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Bioinformatics Tools for the Prediction of T-Cell Epitopes

Massimo Andreatta and Morten Nielsen

Abstract

T-cell responses are activated by specific peptides, called epitopes, presented on the cell surface by MHC
molecules. Binding of peptides to the MHC is the most selective step in T-cell antigen presentation and
therefore an essential factor in the selection of potential epitopes. Several in-vitro methods have been
developed for the determination of peptide binding to MHC molecules, but these are all costly and time-
consuming. In consequence, significant effort has been dedicated to the development of in-silico methods
to model this event. Here, we describe two such tools,NetMHCcons andNetMHCIIpan, for the prediction
of peptide binding toMHC class I and class II molecules, respectively, involved in the activation pathways of
CD8+ and CD4+ T cells.
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1 Introduction

Major Histocompatibility Complex (MHC) molecules are trans-
membrane receptors that play an essential role in the cellular
immune system of vertebrates. MHC molecules bind to short
peptide fragments derived from pathogens and present them on
the surface of antigen presenting cells, where they can be recog-
nized by T cells [1, 2]. MHC class I molecules are primarily
involved in the presentation of peptides derived from intracellular
proteins to cytotoxic T cells, also called CD8+ T cells. In contrast,
peptides presented by MHC class II molecules originate from
proteins taken up from the extracellular environment, and can be
recognized by helper T cells (CD4+ T cells). Because the structures
of MHC class I and class II molecules are substantially different, the
properties and size of the peptides that can bind to the two different
classes are also distinct. The binding cleft of MHC class I molecules
is closed at both ends and can accommodate only peptides of
limited length, typically between 8 and 11 amino acids (Fig. 1a).
Conversely, the binding groove of class II molecules is open at its
extremities (Fig. 1b). This does not pose constraints on the length
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of the peptide ligands which can stick out freely at both ends and
are typically between 11 and 20 amino acids long [3]. Computa-
tional methods for the prediction of binders to the two classes of
MHC molecules, and ultimately for the prediction of CD8+ or
CD4+ epitopes, have therefore been developed separately for the
two problems. For a useful review of available methods for
sequence-based T-cell epitope prediction see Lundegaard et al.
[4]. Other factors than binding affinity to MHC determine if a
peptide will induce a T-cell response. These factors include peptide
processing [5–7], binding stability [8, 9], protein abundance
[10, 11], and self-tolerance [12]. Several studies have investigated
the relative importance of these other factors [5, 13–16] while most
conclude that they do impact the predictability of T-cell epitopes,
they all agree that MHC binding is the single most selective step in
T-cell antigen presentation. In this chapter, we will therefore focus
only on MHC binding, and describe two state-of-the-art methods:
NetMHCcons, for the prediction of MHC class I binding; and
NetMHCIIpan, for the prediction of MHC class II binding.

1.1 NetMHCcons NetMHCcons [17] is a consensus method for the predictions of
peptide binding to the MHC class I that combines the predictions
of three state-of-the-art methods: NetMHC [18], NetMHCpan
[19], and PickPocket [20]. NetMHC is a method based on artificial
neural networks and it is allele-specific, i.e., it can only produce
predictions for the molecules used to train the method. In contrast,
as the name also suggests, NetMHCpan is pan-specific, i.e., it can
be applied to any MHC class I molecule of known sequence,

Fig. 1 The MHC class I and class II molecules with bound peptide ligands. (a) MHC class I molecule HLA-A2.1
(A2) with bound 9-mer peptide FLKEPVHGV in red sticks (PDB entry 1I1F). Note that the binding groove is
closed at both ends and can accommodate only peptides of limited length. (b) MHC class II molecule HLA-DR1
with bound 14-mer peptide VSKMRMATPLLMQA (PDB entry 3QXA). The alpha chain is in light blue, the beta
chain in dark blue. The HLA binding groove is open at both ends and the ligand can extend outside the
extremities of the pocket
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including alleles characterized by little or no experimental binding
data. Finally, PickPocket is a matrix-based method that relies on
receptor pocket similarities between MHC molecules and it is also
pan-specific.

