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Abstract

We generalize the classical theorem by Jarník and Besicovitch on the irrationality
exponents of real numbers and Hausdorff dimension and show that the two notions
are independent. For any real number a greater than or equal to 2 and any non-
negative real b be less than or equal to 2/a, we show that there is a Cantor-like set with
Hausdorff dimension equal to b such that, with respect to its uniform measure, almost
all real numbers have irrationality exponent equal to a. We give an analogous result
relating the irrationality exponent and the effective Hausdorff dimension of individual
real numbers. We prove that there is a Cantor-like set such that, with respect to its
uniform measure, almost all elements in the set have effective Hausdorff dimension equal
to b and irrationality exponent equal to a. In each case, we obtain the desired set as a
distinguished path in a tree of Cantor sets.
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Mathematics Subject Classification (2010): 11J82,11J83,03D32

The irrationality exponent a of a real number x reflects how well x can be approximated
by rational numbers. Precisely, it is the supremum of the set of real numbers z for which the
inequality

0 <

∣

∣

∣

∣

x−
p

q

∣

∣

∣

∣

<
1

qz

is satisfied by an infinite number of integer pairs (p, q) with q > 0. Rational numbers have
irrationality exponent equal to 1. It follows from the fundamental work by Khintchine [15]
(see also Chapter 1 of [6] for a good overview) that almost all irrational numbers (with respect
to Lebesgue measure) have irrationality exponent equal to 2.

On the other hand, it follows from the theory of continued fractions that for every a greater
than 2 or equal to infinity, there is a real number x with irrationality exponent equal to a.

The sets of real numbers with irrationality exponent a become smaller as a increases. This
is made precise by calculating their dimensions. For a set of real numbers X, a non-negative
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real numbers s, and a real number δ > 0, let

Hs
δ (X) = inf







∑

j≥1

dsj : there is a cover of X by balls with diameter (dj < δ : j ≥ 1)







.

Note that Hs
δ (X) cannot decrease as δ goes to zero. The s-dimensional Hausdorff measure of

X is given as

lim
δ→0

Hs
δ (X).

The Hausdorff dimension of a set X is the infimum of the set of non-negative reals s such that
the s-dimensional Hausdorff measure of X is zero.

Jarník [14] and independently Besicovitch [3] showed that the Hausdorff dimension of the
set of real numbers x such that x has irrationality exponent greater than or equal to a is
2/a. Güting [12] proved that the Hausdorff dimension of the set of reals x such that x has
irrationality exponent (exactly) equal to a is also 2/a. Later, Beresnevich et al. [2] gave a new
proof of Güting’s result and also established that the 2/a-dimensional Hausdorff measure of
the set of reals x with irrationality exponent a is infinite. Bugeaud [5] extended these results
to general approximation order functions in the sense of Khintchine [15].

The results outlined above suggest that there is a strong tie between Hausdorff dimension
and irrationality exponent, in the way irrationality exponents are metrically stratified in terms
Hausdorff dimension. This tie becomes even more evident when replacing Hausdorff dimension
by a pointwise counterpart, known as effective dimension, which we briefly describe.

The theory of computability defines the effective versions of the classical notions. A com-
putable function from non-negative integers to non-negative integers is one which can be
effectively calculated by some algorithm. The definition extends to functions from one count-
able set to another, by fixing enumerations of those sets. A real number x is computable if
there is a computable sequence of rational numbers (rj)j≥0 such that |x− rj| < 2−j for j ≥ 0.
A set is computably enumerable if it is the range of a computable function with domain the
set of non-negative integers.

Cai and Hartmanis [7] considered effectively presented properties which are related to
Hausdorff dimension. Lutz [17] formulated a definition of effective Hausdorff dimension
for individual sequences in terms of computable martingales. Reimann and Stephan [18]
reformulated the notion in terms of computably enumerable covers, as follows. Let W be
the set of finite binary sequences (sequences of 0s and 1s), and we write N for the set of
non-negative integers. A set X of real numbers has effective s-dimensional Hausdorff measure
zero, if there exists a computably enumerable set C ⊆ N × W such that for every n ∈ N,
Cn = {w ∈ W : (n,w) ∈ C} satisfies that for every x in X there is a length ℓ such that the
sequence of first ℓ digits in the base-2 expansion of x is in Cn, and

∑

w∈Cn

2−length(w)s < 2−n.

The effective Hausdorff dimension of a set X of real numbers is the infimum of the set of
non-negative reals s such that the effective s-dimensional Hausdorff measure of X is zero.
The effective Hausdorff dimension of an individual real number x is the effective Hausdorff
dimension of the singleton set {x}. Note that the effective Hausdorff dimension of x can be
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greater than 0: x has effective Hausdorff dimension greater than or equal to s if for all t < s,
x avoids every effectively presented countable intersection of open sets (namely, every effective
Gδ set) of t-dimensional Hausdorff measure zero. The effective notion reflects the classical one
in that the set {x : x has effective Hausdorff dimension equal to t} has Hausdorff dimension t.

The notion of effective Hausdorff dimension can also be defined in terms of computable
approximation. Intuitively, the Kolmogorov complexity of a finite sequence is the length of
the shortest computer program that outputs that sequence. Precisely, consider a computable
function h from finite binary sequences to finite binary sequences such that the domain of h
is an antichain. Define the h-complexity of τ to be the length of the shortest σ such that
h(σ) = τ . There is a universal computable function u with the property that for every such
h there is a constant c such that for all τ , the h-complexity of τ is less than the u-complexity
of τ plus c. Fix a universal u and define the prefix-free Kolmogorov complexity of τ to be
its u-complexity. In these terms, the effective Hausdorff dimension of a real number x is the
infimum of the set of rationals t such that there is a c for which there are infinitely many ℓ
such that the prefix-free Kolmogorov complexity of the first ℓ digits in the base-2 expansion
of x is less than t · ℓ− c. See Downey and Hirschfeldt [9] for a thorough presentation.

Effective Hausdorff dimension was introduced by Lutz [17] to add computability to the
notion of Hausdorff dimension, in the same way that the theory of algorithmic randomness
adds computability to Lebesgue measure. But, we could also view the effective Hausdorff
dimension of a real number x as a counterpart of its irrationality exponent. Where the
irrationality exponent of x reflects how well it can be approximated by rational numbers,
the effective Hausdorff dimension of a real x reflects how well it can be approximated by
computable numbers. The connection is more than an analogy.

