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Relativistic and nonrelativistic calculations have been per-
formed on hydrogen peroxide, dihydrogen disulfide, dihydro-
gen diselenide, and dihydrogen ditelluride, H2X2 (X = O, S, Se,
Te), to investigate the consequences of relativistic effects on
their structures as well as their nuclear magnetic resonance
(NMR) spin–spin coupling constants and spin–spin coupling
constant polarizabilites. The study has been performed using
both one-component nonrelativistic and four-component rela-
tivistic calculations at the density functional theory (DFT) level
with the B3LYP exchange-correlation functional. The calcula-
tion of nuclear spin–spin coupling constant polarizabilities has

been performed by evaluating the components of the third
order tensor, nuclear spin–spin coupling polarizability, using
quadratic response theory. From this, the pseudoscalar associ-
ated with this tensor has also been calculated. The results
show that relativistic corrections become very important for
H2Se2 and H2Te2 and hint that a new chiral discrimination
technique via NMR spectroscopy might be possible for mole-
cules containing elements like Se or Te. © 2018 Wiley Periodi-
cals, Inc.
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Introduction

Structural characterization of chemical compounds is one of
the foundations of chemical research as it serves as a bridge-
head to understanding mechanisms and reactivity of chemical
species. Nuclear magnetic resonance (NMR) spectroscopy is
one of such techniques that have proven powerful and valu-
able to determine the structures of molecules in solution, gas,
and solid phase. However, the chemical shifts and spin–spin
coupling constants of NMR do not differentiate between
enantiomers—the measured response is identical. So far the
available options to recognize mirror structures by NMR have
been limited to the addition of chiral solvents or reagents.[1–4]

Buckingham’s theoretical work, however, has suggested the
possibility of observing chirality in NMR by application of an
electric field.[5,6] The measurements would require an experi-
mental setup a little different from the standard NMR spec-
trometers but the effect is in principle observable.[7,8] The
properties leading to different measurements in NMR for
enantiomers are the nuclear spin–spin coupling constant
polarizabilities (and/or the nuclear magnetic shielding polariz-
abilities) and for the gas or liquid phase, it is possible to
define a pseudo-scalar that has equal but opposite values for
enantiomers.[6] Previous calculations have indicated that the
effect is very small and a huge electric field would have to be
applied to observe a difference with the resolution achievable
with present-day NMR spectrometers.[9–11] Nevertheless, it was
early on suggested that the effect would be more pronounced
for heavier nuclei.[5] From this perspective, the previous efforts
have been directed at molecules containing rather light nuclei
with the heaviest atoms being oxygen. The only exception is a
nonrelativistic study of the pseudoscalar of the shielding

polarizability for the cyclic C4H2X2 molecules, with X = O, S,
Se, and Te.[12] As the computational cost increases rapidly with
heavier nuclei it is necessary to restrict the calculations to
small model systems. Therefore, a series of hydrogen
peroxide-like molecules have been chosen for this study—
H2O2, H2S2, H2Se2, and H2Te2. These molecules are just large
enough to be chiral in their equilibrium structure and due to
their obvious similarity should allow for a seemingly straight-
forward comparison of properties. Regarding the level of the-
ory none of the previous investigations has been performed
using a fully relativistic treatment of the systems and this work
presents the first results doing so, as during the last years
there has been a great effort to provide NMR spectroscopic
parameters considering relativistic effects at the four-
component level.[13] The treatment of electron correlation is
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done at the level of density functional theory with the func-
tional B3LYP.

The aim of this article is, thus, to investigate whether the
spin–spin coupling constant polarizabilities will increase with
increasing nuclear charge in this series of molecules and how
large the relativistic contributions to this effect might be. After
defining the relevant properties both in the nonrelativistic and
in the four-component relativistic domain, we will first discuss
the effects of relativity on the geometry of these molecules and
study their basis set dependence. Second, we will present the
results of nonrelativistic and relativistic calculations of the spin–
spin coupling constants in this series of molecules before
thirdly discussing the spin–spin coupling constant polarizabil-
ities. In summary, these calculations will clarify when the
nuclear charge has become large enough for relativistic effects
to play a role at the structural level and whether this limit is
equivalent to the limit for the calculation of spin–spin coupling
constants.

