the internal elec-
tronic levels of the atom by a single harmonic mode. Of
course, this is a rough approximation which will only be
reasonable at su�ciently low temperatures, where only
the lowest energy levels of the spectrum of S will matter.
As we will see, the model, whose essential ingredients are
shown in Figure 1, is able to accurately predict the cor-
rect limiting temperatures obtained for laser cooling in
the resolved sideband limit and also in the non-resolved
sideband case (and it can also be used to predict new and
interesting phenomena).

A. The model: Dynamics

Here, we will describe the model and the main proper-
ties of its solution. The rigorous derivation of the main
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equations can be found in Ref. [13]. We consider a para-
metrically driven oscillator with a Hamiltonian

HS =
p2

2M
+

1

2
MV (t)x2. (1)

This system couples with two others, which we arbitrar-
ily treat as ‘reservoirs’ and denote them as EA and EB .
We warn the reader that while in this subsection we will
consider the reservoirs to be rather general, in the fol-
lowing section EA will be assumed to consist of a single
oscillator while EB will consist of an infinite set of bosonic
modes (the modes of the electromagnetic field). So, for
the moment we consider the reservoirs as consisting of
collections of independent oscillators with Hamiltonians

H↵ =
X

j

 
⇡2
↵,j

2mj
+

1

2
mj!

2
↵,jq

2
↵,j

!
, (2)

where ↵ = A,B. The interaction between S and E↵ is
considered to be linear in both the coordinates of the
system and the environments and is described by the
Hamiltonians

HS,↵ = x
X

k

c↵,k q↵,k, (3)

where c↵,k are the corresponding coupling constants. Ini-
tially, the reservoirs are uncorrelated with S and are pre-
pared in thermal states at temperatures T↵.

We assume that the driving is periodic and write

V (t) =
X

k

Vke
ik!dt. (4)

We also assume that the coupling with the reservoirs in-
duces a stable stationary regime in the asymptotic limit
(the long time limit). In this regime, the state of the
system is also periodic and has the same period of the
driving, i.e. T = 2⇡/!d).

In what follows, the Green’s function of the system
S will be the essential tool we will use to analyze the
asymptotic state (which, being a Gaussian state, is fully
characterized by its covariance matrix). The Green func-
tion is nothing but the response function of S defined as
the solution of the equation

G̈(t, t0) + V (t)G(t, t0) +

Z t

0

d⌧�(t� ⌧)Ġ(⌧, t) = �(t, t0),

(5)
where the dot denotes a derivative with respect to the
first temporal argument and �(t) is the dissipation kernel
which incorporates all the e↵ect of the environments on
the evolution of the system. This kernel is defined as

�(t) =

Z 1

0

d!
I(!)

!
cos(!t), (6)

in terms of the so called spectral density of the environ-
ment, which is such that I(!) =

P
↵ I↵(!), with

I↵(!) =
X

l

c2↵,l
Mml!l

. (7)

Below, we will use the Laplace transform of �(t), which
we denote as �̂(s)) and turns out to be

�̂(s) =

Z 1

0

d!
I(!)

!

s

s2 + !2
. (8)

As a consequence of the driving, which breaks time ho-
mogeneity, the Green function G(t, t0) does not depend
on the time di↵erence (t� t0) only. In spite of this com-
plication, it is possible to find following relatively simple
expression, which is valid in the asymptotic limit [13]:

G(t, t0) =
1

2⇡

X

k

Z 1

�1
d!Ak(!)e

i!(t�t0) eik!dt.

As explained in [13], the derivation of this equation (that
we omit here) involves the use of Floquet theory for peri-
odically driven systems. The interpretation of this equa-
tion is simple: In the absence of driving, the only surviv-
ing term in the Floquet summation is the one with k = 0.
In this case, the Green function depends only on the time
di↵erence and A0(!) is simply given as A0(!) = g(i!),
where g(s) is the Laplace transform of the undriven
damped oscillator, (see below for an explicit formula).
When the driving breaks time homogeneity, terms with
k 6= 0 appear in the Floquet expansion for G(t, t0) giv-
ing rise to a non trivial dependence on the two temporal
arguments. The Floquet coe�cients Ak(!) are coupled
between each other and satisfy the equations

Ak(!) = �k,0 g (i!)�
X

j 6=0

g (i(! + k!d))VjAk�j(!). (9)

In all above equations, the Laplace transform of the static
Green’s function can be written as

g(i!) = (�!2 + VR + i!�̂(i!))�1, (10)

which can also be rewritten as

g(i!) = (!2
0 � (! � i�̂(i!)/2)2)�1. (11)

Here, !2
0 = VR � �̂2(i!)/4 and VR is the renormalized

frequency of S, which is defined as VR = V0 � �(0). The
previous definitions clearly imply that both !0 and �̂(i!)
do not depend on ! only when the total spectral density
is ohmic, i.e. when I(!) / !. In that case, the Green
function oscillates with frequency !0 and decays with a
rate �̂ ⌘ �.