Except for rational numbers all real numbers have irrationality exponent greater than
or equal to 2. This means that for each irrational number x, the supremum of the set
{z : there are infinitely many rationals p/q such that |x − p/q| < 1/qz} is greater than or
equal to 2. On the other hand, most real numbers have effective Hausdorff dimension 1 and
are algorithmically random, which means that the initial segments of their expansions can
not be described by concise algorithms. Thus, for any such x, all rationals p/q provide at
most the first 2 log(q) digits of the base-2 expansion of x (take p and q integers, such that
0 < p < q, and describe each of them with log q digits.). Consequently, for a rational p/q
is impossible that |x − p/q| be much less than 1/q2. It follows that for most real numbers
the irrationality exponent is just equal to 2. In case x is a Liouville number, its irrationality
exponent is infinite, so for every n there is a rational p/q such that |x − p/q| < 1/qn. Thus,
2 log(q) digits can describe the first n log(q) bits of x. Therefore, each Liouville number has
effective dimension 0 [19]. Calude and Staiger [8] generalized this argument to show that if x
has irrationality exponent a, then the effective Hausdorff dimension of x is less than or equal
to 2/a.

The precise metric stratification of irrationality exponents in terms of Hausdorff dimension
has therefore an exact effective counterpart. In this note we show that the two concepts,
irrationality exponent and (effective) Hausdorff dimension, are nevertheless independent. More
precisely, we prove the following results.

Theorem 1. Let a be a real number greater than or equal to 2. For every real number
b ∈ [0, 2/a] there is a Cantor-like set E with Hausdorff dimension equal to b such that, for the
uniform measure on E, almost all real numbers have irrationality exponent equal to a.
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Theorem 2. Let a and b be real numbers such that a ≥ 2 and b ∈ [0, 2/a]. There is a
Cantor-like set E such that, for the uniform measure on E, almost all real numbers in E have
irrationality exponent equal to a and effective Hausdorff dimension equal to b.

A classic result due to Besicovitch [4] ensures that, for any real number s ≥ 0, any closed
subset of the real number of infinite s-dimensional Hausdorff measure has a subset of finite,
non-zero s-dimensional Hausdorff measure. It follows that the set of reals of irrationality
exponent greater than or equal to a has a subset of Hausdorff dimension b, for any 0 ≤ b ≤ 2/a.
However, the proof of this theorem [which uses binary net measures, see for example 10] does
not preserve the Cantor set structure of Jarník’s fractal, in particular it does not provide a
nice measure concentrated on a set of reals of irrationality exponent a. In fact, as shown by
Kjos-Hanssen and Reimann [16], finding a Cantor subset of finite, non-zero Hausdorff measure
is generally very hard.

As we will see, it takes some effort to ensure the persistence of the Cantor set structure
(and with it a nice measure) when passing to smaller dimensions while preserving irrationality
exponents. Furthermore, the case of effective dimension presents additional difficulties since
we have to replace real numbers (which may be non-computable), by rational approximations
to them.
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1 Jarník’s Fractal and Its Variations

Let a be a real number greater than 2. As mentioned earlier, Jarník [13] and Besicovitch
[3] independently established that the set of real numbers with irrationality exponent greater
than or equal to a has Hausdorff dimension 2/a. Jarník exhibited a Cantor-like set EJ(a)
such that every element of EJ(a) has irrationality exponent greater than or equal to a and
such that, for every d greater than a, the set of real numbers with irrationality exponent d is
null for the uniform measure µJ on EJ (a). The latter condition followed by application of the
mass distribution principle on EJ(a):

Lemma 3 (Mass Distribution Principle, cf. 11). Let µ be a measure on E, a subset of the real
numbers, and let a be a positive real number. If µ(E) > 0 and there are positive constants c
and δ such that for every interval I with |I| < δ, µ(I) < c|I|a, then the Hausdorff dimension
of E is greater than or equal to a.

For b given so that 0 ≤ b < 2/a, we will define a subset E of EJ(a) with dimension b.
E will also be a Cantor-like set and have its own uniform measure µ. Using µJ as a guide, we
will ensure that for any d greater than a the set of real numbers with irrationality exponent d
is null with respect to µ. Further, we shall arrange that µ has the mass distribution property
for exponent b.

We fix some notation to be used in the final step of the construction. For a positive integer
p,

Gp(a) =

{

x ∈

(

1

pa
, 1−

1

pa

)

: ∃q ∈ N,

∣

∣

∣

∣

q

p
− x

∣

∣

∣

∣

≤
1

pa

}

.
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For M a sufficiently large positive integer, and p1 and p2 primes such that M < p1 < p2 < 2M ,
the sets Gp1(a) and Gp2(a) are disjoint. In fact, the distance between any point in Gp1(a) and
any point in Gp2(a) is greater than or equal to

1

4M2
−

2

Ma
≥

1

8M2
.

For such M, the set

KM (a) =
⋃

p prime
M<p<2M

Gp(a)

is the disjoint union of the intervals composing the sets Gp(a). So KM (a) is made up of
intervals of length less than or equal to 2/Ma which are separated by gaps of length at
least 1/(8M2).

We obtain Jarník’s fractal by choosing a sequence ~m = (mi : i ≥ 1), which is sufficiently
fast growing in a sense to be determined below. Each number mi will play the role of an
M as described in the previous paragraph. We let EJ

0 (~m, a) = [0, 1] and for k = 1, 2, . . .
let EJ

k (~m, a) be the union of those intervals of Kmk
(a) that are completely contained in

EJ
k−1(~m, a). By discarding a negligible number of intervals, we arrange that all intervals

from EJ
k−1(~m, a) are split into the same number of intervals in EJ

k (~m, a). Let ik be the

number of intervals from EJ
k (~m, a) which are contained in a single interval of EJ

k−1(~m, a). Let

EJ(~m, a) = ∩k≥1E
J
k (~m, a). We define a mass distribution µJ(~m, a) on EJ (~m, a) by assigning

a mass of 1/(i1 × . . .× ik) to each of the i1× . . .× ik many k-level intervals in EJ
k (~m, a). Then

µJ(~m, a) has the mass distribution property for exponent 2/a, [see 11, Chapter 10].
There are two ways by which EJ(~m, a) can be thinned to a subset of lower Hausdorff

dimension. First, we could use fewer numbers between mk and 2mk when we define EJ
k (~m, a).

However, even if we choose only one denominator at each level, the resulting set has dimen-
sion 1/a [see 11, Example 4.7]. To obtain a dimension smaller than 1/a, not only do we
choose just one denominator at each level, but we also choose only the intervals centered on
a uniformly spaced subset of the rational numbers with that denominator.