Theory of Spin–Spin Coupling Constant
Polarizabilities

The total energy of a molecule in the presence of intramolecu-
lar perturbations, that is, the permanent magnetic dipoles
mI = γIII, and mJ = γJIJ expressed via the magnetogyric ratios γI
and γJ and spins II and IJ of two nuclei I and J, and an external
time-independent, spatially uniform electric field E, is

W ¼W 0ð Þ +
X
J < I

X
αβ

mIαK
IαJβmJβ +

X
J < I

X
αβγ

mIαK
IαJβ
γ mJβEγ +… ð1Þ

where

K IαJβ ¼ ∂W
∂mIα∂mJβ

����
mI ,mJ ,E!0

ð2Þ

and the polarizability of the reduced nuclear spin–spin coupling
is a third-rank tensor obtained as the third derivative of the
energy, eq. 1

KIαJβ
γ ¼ ∂W

∂mIα∂mJβ∂Eγ

����
mI ,mJ ,E!0

ð3Þ

The reduced nuclear spin–spin coupling tensor in the pres-
ence of an applied electric field can be expanded as a Taylor
series:

K IαJβ Eð Þ¼ K IαJβ +
X
γ

KIαJβ
γ Eγ ð4Þ

where

K IαJβ ¼ K IαJβ 0ð Þ ð5Þ
The reduced nuclear spin–spin coupling tensor components

are related to those of JIαJβ tensor, usually expressed in Hertz by

K IαJβ ¼ 4π2
J IαJβ

hγIγJ
ð6Þ

with analogous relationships for the coupling polarizability

KIαJβ
γ ¼ 4π2

JIαJβγ

hγIγJ
ð7Þ

Three quantities will be considered in the results section, the
isotropic reduced coupling

K IJ ¼ 1
3

X
α

K IαJα , ð8Þ

the electric field derivatives of the isotropic reduced coupling

AIJ
γ ¼

1
3

X
α

KIαJα
γ ð9Þ

and a pseudoscalar which vanishes for achiral molecules, that
is, an isotropic average:

K
1ð Þ
IJ ¼ 1

6

X
αβγ

ϵαβγK
IαJβ
γ ð10Þ

where ϵαβγ is the Levi Civita symbol.[14]

In nonrelativistic theory the elements of the K IαJβ coupling
tensor are linear response functions[15,16]

K IαJβ ¼ Ĥ
PSO
Iα + Ĥ

FC
Iα + Ĥ

SD
Iα ;Ĥ

PSO
Jβ + Ĥ

FC
Jβ + Ĥ

SD
Jβ

D ED E
ω¼0

+ 0j ĤDSO
IαJβ j0

D E

ð11Þ

with the exception of the diamagnetic spin-orbit (DSO) opera-
tor, which is an expectation value of the ground state |0i,[17]
although it can also be reformulated as a linear response func-
tion.[18] The mechanism for Fermi-contact (FC) and spin-dipolar
(SD) contributions to coupling constants and their polarizabil-
ities comes from the interaction between the nuclear spin and
the spin magnetic moment of the electrons, whereas the inter-
action between the nuclear spin and the orbital magnetic
moments provide a paramagnetic and a diamagnetic spin-orbit
contribution, PSO and DSO, respectively.

The KIαJβ
γ coupling polarizability tensor components are qua-

dratic response functions,

KIαJβ
γ ¼ Ĥ

PSO
Iα + Ĥ

FC
Iα + Ĥ

SD
Iα ;Ĥ

PSO
Jβ + Ĥ

FC
Jβ + Ĥ

SD
Jβ , Ĥ

E
γ

D ED E
ω,ω0¼0

+ Ĥ
DSO
IαJβ ; Ĥ

E
γ

D ED E
ω¼0

ð12Þ

with the exception again of the DSO contributions, which are
linear response functions, as is outlined in a previous papers.[9]

The nonrelativistic perturbation operators[19] are classified in
singlet and triplet operators, depending on whether they con-
tain spin or not. Their explicit form is displayed in Table 1,
where ΘS is the spin symmetry (triplet or singlet).