B. Thermodynamics: Heat currents

To study the exchange of energy between S, EA and
EB in the stationary regime we first analyze the variation
of the expectation value of HS which satisfies

dhHSi
dt

= h@tHSi � i
X

↵

h[HS , HS,↵]i, (12)
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(we use ~ = 1 here and below). This equation enables us
to identify the notions of work and heat which are the two
sources for the change in the energy. Thus, the variation
of the energy induced by the explicit time dependence of
the system’s Hamiltonian is associated with work (more
precisely, with power), as

Ẇ = h@tHS/@ti. (13)

In turn, the variation of the energy of S arising from
the interaction with each reservoir E↵ is associated with
the heat flowing into the system per unit time, which we
denote as Q̇↵ and turns out to be

Q̇↵ = �ih[HS , HS,↵]i. (14)

Therefore, the above equation is nothing but the first
law of thermodynamics, i.e. dhHSi/dt = Ẇ +

P
↵ Q̇↵.

In what follows we will study the average values of the
work and the heat currents over a driving period (in the
limit of long times). These quantities will be respectively
defined as Ẇ and Q̇↵. In this asymptotic regime, it can
be shown that the average heat current Q̇↵ coincides with
the time derivative of the energy of E↵ (i.e., Q̇↵ = � ˙hH↵i:
the energy lost by E↵ is gained by S over a driving period)
[13]. Then, the averaged version of the first law is simply
the identity 0 = Ẇ +

P
↵ Q̇↵.

Using the explicit form of the Hamiltonians, it is rel-
atively simple to express the heat currents in the sta-
tionary regime in terms of the Fourier components of the
Green function. Again, we do not present the detailed
calculation but simply describe the ingredients needed to
obtain it (the full derivation can be found in Ref. [13]).
The heat current in the stationary regime can be fully
expressed in terms of the covariance matrix of S. Of
course, this comes as no surprise since the state of S is
Gaussian in the stationary limit (and therefore it is fully
determined by its covariance matrix). The average heat
flow has a particularly simple form:

Q̇↵ = V (t)�xp(t),

where �xp(t) is the position-momentum correlation func-
tion of S, defined as �xp(t) = h{x(t), p(t)}i/2 (the over-
bar in the previous equation indicates the average of the
product between V (t) and �xp(t) over a period of the os-
cillation). In the stationary regime, when the memory of
the initial state is lost, the correlation function can be
fully expressed in terms of the Green function G(t, t0) as
follows:

�xp(t) =
1

2

Z 1

0

Z 1

0

dt1dt2G(t, t1)⌫(t1, t2)Ġ(t, t2),

where the noise kernel of the environments is defined as

⌫(t) =

Z 1

0

d!
X

↵

I↵(!) coth(!/2kBT↵) cos(!t).

Replacing the previous expressions for G(t, t0), for V (t)
and using the set of equations satisfied by the Floquet

coe�cients Ak(!) we can derive a particularly simple and
physically appealing formula forQ↵. In fact, in Ref [13] it
was shown that the heat current can always be expressed
as the sum of three terms

Q̇↵ = Q̇RP
↵ + Q̇RH

↵ + Q̇NRH
↵ .

The explicit form of the resonant pumping (RP), the res-
onant heating (RH) and the non–resonant heating (NRH)
contributions to the average heat fluxes will be given be-
low and will enable us to understand the various ther-
modynamical processes involved. Thus, the first term
is:

Q̇RP
↵ =

X

k

Z 1

00
d!

⇣
! p

(k)
�,↵(!) N↵(!)

�(! + k!d) p
(k)
↵,�(!) N�(!)

⌘ (15)

where N↵(!) = (e!/T↵ � 1)�1 is the Planck distribution
and

p
(k)
↵,�(!) =

⇡

2
I↵(|! + k!d|)I�(!)|Ak(!)|2 (16)

is a positive number, proportional to the probability for
the system to couple a mode ! in E� with mode |!+k!d|
in E↵. The diagram in Figure 2 describe the processes
involved in Q̇RP

↵ : excitations are transported between
reservoirs after the resonant absorption (or emission) of
an energy k !d, a multiple of the quantum of energy of
the driving. The origin of the resonant heating Q̇RH

↵ is
similar but in this case, as shown in the same Figure, the
excitations are transported within the reservoir E↵, which
always results in heating. The corresponding formula is
simply

Q̇RH
↵ = �

X

k>0

Z 1

00
d! k!d p(k)↵,↵(!) (N↵(!)�N↵(!+k!d)).

(17)
Two points are worth noticing: a) the lower limit of in-
tegration in the expression RH current is not ! = 0 but
! = 00 = max{0,�k!d}. This is because when k < 0, the
arrival mode exists only if ! � �k!d. For negative values
of the integer k, the low frequency part of the spectrum
plays no role. As we will see, the low frequency part of
the spectrum is crucial in the non resonant processes. b)

The negativity of ˙̄QRH
↵ (which is the reason why this term

is always associated with heating) relies on the fact that
the Planck distribution decreases with frequency. In fact,
population inversion can change the sign of this term.