There is a further variation on Jarník’s construction and the above thinned version of it
which allows for approximating a and b. To express it we introduce the following definition.

Definition 4. The sequences of real numbers ~a and~b are appropriate when ~a = (ak : k ∈ N) is
non-decreasing with ak ≥ 1 for all k and limit a greater than or equal to 2 and ~b = (bk : k ∈ N)
is strictly increasing with limit b less than or equal to 2/a such that if 1/a < b then 1/a < b1.

For appropriate ~a and ~b, we can modify Jarník’s fractal to accommodate the specification
of a in the limit by substituting ak in place of a in the definition of EJ

k . That is, we
let EJ

k (~m,~a) be the collection of intervals of Kmk
(ak) which are completely contained in

EJ
k−1(~m,~a), adjusted by removing intervals so that every interval in EJ

k−1(~m,~a) contains the

same number of intervals in EJ
k (~m,~a). By construction, the intervals in EJ

k (~m,~a) are of the

form

[

q

p
−

1

pak
,
q

p
+

1

pak

]

. It follows that every real number in EJ (~m,~a) has irrationality ex-

ponent greater than or equal to a. Further, when the sequence ~m grows sufficiently quickly, the
uniform measure µJ(~m,~a) on EJ (~m,~a) has the mass distribution property for exponent 2/a.
It follows that µJ(~m,~a)-almost every real number has irrationality exponent exactly equal
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to a. Similarly, we can modify the way that we thin EJ (~m,~a) to reduce dimension from 2/a
to b. The construction is not sensitive on this point and using bk to determine how to thin at
step k results in a fractal of dimension b.

1.1 Irrationality exponent a, Hausdorff Dimension b and 0 < b ≤ 1/a

Definition 5 (Family of fractals E(~q, ~m,~a) ). Let ~m be an increasing sequence of positive
integers; let ~q be a sequence of integers; let ~h be a sequence of integers such that for each k,
hk ∈ [0, qk); and let ~a be a non-decreasing sequence of real numbers greater than or equal to 2
with limit a.

• Let E1(~h, ~q, ~m,~a) be [0, 1].

• Given Ek−1(~h, ~q, ~m,~a), let Ek(~h, ~q, ~m,~a) be the collection of intervals in Gmk
(ak) which

are completely contained in intervals from Ek−1(~h, ~q, ~m,~a) and which are of the form
[

r

mk
−

1

mak
k

,
r

mk
+

1

mak
k

]

such that r ≡ hk mod qk. As usual, discard a negligible

number of intervals so that each interval in Ek−1(~h, ~q, ~m,~a) has the same number of
subintervals in Ek(~h, ~q, ~m,~a). Further, ensure that this number of subintervals is inde-
pendent of ~h.

Let E(~q, ~m,~a) be the family of fractals obtained by considering all possible sequences ~h.

By construction, if ~h and ~g have the same first k values, then for all j ≤ k, Ej(~h, ~q, ~m,~a)
is equal to Ej(~g, ~q, ~m,~a). So, E(~q, ~m,~a) is actually a finitely-branching tree of fractals.

Lemma 6. Suppose that ~a and ~b are appropriate sequences of reals with limits a and b such
that a ≥ 2 and b ≤ 1/a. There is a function f , computable from ~a and ~b, such that for any
sequence of integers ~m = (mk : k ∈ N) for which for all k, mk+1 ≥ f(k,mk), there is a
sequence of integers ~q, such that for all E ∈ E(~q, ~m,~a) and for µ the uniform measure on E,
the following conditions hold.

• For all k greater than 2 and all intervals I such that |I| ≤
qk−1

mk−1
−

2

ma
k−1

,

µ(I) < |I|bk .

• For all integers k,

m
akbk+1−1
k ≤

1

qk
≤ m

akbk+2−1
k .

Further, we can compute qk from (a1, . . . , ak), (b1, . . . , bk+2) and (m1, . . . ,mk).

Proof. We consider E ∈ E(~q, ~m,~a) and µ defined on E as above from ~a, an increasing sequence
~m = (mk : k ≥ 1) and ~q = (qk : k ≥ 1). For a given interval I, we estimate µ(I) and we deduce
a sufficient growth rate on ~m and appropriate values for ~q in terms of ~m so as to ensure the
desired inequality µ(I) < |I|bk , for I as specified. The existence of f follows by observing that
these functions are computable from ~a and ~b.
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We follow a modified version of the proof of Jarník’s Theorem as presented in [11]. We
take m1 to be larger than 3× 2a and sufficiently large so that 1/m1 > 2m−a

1 .
We let E0 = [0, 1] and for k ≥ 1 let Ek consist of those intervals of Gmk

(ak) that are

completely contained in Ek−1 and are of the form

[

r

mk
−

1

mak
k

,
r

mk
+

1

mak
k

]

such that r ≡ hk

mod qk. Thus, the intervals of Ek are of length 2/mak
k and are separated by gaps of length at

least

gk =
qk
mk

−
2

mak
k

.

Let ik be the number of intervals of Ek contained in a single interval of Ek−1. By construction
i1 = m1/q1 and for every k > 1,

ik ≥
1

2

2

(mk−1)ak−1

1

qk
mk =

mk

(mk−1)ak−1qk
, (1)

which represents half of the product of the length of an interval in Ek−1 and the number of
intervals with centers p/mk, where p is an integer with fixed residue modulo qk. This estimate
applies provided that qk is less than mk and mk is sufficiently large with respect to the value
of mk−1.

Now, we suppose that S is a subinterval of [0, 1] of length |S| ≤ g1 and we estimate µ(S).
Let k be the integer such that gk ≤ |S| < gk−1. The number of k-level intervals that
intersect S is

• at most ik, since S intersects at most one (k − 1)-level interval,

• at most 2 + |S|mk/qk ≤ 4|S|mk/qk, by an estimate similar to that for the lower bound
on ik.