The position vectors of electron i and nucleus K are denoted
as ri and RK, respectively, and riK = ri − RK . The electronic angu-
lar momentum operator with respect to the position of the
nucleus is denoted as IiK = (ri − RK) × pi = riK × pi and the elec-
tronic operator as si. The elementary charge and electronic
mass are e and m and ge is the electronic g-factor.
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In the four-component case, the elements of the K IαJβ cou-
pling tensor are just one linear response function[20,21]

K IαJβ ¼ ĤIα ; ĤJβ

� �� �
ω¼0 ð13Þ

as the relativistic analog to the nonrelativistic diamagnetic con-
tribution is included via excitations from occupied positive-
energy orbitals to virtual negative-energy orbitals, although an
explicit diamagnetic contribution could have been obtained via
the Sternheim approximation.[22] Correspondingly to eq. 13 also

the components of the KIαJβ
γ coupling Polarizability tensor are

just one quadratic response function[23,24]

KIαJβ
γ ¼ ĤIα ; ĤJβ , Ĥ

E
γ

D ED E
ω,ω0¼0

ð14Þ

The four-component relativistic perturbation operators are
given in Table 2. In the relativistic domain the spin-orbit interac-
tion couples spin and spatial degrees of freedom, so the spin
symmetry is lost and replaced by time-reversal symmetry,
Θt = � 1, (+ for symmetric and − for anti-symmetric operators),
which is also specified in the table.

The Dirac matrices, α, are α¼ O2 σ
σ O2

� �
with the Pauli spin

matrices σx¼ 0 1
1 0

� �
, σy¼ 0 − i

i 0

� �
and σz¼ 1 0

0 −1

� �
:

The methods used to develop the general theory of molecu-
lar properties have essentially the same structure in the relativ-
istic and nonrelativistic domain. The theory and
implementation of nonrelativistic linear and quadratic response
functions at time dependent Hartree–Fock and time dependent
density functional theory (DFT) level has been described many
times.[25–29] In the four component regime, the relativistic
Hartree–Fock equations were e.q. implemented by Saue
et al.[30] One has to take into account that for the relativistic

case, the orbitals and in consequence the integrals are complex.
Also reductions due to symmetry are different, as it is pointed
out in many Refs. [21,31] Linear response functions for external
perturbations, in the form of electric or magnetic fields, at the
Hartree–Fock or DFT level have been derived by Saue and Jen-
sen.[21] The derivation will not be repeated here but the final
equations are complex and the hermiticity and time reversal
symmetry of the operators was considered in the derivation
employing a quaternion formulation.[32] The generic forms of
the linear response functions parallels otherwise those found in
the nonrelativistic case. The reference state is a single determi-
nant where the one electron functions are complex four-
component spinors. Norman and coworkers developed[23,24] the
quadratic response function in the time dependent four-
component Hartree–Fock and DFT approximation. They
employed again the quaternion symmetry scheme that pro-
vides maximum computational efficiency with consideration
made to time-reversal and spatial symmetries. In general, the
equations for linear and quadratic response are simpler in the
relativistic formalism than in the nonrelativistic one, but the
generation of four-component wave function is computation-
ally considerably heavier than in the nonrelativistic calculations.

Computational Details

There are three types of calculations for each molecule; struc-
tural optimizations, calculation of nuclear spin–spin coupling
constants, and the calculation of the spin–spin coupling con-
stant polarizabilities. All relativistic four-component Dirac–
Coulomb calculations have been performed using the DIRAC
14.0 or DIRAC 15.0 programs.[33] The nonrelativistic geometry
optimizations have also been run with DIRAC programs while
the nonrelativistic calculation of the coupling constants and
coupling constant polarizability have been carried out with the
Dalton program[34] as described previously.[9]