Based on a thorough benchmark, Karosiene et al. [17] defined
a set of rules to combine in an optimal manner the predictions of
the three methods. In particular, binding predictions for alleles
included in the training set and sufficiently large training sets
(at least 50 peptides, of which at least 10 binders) achieve highest
performance using a linear combination of NetMHCpan and
NetMHC. With fewer available data points, only NetMHCpan
predictions are used. When the query allele is uncharacterized
(that is, the allele was not used to train the method) but there is a
MHC with similar sequence in the training set,NetMHCpan alone
performs best. And finally, predictions for an allele with no close
neighbors in the training set are defined in NetMHCcons as a linear
combination of NetMHCpan and PickPocket.

1.2 NetMHCIIpan NetMHCIIpan [21, 22] is a pan-specific method for the quantita-
tive prediction of peptide binding to any MHC class II molecule of
known sequence. NetMHCIIpan was trained on a large data set of
over 50,000 data points covering 24 HLA-DR, 5 HLA-DP,
6 HLA-DQ, and 2 murine H-2 molecules, but can produce pre-
dictions for any other allele if it is provided with a complete MHC
protein sequence (both alpha and beta chains). NetMHCIIpan,
based on the artificial neural network algorithm NNAlign
[23, 24], aims at solving two problems simultaneously: prediction
of peptide-MHC binding affinity, and identification of the binding
core. The peptide binding core is the region of usually nine amino
acids directly in contact with the MHC-binding groove and the
main determinant of binding. However, it has been shown that the
peptide flanking regions (PFR) on either side of the binding core
can affect peptide-MHC binding and, eventually, immunogenicity
[25, 26]. The size and composition of PFRs, together with the
length of the peptide itself, are taken into account and encoded in
the NetMHCIIpan networks.

The method provides predictions both of peptide binding
affinity and of the binding core register location within each pep-
tide. We have recently shown [24] that the identification of the
binding core by neural network ensembles can be greatly improved
with the employment of a network alignment procedure called
“offset correction,” which was incorporated into NetMHCIIpan
to enhance MHC class II binding core recognition [22]. Besides
accurately identifying the binding core, the method assigns
reliability scores to each binding core prediction and allows the
quantification of the likelihood of multiple binding cores within a
single antigenic peptide.
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2 Methods

2.1 NetMHCcons TheNetMHCcons server is hosted at http://www.cbs.dtu.dk/services/
NetMHCcons. This guide refers to version 1.1 of the server—note
that the available options may vary slightly in future updated
versions.

1. The server accepts input in two formats: PEPTIDE and
FASTA.

– The PEPTIDE format is simply a list of amino acid
sequences (of length 8–15) to be directly interrogated as
potential MHC class I binders.

– The FASTA format is intended for scans of protein
sequences for potential epitopes. The protein sequence
(or multiple sequences in FASTA format) is digested into
overlapping peptides of the specified length(s), which are
then submitted to the algorithm for prediction.

2. Specify the peptide length (for FASTA submissions). This
parameter defines the length of the peptides to be generated
from the FASTA sequences. Multiple lengths, between 8 and
15, can be selected for a single submission.

3. Select the method. As described in the introduction,NetMHC-
cons is a combination of the methods NetMHC, NetMHCpan,
and PickPocket. Besides running predictions on the optimized
consensus of the three methods (NetMHCcons), the user can
also choose to use only one of the prediction methods.

4. Select species and allele. NetMHCcons has a large library of
MHC protein sequences that include human (HLA-A,
HLA-B, HLA-C, and HLA-E), chimpanzee (Patr), rhesus
macaque (Mamu), pig (SLA), mouse (H-2), gorilla (Gogo),
and bovine (BoLA) MHCs. Toggling the species displays the
library of alleles with a characterized MHC sequence in the
NetMHCcons library. Multiple alleles can be selected in a single
submission.