Each k-level interval has measure 1/(i1 × . . .× ik). We have that

µ(S) ≤
min(4|S|mk/qk, ik)

i1 × . . .× ik
(2)

≤
(4|S|mk/qk)

bk i1−bk
k

i1 × . . . × ik
(as bk ∈ [0, 1])

=
4bkmbk

k

(i1 × . . . × ik−1) i
bk
k qbkk

|S|bk

≤ 1
ma1

1 q2
m2

ma2
2 q3
m3

. . .
m

ak−2

k−2 qk−1

mk−1

4bkmbk
k

ibkk qbkk
|S|bk (by (1))

≤
ma1

1 q2
m2

ma2
2 q3
m3

. . .
m

ak−2

k−2 qk−1

mk−1

(

m
ak−1

k−1 qk

mk

)bk
mbk

k

qbkk
4bk |S|bk

= (q2 · · · qk−1)
(

ma1
1 ma2−1

2 . . . m
ak−2−1
k−2

)

4bkm
ak−1bk−1
k−1 |S|bk . (3)

We want to ensure that for all such S, µ(S) < |S|bk , from which we may infer that
µ(S) < |S|s for all s in [0, bk]. Thus, it suffices to show that there is a suitable growth function
f for the sequence ~m, and there is a suitable sequence of values for ~q such that

(q2 · · · qk−2qk−1)
(

ma1
1 ma2−1

2 . . . m
ak−2−1
k−2

)

4bkm
ak−1bk−1
k−1 < 1.
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Equivalently,

(q2 · · · qk−2)
(

ma1
1 ma2−1

2 . . . m
ak−2−1
k−2

)

4bkm
ak−1bk−1
k−1 <

1

qk−1
.

If we let C be the term that does not depend on mk−1 or on qk−1, we can satisfy the first
claim of the Lemma by satisfying the requirement

Cm
ak−1bk−1
k−1 <

1

qk−1
.

Since C is greater than 1, this requirement on mk−1 and qk−1 also ensures part of the second

claim of the lemma, that m
ak−1bk−1
k−1 < 1/qk−1. Since bk < b ≤ 1/a ≤ 1/ak−1, by making mk−1

sufficiently large and letting qk−1 take the largest value such that Cm
ak−1bk−1
k−1 < 1/qk−1, we

may assume that

Cm
ak−1bk−1
k−1 >

1

2qk−1
.

Equivalently, we may assume that

2Cm
ak−1bk−1
k−1 >

1

qk−1
.

The second clause in the second claim of the Lemma is that 1/qk−1 < m
ak−1bk+1−1
k−1 . Since ~b is

strictly increasing, by choosing mk−1 to be sufficiently large, we may ensure that

2C < m
ak−1(bk+1−bk)
k−1

and so m
ak−1bk−1
k−1 < 1/qk−1 < m

ak−1bk+1−1
k−1 , as required. Further, by appropriateness of ~a and

~b, bk is less than or equal to 1/ak−1, the value of 1/qk−1 can be made arbitrarily small by
choosing mk−1 to be sufficiently large, so the above estimates apply.

Lemma 7. Suppose that ~a and ~b are appropriate sequences with limits a and b such that a ≥ 2
and 0 ≤ b ≤ 1/a. Let f be as in Lemma 6, ~m be such that for all k, mk+1 ≥ f(k,mk), and ~q
be defined from these sequences as in Lemma 6. For every E in E(~q, ~m,~a), E has Hausdorff
dimension b.

Proof. Let E be an element of E(~q, ~m,~a) and let µ be the uniform measure on E. By Lemma 6,
for every β < b, for all sufficiently small intervals I, µ(I) < |I|β . Consequently, by application
of the Mass Distribution Principle, the Hausdorff dimension of E is greater than or equal to b.
Next, consider a real number β strictly bigger than b. For each k ≥ 1, there are at most mk/qk
intervals in Ek, each with radius 1/mak

k . Then, by Lemma 6 and the fact that ~a and ~b are
appropriate,

∑

j≤mk/qk

(

2

mak
k

)β

≤ mk ·
2β

qk
·m−akβ

k ≤ 2β ·m
akbk+2

k ·m−akβ
k ≤

2β

m
β−bk+2

k

≤
2β

mβ−b
k

,

which goes to 0 as k goes to infinity. It follows that E has Hausdorff dimension less than or
equal to b, as required to complete the verification of the Lemma.
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1.2 Irrationality exponent a, Hausdorff Dimension b and 1/a ≤ b ≤ 2/a

Definition 8 (Family of fractals F(~q, ~m,~a)). Let ~m be an increasing sequence of positive
integers; let ~q be a sequence of integers such that for each k, qk is between 1 and the cardinality
of the set of prime numbers in [mk, 2mk); let ~H be a sequence of subsets of primes such that,
for each k ≥ 1, Hk contains exactly qk primes from the interval [mk, 2mk); and let ~a be a
non-decreasing sequence of real numbers greater than or equal to 2 with limit a.

• Let F1( ~H, ~q, ~m,~a) be [0, 1].

• Given Fk−1( ~H, ~q, ~m,~a), let Fk( ~H, ~q, ~m,~a) be the collection of intervals in

⋃

p∈Hk

Gp(ak),

which are completely contained in intervals from Fk−1( ~H, ~q, ~m,~a).

• Let s denote the function that maps k to the ratio given by qk, the number of retained
denominators, divided by the number possible denominators, which is the number of
primes in [mk, 2mk). Discard a negligible number of intervals so that each interval in
Fk−1( ~H, ~q, ~m,~a) has the same number of subintervals in Fk( ~H, ~q, ~m,~a), and further, so
that this number of subintervals depends only on k, ~q, ~m,~a and not on ~H.

Let F(~q, ~m,~a) be the family of fractals obtained by considering all possible sequences ~H.

Lemma 9. Suppose that ~a and ~b are appropriate sequences with limits a and b such that
a > 2 and 1/a ≤ b ≤ 2/a. There is a function f , computable from ~a and ~b, such that for any
sequence ~m = (mk : k ∈ N) for which for all k, mk+1 ≥ f(k,mk), there is a sequence ~q, such
that for all E ∈ F(~q, ~m,~a) and for µ the uniform measure on E, the following conditions hold:

• For all k > 2 and all intervals I such that |I| ≤
1

4m2
k−1

−
2

ma
k−1

,

µ(I) < |I|bk .

• For all integers k,

log(mk)m
akbk+1−2
k ≤

1

qk
≤ log(mk)m

akbk+2−2
k .

Further, we can exhibit such an ~q for which qk is uniformly computable from (a1, . . . , ak),
(b1, . . . , bk) and (m1, . . . ,mk−1).

Proof. The proof of Lemma 9 has the same structure as the proof of Lemma 6, with fundamen-
tal difference as follows. Lemma 6 refers to E , the tree of subfractals of EJ (~m,~a), where the
subfractals are obtained by recursion during which at step k only 1/qk of the mk-many eligible
intervals in Gmk

(ak) are used. Lemma 9 refers to F , the tree of subfractals of EJ(~m,~a), where
the subfractals are obtained by recursion during which at step k for only 1/qk of the eligible
denominators m, all of the intervals in Gm(ak) are used. The set of eligible denominators
is the set of prime numbers between mk and 2mk. By choosing m0 large enough, the prime
number theorem implies that this set of eligible denominators has between mk/2 log(mk) and

9



2mk/ log(mk) many elements and each contributes at least mk many eligible intervals. Now,
we give an abbreviated account to indicate how this difference propagates through the proof.