The last term in the heat flow fully contains the contri-
bution of low frequencies. It is the non resonant heating
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!

I↵(!)

!2

!1+k!d

!

I�(!)

!2+k!d

!1

kh̄!d

kh̄!d

kh̄!d

FIG. 2: Resonant processes a↵ecting the heat flow in or out
of a thermal reservoir are of two types: resonant pumping
(RP), associated with Q̇RP

↵ , involves the exchange of energy
between di↵erent reservoirs, while resonant heating (RH), as-
sociated with Q̇RH

↵ , involves the exchange of energy between
di↵erent modes of the same environment. The total number
of excitations in the reservoirs is conserved due to these two
mechanisms.

term Q̇NRH
↵ which reads:

Q̇NRH
↵ = �

X

k>0

Z k!d

0

d! k!d p(�k)
↵,↵ (!)

✓
N↵(!)+

1

2

◆
�

�
X

k>0

Z k!d

0

d! (k!d�!) p(�k)
↵,� (!)

✓
N�(!)+

1

2

◆
�

�
X

k>0

Z k!d

0

d! ! p
(�k)
�,↵ (!)

✓
N↵(!)+

1

2

◆

(18)

The non resonant heating does not involve the transport
of excitation but the creation of excitation pairs. These
processes are depicted in Figure 3. In that Figure we
see that these pairs can be created either in di↵erent
environments or in the same environment giving rise to
the three contributions shown in the above formula. The
interpretation of the equation is transparent: For each
Floquet term (i.e., for each integer k), when an excitation
with frequency ! is emitted into one of the reservoirs
the second excitation must have a frequency equal to
k!d �!. The probability for creating the first excitation
has a stimulated contribution (proportional to the mean
number of excitations already present in that mode) and
also a spontaneous contribution. For each of the possible
emission channels, the energy deposited in E↵ is either !,
k!d � ! or k!d. It is worth stressing the fact that Eq.
(18) is an exact formula, which is valid both for weak and
strong coupling [13].

C. The fundamental limit for cooling

Clearly, Q̇NRH
↵  0 and therefore it corresponds to the

heating of all reservoirs. Moreover, when the tempera-
tures of all reservoirs vanish, this is the only term con-
tributing to the heat flow. As a consequence, this term al-
ways becomes dominant at su�ciently low temperatures.

!

I↵(!)

!

I�(!)

k!d

k!d�!

!

kh̄!dkh̄!d

FIG. 3: Non Resonant processes a↵ecting the heat flow in
and out of each reservoir. They can involve either modes of
two di↵erent reservoirs or modes of the same reservoir. In all
cases, excitations are created in pairs.

For this reason, it is responsible for the validity of the
third law of thermodynamics. Thus, as discussed in [13],
if the non resonant heating term is not taken into account
(which is clearly erroneous at low temperatures) the third
law could indeed be violated, as suggested recently[15].

Identifying the process of pair creation as the one im-
posing the fundamental limit for cooling may sound a bit
exotic. As far as we know, this process is never men-
tioned in the most relevant texts on laser cooling [1, 18]
as the one to blame for the fact that such type of cool-
ing process cannot reach zero temperature. On the other
hand, pair production through parametric driving is a
well known phenomenon that has been identified as rele-
vant in many other contexts which seem to be unrelated
to the one we are analyzing. For example, the spacetime
dynamics induces cosmological pair creation [19], which
play an important role in the history of our Universe. In
fact, pair creation due to parametric driving is partic-
ularly relevant during the relating stage of inflationary
models of the early Universe [20]). Also, the motion of
the mirrors that form a cavity excites the vacuum and
induces the creation of pairs of photons inside the cavity.
This process, that is known as the dynamical Casimir
e↵ect (DCE) [19, 21, 22] was recently studied both with
theoretical and experimental methods [21, 23, 24]. The
analogy between our analysis and the typical setup used
to analyze the DCE is clear: In fact, when there is a
single reservoir, our equation (18) is identical to the one
describing the power spectrum of created pairs in the
DCE. We can interpret this as a consequence of the fact
that, in our case, the driving of S e↵ectively act as some
sort of moving boundary conditions for the environmen-
tal modes and, in this way, it induces pair creation. This
is a rich analogy and we will exploit it below, where we
will show that pair creation is the natural process to be
blamed for imposing the lowest achievable temperature
in the cooling of a single motional mode as it is typically
done in laser cooling.
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III. COOLING A SINGLE MOTIONAL MODE