The structural optimizations of hydrogen peroxide have been
performed using a guess structure with parameters similar to
experimentally determined bond lengths, bond angles, and
dihedral angle. The same is true for dihydrogen disulfide while
an optimized geometry from dihydrogen disulfide is used as a
starting guess for dihydrogen diselenide and dihydrogen ditel-
luride. The reduced spin–spin coupling constants have been
calculated as linear response functions, eq. 13, and only the iso-
tropic reduced coupling constants KIJ, eq. 8, are reported. The
elements of the reduced coupling constant polarizability tensor
have been calculated as quadratic response functions, eq. 14
and both the components of the electric field derivatives of the
isotropic reduced coupling constants or reduced coupling con-

stant polarizabiliy vector, AIJ
γ , eq. 9, and the pseudoscalar K

1ð Þ
IJ ,

eq. 10, are reported in the following.
The underlying theory of DFT does not offer the advantage

of knowing which exchange-correlation functionals will perform
better than others and so a functional that has previously per-
formed reasonably is often chosen. In the current work, all cal-
culations have been performed with the hybrid exchange-
correlation functional B3LYP, as it was shown in previous work

Table 1. Nonrelativistic perturbation operators and their
spin-symmetry ΘS.

Perturbation Operator ΘS

E Ĥ
E
α ¼

P
i −μi,α ¼

P
i eri,α

S

mK Ĥ
PSO
Kα ¼P

i ĥ
PSO
Kα , i ¼ μ0

4π

� �
e
m

� �P
i
IiKα
r3iK

S

mK Ĥ
SD
Kα ¼

P
i ĥ

SD
Kα , i ¼ − μ0

4π

� � gee
2m

� �P
i
siα r2iK −3 si �riKð ÞriKα

r5iK

T

mK Ĥ
FC
Kα ¼

P
i ĥ

FC
Kα , i ¼ μ0

4π

� � 4π gee
3m

� �P
i δ riKð Þsiα T

mK mL Ĥ
DSO
KαLβ ¼

P
i ĥ

DSO
KαLβ , i

¼ μ0
4π

� �2 e2
m

	 
P
i
δαβ riK �riLð Þ− riLα riKβ

r3iK r3iL

S

Table 2. Relativistic perturbation operators and their time reversal
symmetry Θt.

Perturbation Operator Θt

E Ĥ
E
α ¼

P
i −μi,α ¼

P
i eri,α

+1

mK ĤKα ¼
P

i ĥKα , i ¼ ce μ0
4π

� �P
i
α× riKð Þα

r3iK
-1
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that there is no general preference for B97-2 or B3LYP when
calculating coupling constant polarizabilities.[10,11]

The basis sets employed in the current work all belong to the
families of relativistic basis sets generated by Dyall.[35] For the
structural optimizations the standard series dyall.vnz, the core-
valence series dyall.cvnz, and the augmented core-valence series
dyall.acvnz all with n = 2, 3, 4 were employed. For the subsequent
calculation of coupling constants and coupling constant polariz-
abilities only the largest series dyall.acvnz was employed. These
basis sets are not especially optimized for the calculation of spin–
spin coupling constants like, for example, the aug-cc-pVTZ-J[36] or
(aug)-pcJ-n basis sets.[37] However, these core-property basis sets
do not exist for all the atoms in our molecules and in addition the
previous study on H2O2 showed that diffuse functions are impor-
tant for the coupling polarizabilities.[11] Conversely, the

uncontracted dyall.av3z basis set had previously been shown to
be converged with respect to calculations of one-bond couplings
involving tellurium[38] and certainly for geometries.[39] All calcula-
tions have been performed with uncontracted basis sets as this is
a requirement to fulfill the kinetic balance condition of the relativ-
istic calculations. This condition has been retained for the nonrela-
tivistic calculations in the interest of keeping the calculations
easily comparable.