We consider E ∈ F(~q, ~m,~a) and µ the uniform measure on E. We let ik be the number of
intervals in Ek contained in a single interval of Ek−1. Now, we have the following version of
Inequality (1),

ik ≥
1

2

2

(2mk−1)ak−1

1

qk

m2
k

2 log(mk)
>

m2
k

2a+1 (mk−1)ak−1 log(mk) qk
.

The intervals in Ek are separated by gaps of length at least gk = 1/4m2
k − (2/mak

k ), because
given two intervals with centers c1/d1 and c2/d2, the gap between them is

∣

∣

∣

∣

c1d2 − c2d1
d1d2

∣

∣

∣

∣

−

(

1

cak
+

1

dak

)

.

The numerator in the first fraction is at least 1 and the denominator is no greater than (2mk)
2.

The denominators in the second term are at least mak
k .

Now we suppose that S is a subinterval of [0, 1] of length |S| ≤ g1 and we estimate µ(S). Let
k be the integer such that gk ≤ |S| < gk−1. The number of k-level intervals that intersect S is

• at most ik, since S intersects at most one (k − 1)-level interval,

• at most 2+ |S|4m2
k/(qk log(mk)) which is less than 8|S|m2

k/(qk log(mk)). This is because
there are at most 2mk/ logmk primes between mk and 2mk and each prime contributes
at most 2mk many intervals in [0, 1]. And we keep 1/qk of these.

As before, each k-level interval has measure 1/(i1 × . . . × ik). Then, we have a version of
Inequality (2).

µ(S) ≤
min

(

8|S|m2
k

qk log(mk)
, ik

)

i1 × . . .× ik
.

Upon manipulation as before, we have a version of Inequality (3).

µ(S) ≤ 8bk2k(a+1)(q2 · · · qk−1) (log(m2) · · · log(mk−1) (m
a1
1 ma2−2

2 · · ·m
ak−2−2
k−2 )m

ak−1bk−2
k−1 |S|bk .

To ensure that µ(S) < |S|bk , we must find a suitable growth function f for the sequence ~m so
that there is a suitable sequence of values for ~q such that

8bk2k(a+1)(q2 · · · qk−1) (log(m2) · · · log(mk−1)) (m
a1
1 ma2−2

2 · · ·m
ak−2−2
k−2 )m

ak−1bk−2
k−1 < 1.

Equivalently,

8bk2k(a+1)(q2 · · · qk−2) (log(m2) · · · log(mk−1)) (m
a1
1 ma2−2

2 · · ·m
ak−2−2
k−2 )m

ak−1bk−2
k−1 < 1/qk−1.

Let C be the term that does not depend on mk−1 or qk−1. We can satisfy the first claim of
Lemma 9 by satisfying the requirement

C log(mk−1)m
ak−1bk−2
k−1 < 1/qk−1.

10



Since C is greater than 1, this requirement on mk−1 and on qk−1 also ensures part of the

second claim of the lemma, that log(mk−1)m
ak−1bk−2
k−1 < 1/qk−1. Since bk ≤ 2/a < 2/ak−1,

ak−1bk − 2 is negative. By making mk−1 sufficiently large and letting qk−1 take the largest

value such that C log(mk−1)m
ak−1bk−2
k−1 < 1/qk−1, we may assume that

C log(mk−1)m
ak−1bk−2
k−1 > 1/2qk−1.

The second clause in the second claim of the lemma is that 1/qk−1 < m
ak−1bk+1−2
k−1 . Since ~b is

strictly increasing, by choosing mk−1 to be sufficiently large, we may ensure that

2C < log(mk−1)m
ak−1(bk+1−bk)
k−1

and so log(mk−1)m
ak−1bk−1
k−1 < 1/qk−1 < log(mk−1)m

ak−1bk+1−2
k−1 , as required. Further, since bk

is less than or equal to 1/ak−1, the value of 1/qk−1 can be made arbitrarily small by choosing
mk−1 to be sufficiently large, so the above estimates apply.

Lemma 10. Suppose that ~a and ~b are appropriate sequences of real numbers with limits a and
b such that a > 2, 1/a ≤ b ≤ 2/a and 1/a1 ≤ b1. Let f be as in Lemma 9, ~m be such that for
all k, mk+1 ≥ f(k,mk), and ~q be defined from these sequences as in Lemma 9. For every E
in F(~q, ~m,~a), E has Hausdorff dimension b.

Proof. Let E be an element of F(~q, ~m,~a) and let µ be the uniform measure on E. By Lemma 9,
for every β < b, for all sufficiently small intervals I, µ(I) < |I|β . Consequently, by application
of the Mass Distribution Principle, the Hausdorff dimension of E is greater than or equal
to b. Next, consider a real number β greater than b. For each k ≥ 1, there are at most
4m2

k/(log(mk)qk) intervals in Ek, each with radius less than or equal to 1/mak
k . Then, by

Lemma 9 and the fact that ak ≥ 1,

∑

j≤4m2
k
/(log(mk)qk)

(

2

mak
k

)β

≤
4m2

k

log(mk)
·
1

qk
· 2βm−akβ

k

≤
4m2

k

log(mk)
· log(mk)m

akbk+2−2
k · 2βm−akβ

k

≤
4 · 2β

m
ak(β−bk+2)
k

≤
4 · 2β

mβ−b
k

,

which goes to 0 as k goes to infinity. It follows that E has Hausdorff dimension less than or
equal to b, as required to complete the verification of the Lemma.

1.3 Irrationality Exponent 2, Hausdorff Dimension b, and 0 < b ≤ 1

The next case to consider is that in which the desired irrationality exponent is equal to 2 and
the desired effective Hausdorff dimension is equal to b ∈ (0, 1]. In fact, we need only consider
the case of b < 1, since almost every real number with respect to Lebesgue measure has both
irrationality exponent equal to 2 and effective Hausdorff dimension equal to 1.
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Definition 11 (Family of fractals G(~q, ~m)). Let ~m be an increasing sequence of positive
integers such that for all k, mk divides mk−1; let ~q be a sequence of integers; and let ~h be a
sequence of integers such that for each k, hk ∈ [0, qk).

• Let G1(~h, ~q, ~m) be [0, 1].