5. If the query MHC allele is not present in the NetMHCcons
library, or is a novel/mutated molecule, NetMHCcons can
nevertheless produce a prediction. Simply upload the complete
MHC protein sequence to the corresponding window in the
server.

6. Conventionally, peptides with a IC50 binding affinity <50 nM
are defined as strong binders to the MHC, and peptides with
IC50 > 500 nM as weak binders [13, 27]. Studies have demon-
strated that the repertoire of presented peptides varies dramat-
ically between MHC molecules when defined in terms of IC50

binding affinity [28, 29]. In contrast the %Rank provides a
robust filter for the identification of MHC-binding peptides
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and, depending on the study and pathogen of interest, around
95% of validated CTL epitopes bind with a Rank score less than
or equal to 2% [30, 31]. The IEDB currently recommends
making selections based on a Rank score <1% to cover most
of the immune responses (www.iedb.org). In NetMHcons a
peptide will be identified as a strong binder if the %Rank is
below 0.5% or the binding affinity (IC50) is below 50 nM.
Otherwise, the peptide will be identified as a weak binder if
the %Rank is below 2% or the binding affinity (IC50) is below
500 nM. These thresholds can be modified by the user.

7. Filtering options. In order to limit the size of the result files,
they can be filtered by predicted affinity in terms of IC50 or %
Rank by specifying filtering thresholds in the submission page.
Additionally, toggling the corresponding option allows sorting
the predictions by predicted affinity.

8. Save predictions to XLS file. For a more convenient visualiza-
tion of the results, they can be saved in a spreadsheet format
along with the default plain text output. The XLS format
comprises global statistics on the epitope search, including
the MHC allele coverage (NB column) and average predicted
affinity (Ave column) for each peptide.

9. Submit your job. Clicking on the Submit button will initiate
the run. You may wait for the job to terminate, or enter your
email address and simply leave the window. You will be notified
by email when it has terminated with a link to the results page.

In Fig. 2 is shown an example of NetMHCcons output. In this
example the 30 amino acids region between positions 180 and
209 of the Gag polyprotein from HIV virus was submitted to the
program in FASTA format:

>Gag_180_209
TPQDLNTMLNTVGGHQAAMQMLKETINEEA

The peptide length was set to 9, which resulted in the digestion
of the protein region into 22 overlapping peptides. The method
predicts a strong binder to the allele HLA-A*03:01 corresponding
to the peptide HQAAMQMLK with a predicted binding affinity
IC50 of 47 nM and %Rank of 0.25%.

2.2 NetMHCIIpan The NetMHCIIpan server is hosted at http://www.cbs.dtu.dk/
services/NetMHCIIpan. This guide refers to version 3.1 of the
server—note that the available options may vary slightly in future
updated versions.

1. The server accepts input in two formats: PEPTIDE and
FASTA.

T Cell Epitope Prediction 273

http://www.iedb.org
http://www.cbs.dtu.dk/services/NetMHCIIpan
http://www.cbs.dtu.dk/services/NetMHCIIpan


– The PEPTIDE format is simply a list of sequences of at least
nine amino acids to be directly interrogated as potential
MHC class II binders.

– The FASTA format is intended for scans of protein
sequences for potential epitopes. The protein sequence
(or multiple sequences in FASTA format) is digested into
overlapping peptides of the specified length, which are then
submitted to the algorithm for prediction.

2. Specify the peptide length (for FASTA submissions). This
parameter defines the length of the peptides to be generated
from the FASTA sequences. By default the server uses 15mer
peptides.

Fig. 2 Example of NetMHCcons output for the scan of potential MHC class I binders to HLA-A*03:01 in the
region (180..209) of the Gag polyprotein from HIV virus. NetMHCcons predicts a strong nonamer binder
(HQAAMQMLK) with predicted binding affinity IC50 < 50 nM
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3. Select the species/loci and alleles. Predictions can be obtained
for human HLA-DR, HLA-DP, and HLA-DQ molecules, and
for H-2 mouse molecules. Selecting the species/locus displays
the list of available alleles for the locus in question. As only the
beta chain of HLA-DR is polymorphic, only the HLA-DRB
allele should be specified. In contrast, both the alpha and beta
chains of HLA-DP and HLA-DQ must be selected from the
drop-down list.