The previous expressions are valid for arbitrary spec-
tral densities. We will apply them here to analyze the
limits for cooling of a single motional mode, whose fre-
quency we denote as !m. For this, we consider the spec-
tral density of EA to be such that IA(!) = ĨA �(!�!m),
where ĨA is a constant. In this case, the relevant pro-
cesses for cooling and heating of EA are displayed in Fig-
ure 4 (where a spectral density peaked about !m was
used for illustrative purposes). Clearly, the RH process
is absent since EA consists only of a single mode. The
lowest achievable temperature can be estimated by ana-
lyzing the condition under which the heating and cooling
terms balance each other. Using the above equations it
is simple to compute this ratio as
�����
Q̇RP

A

Q̇NRH
A

����� =
n̄

1 + n̄

P
k>0 I�(k!d + !m)|Ak(!m)|2P
k>0 I�(k!d � !m)|A�k(!m)|2 ,

(19)
where n̄ = NA(!m) is the average number of excitations
in the motional mode (the one that is being cooled). In
order to simplify our analysis, we neglected the heating
term appearing in the resonant pumping current Q̇RP .
By doing this, we study the most favorable condition for
cooling, assuming that the pumping of excitations from
EB into EA is negligible. This is equivalent to assum-
ing that the temperature of EB is TB ' 0. Although
this is a reasonable approximation in many cases (such
as the cooling of a single trapped ion) we should have
in mind that by doing this, the limiting temperature we
will obtain should be actually viewed as a lower bound to
the actual one. Thus, the condition defining the lowest
bound is that the ratio between the RP and NRH cur-
rents is of order unity. Using the previous expressions, it
is simple to show that this implies that

1

n̄
=

P
k>0 IB(k!d + !m)|Ak(!m)|2P
k>0 IB(k!d � !m)|A�k(!m)|2 � 1. (20)

To pursue our analysis, we need an expression for the
Floquet coe�cients Ak(!). This can be obtained under
some simplifying assumptions. In fact, if the driving is
harmonic (i.e. if V (t) = V0 + V (ei!dt + e�i!dt)) and
that its amplitude is small (i.e. if V ⌧ V0), we can use
perturbation theory to compute the Floquet coe�cients
to leading order in V . In fact, by doing this we find that
the only non vanishing terms are the ones corresponding
to k = ±1 which read

A±1(!m) ⇡ �g(i(!m ± !d))V g(i!m). (21)

Using this, we find that

1

n̄
=

IB(!d + !m)|g(i(!d + !m))|2

IB(!d � !m)|g(i(!d � !m))|2 � 1 (22)

The final step of our derivation requires the use of an
expression for g(s) (the propagator of the undriven oscil-
lator). For this we use a semi phenomenological approach

by simply assuming that, in the absence of driving, the
coupling with the reservoirs induces an exponential decay
of the oscillations of S. In this case, we can simply write
g(i!) = 1/((! � i�/2)2 � !2

0), where � is the decay rate
and !0 is the renormalized frequency of S. As mentioned
above, this same expression is obtained if we assume that
S behaves as if it were coupled with a single ohmic envi-
ronment (this is indeed a reasonable assumption in many
cases but it certainly requires that the back action of EA
on SS is negligible in the long time limit). Then, we can
simply write that

|g(i!)|2 =
1

(!2 � !2
0 + �2)2 + 4�2!2

0

. (23)

Using this, we find the following expression for the lowest
achievable number of excitations in EA:

1

n̄
=

IB(!d + !m)

IB(!d � !m)

((!d � !m)2 � !2
0 + �2)2 + 4!2

0�
2

((!d + !m)2 � !2
0 + �2)2 + 4!2

0�
2
�1.

(24)
This relatively simple formula, is an important result of
our paper. It show that the asymptotic value of n̄ de-
pends on four parameters: !0, !m, � and !d. The first
three of them characterize the system while !d can be
adjusted to minimize n̄. As shown below, the optimal
driving frequency depends on the other parameters in
an interesting manner. In particular, we will study two
physically important regimes where the decay rate satis-
fies either that � ⌧ !m (the limit of resolved sidebands)
or � � !m (the limit of non resolved sidebands). In
both cases we will show that our expression for the lim-
iting temperature coincides with the one obtained when
studying the limit for laser cooling.

A. The limit of sideband resolved laser cooling

Let us analyze the conditions under which it is possible
to achieve ultra low temperatures, i.e. temperatures such
that n̄ ⌧ 1. In that case, it is simple to show that the op-
timal driving frequency is the one for which the denom-
inator appearing in the expression for 1/n̄ is minimal.
Thus, assuming that the ratio IB(!d�!m)/IB(!d+!m)
is a slowly varying function of !d (which is certainly
the case when !d � !m such as in the case of a
trapped ion), the optimal driving frequency is such that
!d =

p
!2
0 � �2 �!m. In this case, the lowest achievable

temperature is such that

n̄ =
�2!2

0

4!2
m!2

d + !2
0�

2

I�(!d � !m)

I�(!d + !m)