• Given Gk−1(~h, ~q, ~m), let Gk(~h, ~q, ~m) be the collection of intervals which are completely

contained in intervals from Gk−1(~h, ~q, ~m) and which are of the form

[

r

mk
,
r

mk
+

1

mk

]

such that r ≡ hk mod qk. As usual, discard a negligible number of intervals so that each
interval in Gk−1(~h, ~q, ~m) has the same number of subintervals in Gk(~h, ~q, ~m). Further,
ensure that this number of subintervals is independent of ~h.

Let G(~q, ~m) be the family of fractals obtained by considering all possible sequences ~h.

In the following Lemma 12 is parallel to Lemmas 6 and 9. Likewise, the next Lemma 13
is parallel to Lemmas 7 and 10. In fact, the estimates here are simpler than the earlier ones.
We leave the proofs for the interested reader.

Lemma 12. Suppose ~b is strictly increasing sequence of real numbers with limit b such
that 0 < b < 1. There is a function f , computable from ~b, such that for any sequence
~m = (mk : k ∈ N) for which for all k, mk+1 ≥ f(k,mk), there is a sequence ~q, such that
for all E ∈ G(~q, ~m) and for µ the uniform measure on E, the following conditions hold.

• For all k greater than 2 and all intervals I such that |I| ≤
qk−1 − 1

mk−1
,

µ(I) < |I|bk .

• For all integers k,

2m
2bk+1−1
k ≤

1

qk
≤ m

2bk+2−1
k .

Further, we can compute qk from (b1, . . . , bk+2) and (m1, . . . ,mk).

Lemma 13. Suppose ~b is strictly increasing sequence of real numbers with limit b such that
0 < b < 1. Let f be as in Lemma 12, ~m be such that for all k, mk+1 ≥ f(k,mk), and ~q
be defined from these sequences as in Lemma 12. For every E in G(~q, ~m), G has Hausdorff
dimension b.

2 Hausdorff Dimension and Irrationality Exponent

In this section, we will put together the pieces and prove Theorem 1.
In the proof we will use the following definition.

Definition 14. For positive integers d, d1, d2, a
∗, we let

B(d1, d2, a
∗) =

⋃

p,q∈N
d1≤q≤d2

[

p

q
−

1

qa
∗ ,

p

q
+

1

qa
∗

]

B(d,∞, a∗) =
⋃

p,q∈N
d≤q

[

p

q
−

1

qa∗
,
p

q
+

1

qa∗

]
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Proof of Theorem 1. If b = 0 the desired set E is quite trivial: for every a greater than or
equal to 2, including a = ∞, there is a real number x such that a is the irrationality exponent
of x. Let E = {x} and note that E has Hausdorff dimension equal to 0 and the uniform
measure on E concentrates on a set of real numbers of irrationality exponent a.

Assume that b > 0. Let ~a be the constant sequence with values a and let ~b be a
strictly increasing sequence of positive rational numbers with limit b. Thus, ~a and ~b are
appropriate. The desired set E will be an element of E(~q, ~m,~a), F(~q, ~m,~a) or G(~q, ~m), for
~m and ~q constructed according to Lemma 7, 10 or 12, depending on whether a > 2 and
b ∈ (0, 1/a), or a > 2 and b ∈ [1/a, 2/a), or a = 2 and b ∈ (0, 1), respectively. Since the first
claim of the Theorem follows from Lemmas 7, 10 or 13, we need only check the second claim.
We give a full account of the case a > 2 and 0 < b ≤ 1/a. We leave it to the reader to note
that the same argument applies in the other cases.

Suppose that b ∈ (0, 1/a) and let f and ~q be the functions obtained in Lemma 6. Let ~m
be the sequence defined by letting m1 be sufficiently large in the sense of Lemma 6 and letting
mk be the least m such that m is greater than f(k,mk−1). Let EJ(~m,~a) be the Jarník-fractal
determined from ~m and ~a. Let EJ

k (~m,~a) denote the set of intervals used in the definition of
EJ(~m,~a) at step k. Let gk denote the minimum gap between two intervals in EJ

k (~m,~a). We
define the sequence ks, Eks and ds by recursion on s. Let k1 = 1, let E1 = EJ

1 (~m,~a) = [0, 1],
and let d1 be the least integer d such that µJ(B(d,∞, a+1/2)) is less than µJ(E1)/2

1 = 1/2.
Now, suppose that ks, Eks , and ds are defined so that Eks is an initial segment of the levels
of an element of E(~q, ~m,~a) and so that

µJ

(

B
(

ds,∞, a+
1

2s
)

∩ Eks

)

<
µJ(Eks)

2s
.

Let ds+1 be the least d such that

µJ

(

B
(

d,∞, a+
1

2s+1

))

< µJ(Eks)/(4 · 2
s+1).

Let c be the number of intervals in B(ds, ds+1, a + 1/2s). Let ks+1 be the least k such that
the union of 2c many of the intervals in EJ

k (~m,~a) has measure less than µJ(Eks)/(4 · 2
s), and

let C be the collection of intervals in EJ
ks+1

which contain at least one endpoint of an interval
in B(ds, ds+1, a+ 1/2s).

Consider the set Fs+1 of extensions of the branch in E(~q, ~m,~a) with endpoint Eks to
branches of length ks+1. Each element Fs+1 specifies a set of intervals S at level ks+1. Distinct
elements in Fs+1 have empty intersection and identical µJ -measure. At most one-fourth of
the elements S in Fs+1 can be such that

µJ

(

B
(

ds,∞, a+
1

2s
)

∩ S
)

≥ 4 ·
µJ(S)

2s
.

Similarly, at most one-fourth of the S in Fs+1 can be such that

µJ

(

B
(

ds+1,∞, a+
1

2s+1

)

∩ S
)

≥ 4 ·
µJ(S)

4 · 2s+1
=

µJ(S)

2s+1
,

and at most one-fourth of the S in Fs+1 can have

µJ(C ∩ S) ≥ 4 ·
µJ(S)

4 · 2s
=

µJ(S)

2s
.

13



Choose one element S of Fs+1 which does not belong to any of these fourths and define E
through its first ks+1 levels so as to agree with that element. Note that

µJ

(

B
(

ds+1,∞, a+
1

2s+1

)

∩ Eks+1

)

≤
µJ(Eks+1

)

2s+1
,

which was the induction assumption on Eks . Further note that at most 4/2s of the intervals
in Eks can be contained in B(ds, ds+1, a+ 1/2s) and at most 1/2s of the intervals in Eks can
contain an endpoint of an interval in B(ds, ds+1, a + 1/2s). Thus, the uniform measure µ on
any element of E(~q, ~m,~a) extending the branch up to Eks+1

assigns B(ds, ds+1, a + 1/2s) a
measure of less than 5/2s.