4. If the MHCmolecule is not in the list, or is an uncharacterized
allelic variant, the user can upload the full MHC protein
sequence in FASTA format. As above, only the beta chain is
needed for HLA-DR molecules. For all other loci, both the
alpha and beta chain should be uploaded using the dedicated
boxes.

5. Optionally specify thresholds for strong and weak binders. Two
different types of thresholds can be set: based on the binding
affinity (in nanomolar IC50 values) or expressed in terms of %
Rank of the prediction value relative to the background distri-
bution of predictions on 200,000 random natural peptides.
The peptide will be identified as a strong binder if the %Rank
or IC50 affinity is below the specified threshold. The peptide
will be identified as a weak binder if the %Rank or IC50 affinity
is above the strong binder threshold but below the specified
threshold for weak binders. As for MHC class I, the repertoire
of presented peptides can vary dramatically between MHC
molecules when defined in terms of binding affinity (IC50),
and it is recommended to use %Rank scores to categorize
antigenic peptides. The IEDB currently recommends making
selections based on a 10% rank score (www.iedb.org).

6. Filtering options. In order to limit the size of the result files,
they can be filtered by predicted affinity in terms of IC50 or %
Rank by specifying filtering thresholds in the submission page.

7. Optionally run the program in Fast mode (recommended for
very large submissions), which uses a reduced ensemble of ten
neural networks. It gives a faster but generally less accurate
response.

8. The results of FASTA submissions can be filtered further by
only displaying the strongest binding core in overlapping con-
secutive peptides with the same predicted core. Additionally,
toggling the corresponding option allows sorting the predic-
tions by predicted affinity.

9. Offset correction is a procedure that improves the identifica-
tion of MHC class II binding cores by optimizing the com-
bined information content of multiple networks in an ensemble
[24, 32]. Excluding this step by toggling the corresponding
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option reproduces the behavior of the older version (3.0) of the
server for the task of binding core identification.

10. The server can produce a graphical representation of the
peptide-binding core registers. For each possible register, the
plot depicts the fraction of networks in the ensemble that
placed the optimal core at that starting position.

11. Save predictions to XLS file. For a more convenient visualiza-
tion of the results, they can be saved in a spreadsheet format
along with the default plain text output. The XLS format
comprises global statistics on the epitope search, including
the MHC molecule coverage (NB column) and average pre-
dicted affinity (Ave column) for each peptide.

12. Submit your job. Clicking on the Submit button will initiate
the run. You may wait for the job to terminate, or enter your
email address and simply leave the window. You will be notified
by email when it has terminated with a link to the results page.

In Fig. 3 is shown an example ofNetMHCIIpan output. In this
example, a 40 amino acids region between positions 310 and 349 of
the Hemagglutinin protein serotype H3 from Influenza virus was
submitted to the program in FASTA format:

Fig. 3 Example of NetMHCIIpan output for the scan of potential MHC class II binders to HLA-DRB1*04:01 in the
region (310.349) of the Hemagglutinin H3 protein from influenza virus. A number of candidate epitopes with
predicted binding affinity close to 50 nM are centered around the 9mer binding core YVKQNTLKL, with the
15mer ACPKYVKQNTLKLAT obtaining the highest predicted affinity
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>HA3(310.0.349)
FQNVNKITYGACPKYVKQNTLKLATGMRNVPEKQ

TRGLFG

The peptide length was set to 15, which resulted in the diges-
tion of the protein sequence into 26 overlapping peptides. A region
spanned by eleven 15mer peptides was predicted to contain poten-
tial MHC class II binders, especially centered on the 9mer core
YVKQNTLKL. The 15mer ACPKYVKQNTLKLAT obtained the
highest predicted affinity of 54 nM and %Rank of 1.20%. The
column Core_Rel lists the reliability scores of the core prediction,
i.e., it expresses the fraction of networks in the ensemble that
agreed on the identification of the optimal 9mer binding core.
The clickable links Core_Histogram in the last column display
plots of the reliability scores for all possible registers within the
corresponding peptide.