⇡ �2

4!2
m

!2
0

(!0 � !m)2
IB(!0 � 2!m)

IB(!0)
,

(25)

where the approximation � ⌧ !0 was used to obtain the
last expression. In this case !d ⇡ !0�!m, which implies
that the optimal situation is achieved when the driving
is resonant with the red detuned lateral sideband of the
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carrier frequency !0. Clearly, the condition n̄ ⌧ 1 can
only be satisfied if � ⌧ !m, which is nothing but the con-
dition for resolved sidebands. Notably, the above expres-
sion for n̄ coincides with previously known formulae for
the lowest achievable temperature in sideband resolved
laser cooling, which were obtained by completely di↵er-
ent methods. In fact, in that case a further simplification
is possible as laser cooling is typically done in the optical
regime for !0 and !d (which are therefore much larger
than !m, which is typically in the r.f. domain). Then,
the ratio IB(!d�!m)/IB(!d+!m) is of order unity and,
therefore, we have that the lowest temperature is such
that n̄ = �2/4!2

m. Our formula is clearly more general
and can be applied in other cases, as discussed below.

B. The limit of Doppler cooling

Let us now study a di↵erent regime, where the cooling
does not achieve ultra low temperatures (i.e., the condi-
tion n̄ ⌧ 1 is not satisfied). If we neglect the contribution
arising from the spectral densities (which, as above, is a
reasonable approximation whenever !0 � !m, like in the
optical regime) the asymptotic value of the occupation
number is

n̄ =

�
(!d + !m � !0)2 + �2

� �
(!d + !m + !0)2 + �2

�

8!d!m (!2
0 � !2

m � �2 � !2
d)

Cooling is possible only if the condition !2
0 > !2

m+�2+!2
d

is satisfied (notice that this implies that !0 must be larger
than !d, !m and �). The above expression (which is valid
whenever the spectral density varies slowly with !m) can
be used to study the case where � � !m, which physi-
cally very important. In fact, this regime corresponds to
the Doppler cooling limit, where the sidebands are not
resolved. In this case, the optimal driving frequency can
be shown to be !d = !0�� and the limiting temperature
turns out to be

n̄ =
�

2!m

In this case, the cooling condition is satisfied whenever
2�!d � !2

m (analogously, in the sideband resolved case
the cooling condition requires that 2!m!d � �2, which is
naturally satisfied). Thus, by applying a single formula
in two di↵erent situations we obtained the limiting tem-
peratures in the most relevant regimes for laser cooling.
This seems to indicate that the mechanism that is re-
sponsible for stopping laser cooling is pair creation. Let
us analyze this in some detail.

C. The role of pair creation in laser cooling

According to our analysis, the origin of the lowest
achievable temperature in the class of refrigerators we an-
alyzed is imposed by pair creation from the driving. This

is certainly not the typical explanation for the reason why
laser cooling stops. However, we will see now that pair
creation has a natural role in laser cooling. Thus, we
will see that pair creation is certainly not an exotic but
an essential process in this case. The relevant processes
that play a role in the resonant pumping and non reso-
nant heating currents are shown in Fig. 4 (for !d > !m).
Thus, the resonant pumping of energy out of EA (blue ar-

!

IA(!)

!

IB(!)

!d+!m

!d�!m

!m

!d

FIG. 4: Relevant processes contributing to the heat current
of reservoir EA when !d > !m and TB ' 0.

row in Figure 4) corresponds to a removal of a motional
excitation (a phonon) and its transfer to the photonic en-
vironment. A phonon with frequency !m disappears in
EA and a photon with frequency !0 appears in EB . This
is possible by absorbing energy !d = !0 � !m from the
driving. This process is usually visualized in a di↵erent
way in the standard literature of laser cooling [1, 5, 6], as
shown in Fig. 5. This Figure shows the energy levels of

|ni
|n+1i

�

|n�1i

�

!m

�

!0

RP
NRH

FIG. 5: Usual depiction of the staircase of energy levels and
the transitions between them involved in Doppler and side-
band laser cooling (actually, there are other non resonant pro-
cesses in play, see [1])

the combined system formed by EA and S. In our case,
both systems are oscillators and each one of them has an
infinite number of energy levels. However, we only pay
attention to the lowest levels of S. Thus, the resonant
pumping process (RP) takes the system from the lowest
energy level of S with n phonons into the excited level
of S with (n � 1) phonons. Then, as S is coupled to
the environment EB , it decays from the excited |ei to the
ground (|gi) state by emitting an excitation (a photon)
in EB , whose frequency is !0. This is the key process re-
sponsible for sideband resolved laser cooling. The system
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is cooled because resonant pumping forces the combined
EA � S system to move down in the staircase of energy
levels.