Let E be the set defined as above and for each k, let Ek denote the level-k of E, and
let µ denote the uniform measure on E. The first claim of the theorem, that the Hausdorff
dimension of E is equal to b, follows from Lemma 7. For the second claim, every element of EJ ,
and hence of E, has irrationality exponent greater than or equal to a. So, it is sufficient to
show that for every positive ǫ, there is an s such that µ(B(ds,∞, a + ǫ)) < ǫ. Let s be
sufficiently large so that 5/2s−1 < ǫ. Then, since

B(ds,∞, a+ ǫ) =
⋃

t≥s

B(dt, dt+1, a+ ǫ)

⊆
⋃

t≥s

B
(

dt, dt+1, a+
1

2s
)

⊆
⋃

t≥s

B
(

dt, dt+1, a+
1

2t
)

,

we have

µ(B(ds,∞, a+ ǫ)) ≤
∑

t≥s

µ
(

B
(

dt, dt+1, a+
1

2t
))

≤
∑

t≥s

5

2t

≤
5

2s−1
.

The desired result follows.

3 Effective Hausdorff Dimension and Irrationality Exponent

This section is devoted to the proof of Theorem 2.

Proof of Theorem 2. As in our discussion of Theorem 1, we will consider the case a > 2 and
b ∈ [0, 1/a] in detail. We leave it to the reader to note that with straightforward modifications
the argument applies to the other two cases. For b = 0, the argument reduces to finding a
singleton set E, so the tree of subfractals E is just the tree of elements of EJ . For a > 2 and
b ∈ [1/a, 2/a], F replaces E . For a = 2 and b ∈ (0, 1], G replaces E .

Our proof follows the outline of the proof of Theorem 1. That is, we will produce a
version of EJ and E so that the uniform measure µ on E concentrates on real numbers with
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irrationality exponent a and so that every element of E has effective Hausdorff dimension b.
However, since we are not assuming that a and b are computable real numbers, we must work
with rational approximations when ensuring the condition on effective Hausdorff dimension.
This change to add effectiveness to the representation of dimension leads us to weaken our
conclusions elsewhere: we must settle for showing that x has irrationality exponent greater
than or equal to a by showing that for every a∗ < a there are infinitely many p and q such that
|p/q − x| < 1/qa

∗

. A similar modification of Jarník’s construction appears in [1], for different
purpose.

We will construct ~a and ~b so that ~a is non-decreasing with limit a and so that ~b is strictly
increasing with limit b. Simultaneously, we will construct ~m, ~q and E in E(~q, ~m,~a) as in the
proof of Theorem 1. In Theorem 1, we began with EJ(~m,~a) and E(~q, ~m,~a). We defined
a sequence of integers dk and an element of E(~q, ~m,~a). At step k, we ensured that the set
of real numbers with irrationality exponent greater than a + 1/2k had small measure with
respect to µ. It would have been sufficient to ensure the same fact for the set of numbers with
irrationality exponent less than a + ǫk, provided that ǫk was a non-increasing sequence with
limit zero, which is how we will proceed now. Thus, we will construct (αs : s ∈ N) to be a
non-increasing sequence with limit a to stand in for (a+ 1/2s : s ∈ N).

Consider the problem of ensuring that for a non-negative integer k and for every element
x of E, the sequence σ consisting of the first log(mk)ak digits in the base-2 expansion of x
has Kolmogorov complexity less than log(mk)akb. For this, it would be sufficient to exhibit
an uniformly computable map taking binary sequences of length less than log(mk)akb onto
the set of intervals in Ek. For large enough mk, we can use a binary sequence of length
log(mk)(b − bk)ak to describe the first k − 1 steps of the definition of EJ and any initial
conditions imposed at the beginning of step k. It will then be sufficient to show that
this information is enough to compute a map taking binary sequences of length less than
log(mk)akbk onto the set of intervals in Ek.

We proceed by recursion on s. For each s, we specify three integers, ℓs, ks, and ds. We
specify ds as we did in Theorem 1. We will specify rational numbers αs, αs and βs and use
them to specify the values of ~a, of up to ℓs, specify the levels of EJ up to ℓs, which means that
we also specify sequence of numbers ~m up to ℓs, and we specify the values of ~b up to ℓs + 2.
This determines the values of ~q up to ℓs. Finally, we specify the first ks many levels of E.

Initialization of the recursion. Let β0 be a positive rational number less than b. Let
ǫ0 be a rational number such that β0 + ǫ0 < b. Let α0 and α0 be positive rational numbers
such that α0 < a < α0 and α0 − α0 < 1. Let E0 = EJ

0 = [0, 1]; let m1 be sufficiently large
in the sense of Lemma 6 for the constant sequence ~α with value α0 and the sequence ~β with
values β0 + (1− 1/2n)ǫ0, respectively; let EJ

1 = Gm1
(α0), the collection of intervals centered

at rational numbers p/m1 ∈ (0, 1) with diameter 2/mα0

1 ; let g1 =
q1
m1

−
2

mα
1

, which is the

minimum distance between two intervals in EJ
1 ; and let d0 be the least integer d such that

2/dα0 is less than g1 and such that

∑

j≥d

j

(2j)α0
<

1

2
.

Since α0 > 2, d0 is well-defined. Since we will define EJ so that Lemma 6 applies, this sum is
an upper bound on µJ(B(d0,∞, α0)). So, this choice of d0 ensures that µJ(B(d0,∞, α0)) is
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less than 1/2.
Let ℓ0 = 1; let the first two values of ~a be equal to those in ~α and the first 3 values of ~b be

the same as those in ~β. Note that these choices determine q1. Let k0 = 0 and let E1 = EJ
1 .

Recursion: stage s+1. Now, suppose that our construction is defined through stage s.
Following the proof of Theorem 1, we may assume that we have ensured

µJ(B(ds,∞, αs) ∩Eks)) <
µJ(Eks)

2s
,

subject to our satisfying the hypotheses of Lemma 6.
We ensure that stage s + 1 of the construction of E is uniformly computable from the

construction up to step s and parameters set during the initialization of stage s + 1 by
continuing the construction of EJ recursively in these parameters until the definition of Eks+1

is evident.

Initialization of stage s+ 1. Let αs+1, αs+1 be rational numbers such that

αs < αs+1 < a < αs+1 ≤ αs

and such that

|αs+1 − αs+1| <
1

s+ 1
.