For a more compact output, the same search can be performed
with the Print only the strongest binding core option turned on.
Using this option, the results include only the peptide with highest
predicted affinity among overlapping peptides with the same pre-
dicted binding core. Figure 4 shows the results of the epitope
search in the Hemagglutinin fragment described above using the
strongest core option. For instance, of the six alternative peptides
with predicted 9mer core YVKQNTLKL, only the 15mer having
the highest predicted binding affinity to HLA-DRB1*04:01 (ACP-
KYVKQNTLKLAT) is included in the results.

Fig. 4 Example of NetMHCIIpan output for the scan of potential MHC class II binders to HLA-DRB1*04:01 in the
region (310..349) of the Hemagglutinin H3 protein from influenza virus, using the option of printing only the
strongest binding core in overlapping consecutive peptides. Compared to the complete protein scan shown in
Fig. 3, only unique binding cores are displayed in this more compact output
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3 Guidelines and Remarks

1. All input sequences should be expressed in the conventional
uppercase 20-letter amino acid code plus the letter X to repre-
sent unknown amino acids: A C D E F GH I K LMN PQ R S
T V W Y X. The server converts all other characters to Xs.

2. Large submissions, for example in the case of several protein
sequences in FASTA format interrogated on multiple MHC
alleles, can generate output of considerable size. Because only a
small fraction of peptides can usually bind to the MHC, the
majority of these results will relate to predicted non-binders. In
order to limit the size of the result files, they can be filtered by
predicted affinity in terms of IC50 or %Rank by specifying
filtering thresholds in the submission page.

3. The core reliability plots in NetMHCIIpan can be made only
for a maximum of 20 peptides. Using the graphics together
with the sorting option is generally a good idea in order to
display the plots for the strongest predicted binders.

4. The predicted binding affinity distribution in IC50 can vary
greatly between different alleles. In other words, at the same
threshold of IC50 affinity certain MHC molecules will have a
large number of binders whereas other molecules will have few
or none. If we assume that fraction of binding peptides is
approximately the same for most molecules, then the %Rank
is a more reliable quantity to identify predicted binders, as it is
independent of the distribution of affinities. The Immune Epi-
tope Database (IEDB) [33] recommends selecting candidate
epitopes based on a Rank score <1% for MHC class I and Rank
score <10% for MHC class II to cover most of the immune
responses.

5. NetMHCcons is trained only on 9mer peptide data. Predictions
for peptides of length different from nine are extrapolated
using an approximation that conforms longer and shorter pep-
tides to a series of 9mers [34]. Predictions for peptides of
length different from nine, especially very long peptides
(12mers and longer) should be therefore taken with caution.

6. Stand-alone software packages for both NetMHCcons and
NetMHCIIpan are available for download for academic users
on the servers web pages.

7. While binding affinity to MHC molecules is the single most
selective event in the T-cell antigen presentation pathways,
other factors have been demonstrated to impact the likelihood
of a peptide becoming a T-cell epitope. Several prediction tools
have been developed to incorporate these factors into the
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antigen selection pipeline. Some of these are listed below (all
available at www.cbs.dtu.dk/services):

(a) NetChop [7]: Prediction of proteasomal cleavage;

(b) NetCTLpan [15]/NetCTL [5]: Integration of peptide-
MHC class I binding, proteasomal C terminal cleavage,
and TAP transport efficiency for the prediction of CTL
epitopes;

(c) NetTepi [35]: Integration of peptide-MHC-binding affin-
ity, peptide-MHC stability, and T-cell propensity for the
prediction of CTL epitopes;

(d) NetMHCstab [36]: Prediction of stability of peptide-
MHC class I complexes.
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