However, if resonant pumping were the only relevant
process, the above argument would induce us to conclude
that laser cooling could achieve zero temperature: by go-
ing down the staircase of energy levels, S would end up
in its ground state and the motional mode would end up
with n = 0 phonons. The reason why this does not hap-
pen is the existence of non resonant heating. This process
is described as NRH in Fig. 5. It corresponds to the cre-
ation of a pair of excitations consisting of a phonon and
a photon. The phonon, has frequency !m while the pho-
ton should have frequency !d � !m. We may choose to
describe this pair creation process as a sequence of heat-
ing transitions that moves the combined S–EA system up
along the staircase of energy levels. This can be done as
follows: Suppose that we start from n phonons in the mo-
tional state and S in the ground state |gi. Then, S can
absorb energy !d from the driving and jump into a vir-
tual state from which it can decay back into |gi but with
a motional state with n+1 phonons. This heating transi-
tion has the net e↵ect of creating a phonon and emitting
a photon. As we wrote before, and we stress again, laser
cooling stops (in this sideband resolved limit) when the
resonant cooling transitions are compensated by non res-
onant heating transitions where energy is absorbed from
the driving and is split between two excitations: one in
the motional mode (a phonon) and one in the environ-
mental mode (a photon). As a consequence of the non
resonant transitions, the motion heats up. The limiting
temperature is achieved when the resonant (RP) and non
resonant (NRH) processes balance each other.

Of course, the way in which we are describing the pro-
cesses involved in laser cooling (both the cooling and the
heating transitions) is not the standard one but provides
a new perspective and some new predictions, which we
will discuss below.

D. Ultra low temperatures for structured
reservoirs

A first generalization of the standard results for the
limiting temperatures achieved in laser cooling arises if
we can manipulate the environmental spectral density.
In that case, new results emerge, which we analyze now.
In fact, the properties of spectral density of the reservoir
may be very relevant in establishing the lowest achiev-
able temperature in some cases. Thus, this is because of
the presence of the ratio IB(!d � !m)/IB(!d + !m) in
Eq. (24). As we will see, this ratio may play an inter-
esting role in certain cases. If the spectral density is a
monotonic function of the frequency (at least in a rele-
vant band around !d), the ratio is always smaller than
unity. As we mentioned above, when !m is much smaller
than !d, the ratio is close to unity and can be neglected.
However, when !m is of the same order of magnitude

than !0, the ratio may be very small and substantially
modify the minimal occupation number that the cooling
mechanism can achieve.
Let us analyze this now. We take !0 and !m to be

similar. As before, we assume we are in an underdamped
regime where !0 � �. Therefore, we also have !m � �
and the resolved sideband condition is satisfied. Thus,
the optimal driving frequency is !d = !0 � !m and the
minimum occupation number is given above by Eq. (24).
If the spectral density is such that IB(!) / !, then Eq.
(24) becomes:

n̄min =
1

4

✓
�

!m

◆2 (1� 2!m/!0)

(1� !m/!0)2
. (26)

For  � 1 (Ohmic and super-Ohmic spectral densities),
the factor f = (1�2!m/!0)/(1�!m/!0)2 is always less
than unity. As a consequence, the minimum achievable
temperature is lower than the one given by the standard
formula for sideband cooling. Instead, for sub-Ohmic
spectral densities, the condition f < 1 is satisfied only
when !m/!0 is larger than a critical value. For example,
if  = 1/2, we have 0 < f < 1 only if 0.457 < !m/!0 <
0.5. In turn, for highly sub-Ohmic environments with
 ⌧ 1, the condition f < 1 is satisfied only in a very
narrow band (defined as 1/2(1�1/22/) < !m/!0 < 1/2.
If the environmental spectral density is such that

I(! = 0) = 0, then the lowest value of n̄ obtained from
Eq. 24 tends to zero when !m ! !0/2. In fact, in
this case the pair creation mechanism described above
is suppressed (because the excitation would have to be
created at very low frequencies, where the environment
has no available modes). This result may lead us to
the erroneous conclusion than zero temperature could
be achieved. Indeed, this is not the case because when
!d = !m, the non resonant heating current is dominated
by the next to leading order term in the Floquet index
(i.e., k = ±2). Thus, in this case the pairs of excitations
are created by absorbing energy 2!d from the driving.
In fact, this energy is enough to create an excitation in
the motion and another excitation in the environment at
frequency !m. Of course, this process is of higher order
in the driving amplitude V . In this case, going back to
Eq. 20 we can estimate the correct limiting tempera-
ture. Thus, using the fact that, when !d = !m we have
A�2(!m) = g(�i!m)V A�1(!m) we obtain

n̄|!0=2!m ⇡ �2

!2
m

IB(!m)

IB(2!m)

64V 2

9!4
m

. (27)

Therefore, Eq. (24) is valid only if !m is not too close to
!0/2. Otherwise, higher order processes must be taken
into account.
These considerations are not relevant for the major-

ity of sideband cooling implementations, where the mo-
tional frequency !m is several orders of magnitude lower
than the central system frequency !0[3, 4, 25]. How-
ever, they might be of interest for systems of supercon-
ducting qubits coupled with radio frequency cavities. In
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that case, one could use the qubit to pump energy away
from one cavity dumping it in a second one. In this type
of systems the frequencies of these two objects can be
selected by design, and they can be of the same order
(in fact, in this type of system, the DCE was already
observed[23, 24]).