Let βs+1 be a rational number strictly between βs + ǫs and b such that

|b− βs+1| <
1

s+ 1
,

and let ǫs+1 be a rational number such that

βs+1 + ǫs+1 < b.

Let ds+1 be the least integer d such that 2/dαs+1 < gℓs such that 2/dαs+1 is less than the

minimum gap length gℓs =
qℓs
mℓs

−
2

mαs

ℓs

and

∑

j≥d

j

(2j)αs+1
<

µJ(Eks)

4 · 2s+1
.

Since 2/d
αs+1

s+1 < gℓs and we ensure that our construction of EJ satisfies the hypotheses of
Lemma 6, this sum is an upper bound on µJ(Bds+1

,∞, αℓs+1
). Thus, we have ensured that

µJ(Bds+1
,∞, αℓs+1

) <
µJ(Eks)

4 · 2s+1
,

which is analogous to how we chose ds+1 in the proof of Theorem 1.
Let mℓs+1 be greater than f(ℓs,mℓs) and sufficiently large so that a binary sequence of

length log(mℓs+1
)a(b − βs+1) can describe these parameters together with the first s steps of

the construction.
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Subrecursion: substage ℓ. Proceed by recursion on substages ℓ starting with initial value
ℓs+1. Suppose that the termination condition for stage s+1 was not realized during substage
ℓ − 1. Define aℓ to be equal to αs+1 and define bℓ+2 to be equal βs+1 + ǫs+1(1 − 1/2ℓ−ℓs).
If ℓ = ℓs + 1, then value of mℓs+1 was assigned in the previous paragraph. Otherwise, let mℓ

be larger than f(ℓ,mℓ−1). Note that f is defined in terms the values of ~q and ~a up to ℓ and
that the values of ~q are defined in terms of ~a and ~m up to ℓ and ~b up to ℓ + 2, all of which
have been determined before the evaluation of f .

Termination of the subrecursion. Note that µJ(Eks) is determined at the end of step s,
since it is equal to the number of level-ks intervals in Eks divided by the number of level-(ks)
intervals in EJ . We say that step ℓ satisfies the termination condition for stage s + 1 when
there is a k between ℓs and ℓ such that there is an S in the level k of E(~q, ~m, a) satisfying the
following conditions.

• There is a d∗ in (ds, ds + ℓ) such that the µJ -measure of the set of intervals in EJ
ℓ which

have non-empty intersection with B(ds, d
∗, αs) ∩ S is less than

4 ·
µJ(S)

2s
−
∑

j≥d∗

j

(2j)αs+1
.

• There is a d∗ in (ds+1, ds+1 + ℓ) such that the µJ -measure of the set of intervals in EJ
ℓ

which have non-empty intersection with B(ds+1, d
∗, αs+1) is less than

4 ·
µJ(S)

2s+1
−
∑

j≥d∗

j

(2j)αs+1
.

• The µJ measure of the union of the set of intervals in S which contain at least one
endpoint of an interval in B(ds, ds+1, αs+1) is less than

µJ(S)

2s+1
.

If the termination condition is realized for ℓ, then we set ℓs+1 equal to ℓ, and set ks+1 and
Eks+1

to have values equal to those in the least pair k and S which satisfy the termination
condition.

Verification. We first note that by inspection of our construction, it satisfies the hypotheses
of Lemma 6. Next, we observe that for every stage the subrecursion for that stage eventually
realizes its termination condition. For the sake of a contradiction, suppose that there is a
stage in the main recursion of the construction whose subrecursion never terminates. Then
EJ is defined using an eventually constant sequence ~a and an increasing sequence ~b. By the
same reasoning as in the proof of Theorem 1: first, there must be a k and an S such that the
three sets in question have sufficiently small relative measure in S; and second, for any such
k and S, for any δ > 0, there is an ℓ such that the measures of the intersections of those three
sets with S is approximated to within δ by the measure of their smallest covers using intervals
in EJ

ℓ . But, then the termination condition would apply, a contradiction. Thus, both E and
EJ are well-defined, as are their uniform measures µ and µJ .
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By the same argument as in the proof of Theorem 1, µ-almost every real number x has
exponent of irrationality equal to a. By Lemma 3, the Mass Distribution Principle applied
to µ, if B is a subset of the real numbers and the Hausdorff dimension of B is less than b, then
µ(B) = 0. So, µ-almost every x has effective Hausdorff dimension greater than or equal to b.

In order to conclude that every element of E has effective Hausdorff dimension less than
or equal to b, it remains to show that for every x ∈ E and for every n ∈ N, there is an m > n
such that the Kolmogorov complexity of the first m digits in the binary expansion of x is less
than or equal to b ·m. Let such x and n be given, and consider a stage s+ 1 such that ms+1

is greater than n. Then, the first s many steps of the construction together with the values of
aℓs+1

, bℓs+1
and ms+1 can be effectively described by a sequence of length ms+1. The result of

stage s+ 1 of the construction is effectively determined from these parameters; in particular,
Eℓs+1

is effectively defined from these parameters. By definition, there are at most mℓs+1
/qℓs+1

many intervals in Eℓs+1
. By Lemma 6,

1

qℓs+1

< m
aℓs+1

(bℓs+1
+(1−2ℓs+1−ℓs)ǫs+1)−1

ℓs+1
< m

aℓs+1
(bℓs+1

+ǫs+1)−1

ℓs+1
,

and so

mℓs+1

qℓs+1

< m
aℓs+1

(bℓs+1
+ǫs+1)

ℓs+1
= 2log(mℓs+1

)aℓs+1
(bℓs+1

+ǫs+1).

Thus, we can read off a surjection from the set of binary sequences of length

log(mℓs+1
)aℓs+1

(bℓs+1
+ ǫs+1)

to the set of intervals in Eℓs+1
. Each interval I in Eℓs+1

has length 2/m
aℓs+1

ℓs+1
. Computably, each

such interval I restricts the first log(mℓs+1
)aℓs+1

digits in the base-2 expansions of its elements
to at most two possibilities. Thus, for each x in E, the sequence of the first log(mℓs+1

)aℓs+1

digits in its base-2 expansion can be uniformly computably described using the information
encoded by three sequences, one of length log(mℓs+1

)aℓs+1
(b − (bℓs+1

+ ǫs+1)) to describe the
construction up to stage s, one of length log(mℓs+1

)aℓs+1
(bℓs+1

+ ǫs+1) to describe the interval
within Eℓs+1

that contains x, and one of length 1 to describe which of the two possibilities
within that interval apply to x. By the choice of mℓs+1

, this sum is less than or equal to
log(mℓs+1

)aℓs+1
b, as required.
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