IV. POWER SPECTRUM OF THE EMITTED
RADIATION:

As was explained in the previous sections, in the usual
presentation of laser cooling the heating mechanisms pre-
venting the perfect preparation of the motional ground
state are understood as inelastic scattering events in-
volving transitions to virtual electronic levels followed by
spontaneous emissions[1]. When one of these processes
takes place, the overall e↵ect is the creation of a mo-
tional excitation and the emission of a photon with the
frequency reduced by !m with respect to the incident ra-
diation. From our point of view, this process can also

!

IA(!)

!

IB(!)

!d + !m

!

!0
!m

!d

FIG. 6: Relevant processes contributing to the heat current
of reservoir EB when !d > !m and TB ' 0. Pairs of photons
are created at frequencies ! and !0 such that ! + !0 = !d.

be understood as a particular case of the pairs creation
mechanism, analogous to the one present in the DCE.
Thus, the motional excitation and the emitted photon,
whose frequency is !d � !m are analogous to a dynam-
ical Casimir pair. However, there is another aspect of
the cooling process in which the pair creation process
plays a role. This can be seen by analyzing the heat
current entering the reservoir EB , which represent the
electromagnetic field. In fact, during the cooling pro-
cess there will be three types of photons which will be
emitted in EB . Firstly, we will find photons with the car-
rier frequency !0 which are produced during the resonant
cooling transitions (where a phonon is transformed into
a photon by absorbing energy from the driving). Sec-
ondly, we will find the photons emitted during the heat-
ing transitions which, as described above, have frequency
!0�2!m. These two processes were described above and
are associated with the diagrams presented in Figure 4

and 5. But there will be a third class of photons which
are emitted in pairs directly from the driving.

FIG. 7: Power spectrum for the creation of photon pairs di-
rectly into the electromagnetic field (for IB(!) / !3).

!e!d!d/2

10�10

10�8

10�6

10�4

10�2
!m!m

!

P
(!

)
(a
.u
)

Total Spectrum
Two photons creation

FIG. 8: Full power spectrum for the heat current entering
the electromagnetic field (for IB(!) / !3).

All the above mentioned contributions to the electro-
magnetic radiation during the cooling process can be an-
alyzed from our previous formulae. In fact, the power
spectrum of the energy dumped into the EM field can be
read from the integrand of Eqs. (15), (17) and (18). They
precisely contain the three contributions we mentioned
above. The first one comes from the resonant pumping
(RP) of energy from reservoir EA to EB , which creates
photons at frequency !d + !m. Thus, if fRP(!) is the
number of photons per unit of time created at frequency
! by this process, we have, for ! > !d:

fRP(!) =
⇡

2
IB(!)IA(! � !d)|A1(! � !d)|2NA(! � !d)

(28)
In the same way, the number of photons per unit of time
created at frequency ! by the pair creation of Figure 4
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is:

fNRH(!) =
⇡

2
IB(!)IA(!d � !)|A�1(!)|2 [NA(!m) + 1] ,

(29)
for ! < !d. Finally, for the pair creation of Figure 6 we
have a number of photons per unit time given by:

f 0
NRH(!) =

⇡

4
IB(!)IB(!d � !)|A�1(!)|2 (30)

This last contribution, in contrast with the other two,
is not spectrally narrow but very broad. The power spec-
trum associated with the photon pairs is plotted in Fig-
ure 7, where we can see that these photons are symmetri-
cally distributed around !d/2. The total power spectrum
if plotted in Figure 8 for the parameters !m/!0 = .1,
�/!0 = 10�2, and !d = !0 � !m (since this is op-
timal for �/!m ⌧ 1). Also, for this plot, the Dirac
delta in IA(!) was replaced by a Lorentzian function
(�m/(2⇡))/((! � !0)2 + (�m/2)2) with a width which
was chosen as �m = 10�2!m. When the motional mode
reaches its minimal temperature, the two main spectral
peaks located at frequencies !d ± !m have the same
height (since the number of photons emitted during cool-
ing transitions should be the same as the number of pho-
tons emitted during heating transitions). We stress that
our derivation only rigorously applies to a system made
out of harmonic modes so the relation between our re-
sults and those obtained for the actual model for laser
cooling could be questionable.

However, we can try to estimate the ratio R between
the total number of Casimir photons and the number of
photons associated with the main peaks when the param-
eters are of the same order of magnitude than the ones
typically involved in the Doppler cooling of a trapped
ion. For this, we consider the spectral density of EB to
be such that IB(!) = ĨB(!/!0)3 (as it is the case for
the electromagnetic modes in open space). As it is the
case in the Doppler cooling limit, we also consider that
!0 � � � !m. Thus, we obtain:

R =

R
f 0
NRH(!)d!R
fNRH(!)d!

' 1

4

!m

!0

ĨB

ĨA
�. (31)

To pursue, we need to find an expression for the ratio
between the constants appearing in the spectral densities
of EA and EB (i.e. an expression for ĨB/ĨA). This can
be done by choosing the parameters of our model in such
a way that they mimic the ones corresponding to the
Hamiltonian of a single trapped ion. Then, it is simple
to see that we should choose ĨA / ⌘2⌦2 and ĨB / �,
where ⌦ is the Rabi frequency (which is proportional to
square root of the laser power) and ⌘ is the Lamb-Dicke
parameter (the ratio between the spread of the ground
state wave function and the laser wavelength). Then, we
find that

ĨB

ĨA
=

�

⌦2⌘2
,

For the typical cooling process of Calcium ions, the
experimental parameters are [26]: !m = 2⇡ ⇥ 5Mhz,
!0 = 2⇡ ⇥ 755Thz (corresponding to the 397nm S1/2 !
P1/2 transition of a calcium ion), � = 2⇡ ⇥ 20Mhz,
⌦ = 2⇡ ⇥ 1Mhz and ⌘ = 0.078. Using these values we
obtain that R ' 10�4. Also, under these conditions ap-
proximately 3 ⇥ 103 photons per second are emitted in
the cooling and heating transitions (which, in this case,
do not form two peaks in the emission spectrum but lie
inside a single line whose width is proportional to �).
Therefore, the number of created pairs is exceedingly low:
less than 1 pair of photons per second are produced (in
all directions), which makes their observation impossible
in practice (for a single trapped ion). However, to find
out if the photon pairs created during the cooling of a
trapped ion can be observed, it is necessary to perform a
careful analysis of a realistic model (which is out of the
scope of this paper).

V. CONCLUSIONS

We have analyzed the solution of a simple mechanical
model which, when studied in the quantum (low temper-
ature) regime, can be use to understand and illustrate
the most important aspects of the process of laser cool-
ing. Analyzing in detail the thermodynamical properties
of linear thermal refrigerators (parametrically driven) we
estimated the lowest achievable temperatures (and the
optimal driving frequency) for the most relevant limiting
cases: the resolved sideband regime and the Doppler (non
resolved sideband) limit. The estimated temperatures
coincide with the usual expressions available in the laser
cooling literature [1, 5, 6]: n̄ = (�/!m)2 when � ⌧ !m

and n̄ = �/!m when � � !m. The virtue of our analysis
in our opinion, is that it enables us to understand the
process that fixes the lowest achievable temperature in
a simple thermodynamical way: there is a fundamental
heating process which dominates any driven refrigerator
at su�ciently low temperatures and consists of non reso-
nant creation of excitations in the low frequency part of
the environmental spectrum (frequencies lower than the
driving frequency). Creation of phonon-photon pairs un-
avoidably heat the motional degree of freedom which is
being cooled. It has a counterpart in the photon-photon
pairs which are dumped in the electromagnetic environ-
ment in a way which is entirely analogous to the dynami-
cal Casimir e↵ect. As we showed, the usual limiting tem-
peratures for laser cooling are obtained provided we focus
in the optical regime (where both the driving frequency
and the carrier !0 are much larger than the motional fre-
quency which is being cooled). In a di↵erent regime, our
analysis enables to predict other limits, where the lowest
temperature is modified by the spectral properties of the
environment where the entropy is dumped.
We acknowledge support of ANPCyT, CONICET and

UBACyT (Argentina).
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[11] Llúıs Masanes and Jonathan Oppenheim. A general
derivation and quantification of the third law of ther-
modynamics. Nature Communications, 8, 2017.

[12] Henrik Wilming and Rodrigo Gallego. The third law as a
single inequality. arXiv preprint arXiv:1701.07478, 2017.

[13] Nahuel Freitas and Juan Pablo Paz. Fundamental limits
for cooling of linear quantum refrigerators. Phys. Rev. E,
95(1):012146, 2017.

[14] Giuliano Benenti and Giuliano Strini. Dynamical casimir

e↵ect and minimal temperature in quantum thermody-
namics. Physical Review A, 91(2):020502, 2015.
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D Leibfried, F Schmidt-Kaler, and R Blatt. Quantum
state engineering on an optical transition and decoher-
ence in a paul trap. Physical Review Letters, 83(23):4713,
1999.


	Introduction
	A quantum refrigerator as a model for laser cooling
	The model: Dynamics
	Thermodynamics: Heat currents
	The fundamental limit for cooling

	Cooling a single motional mode
	The limit of sideband resolved laser cooling
	The limit of Doppler cooling
	The role of pair creation in laser cooling
	Ultra low temperatures for structured reservoirs

	Power spectrum of the emitted radiation: 
	Conclusions
	References