Results and Discussion
Basis set dependence and relativistic effects on the
geometries

In Figure 1, the basis set dependence of the optimized bond
lengths between the non-hydrogen atoms is shown for both

Figure 1. The X-X bond length in Å (X = O, S, Se, Te) versus cardinal numbers n of the dyall.vnz, dyall.cvnz, and dyall.acvnz obtained in four-component (“Rel”
and solid lines) and nonrelativistic (“Non-rel” and dashed lines) geometry optimizations using the B3LYP functional. Tables with the values are presented in
the Supporting Information. [Color figure can be viewed at wileyonlinelibrary.com]
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the four-component (solid lines) and nonrelativistic calculations.
The first observation is the large difference between the behav-
ior of the dyall.vnz basis sets for O and Se, on one hand, and S
and Te on the other. While for the former the bond lengths
converge for this series more or less to the same result as with
the core-valence basis sets, for S the dyall.v4z bond length devi-
ates by ~0.01 Å from the converged value and for Te by about
half of this. This points to a deficiency in the set of more com-
pact functions in the dyall.vnz basis sets for S and Te similar to
what previously had been observed for cc-pVXZ basis sets of
the second third row atoms.[40] By chance or more precisely by
error cancelation the nonrelativistic dyall.v4z Te-Te bond length
is actually very close to the converged four-component value. A
second observation is that the additional diffuse functions in
the dyall.acvnz basis set are not necessary at all. Finally, there is

a clear convergence toward shorter bond lengths with increas-
ing cardinal number n of the basis set for all molecules, as the
differences between the n = 3 and n = 4 basis sets are much
smaller than between the n = 2 and n = 3 basis sets. Sufficiently
converged results can, therefore, be obtained already with the
dyall.cv3z basis set.

Inclusion of relativistic effects increases the X-X bond length
in all molecules. However, the effects are very small. Only in the
case of tellurium, the increase amounts to 0.15% which is, thus,
larger than the change on going from the triple to the quadru-
ple ζ basis sets. Obviously, there is no relevant relativistic
change in the O-O bond length, but it is a bit unexpected to
see that the relativistic change in the bond length is smaller for
selenium than for sulfur. This might be explained by the fact,
that the X-X bonds are mostly formed by p-orbitals, whose

Figure 2. The X-H bond length in Å (X = O, S, Se, Te) versus cardinal numbers n of the dyall.vnz, dyall.cvnz, and dyall.acvnz obtained in four-component (“Rel”
and solid lines) and nonrelativistic (“Non-rel” and dashed lines) geometry optimizations using the B3LYP functional. Tables with the values are presented in
the Supporting Information. [Color figure can be viewed at wileyonlinelibrary.com]
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extent are not as much changed by relativistic effects as, for
example, s-orbitals.[41] On the other hand, it has also been dis-
cussed that the relativistic change in the bond lengths is not
caused by the change in the extent of the orbitals but by the
relaxation of the kinetic repulsion.[42]

Compared with the experimentally measured bond lengths,
R(O-O) = 1.475 Å[43] and R(S-S) = 2.0564 Å,[44] our values calcu-
lated at the four-component level with the dyall.acv4z basis
set, 1.4491 Å and 2.0715 Å, differ by 1–2%. While our pre-
dicted O-O distance is too short, the S-S distance is slightly
too large. Furthermore the deviation in the S-S bond is both
percentagewise and in absolute values smaller than for the O-
O bond. For H2Se2 and H2Te2 our optimized X-X bond lengths
are 2.3591 Å and 2.7462 Å, respectively, with the dyall.acv4z
basis set.

Turning now to the X-H bond lengths in Figure 2 we
observe again the large difference between the performance
of the dyall.vnz basis sets between O and Se on one side and
S and Te on the other. And again there is no need at all for
the extra diffuse functions in the dyall.vnz basis sets. Further-
more the triple-ζ results are as good as converged maybe with
the slight exception of the O-H bond length in H2O2. Contrary
to the X-X bonds, relativistic effects reduce the X-H bond
lengths for all the molecules. However, only for Se and Te they
are worth mentioning, where they amount to ~0.1%
and ~0.2%.

Compared with the experimentally measured bond lengths,
R(O-H) = 0.950 Å[41] and R(S-H) = 1.3421 Å,[42] our values calcu-
lated at the four-component level with the dyall.acv4z basis set,
0.9656 Å and 1.3465 Å, are now both 2% or 0.3% too long in

Figure 3. The X-X-H angle (X = O, S, Se, Te) versus cardinal numbers n of the dyall.vnz, dyall.cvnz, and dyall.acvnz obtained in four-component (“Rel” and
solid lines) and nonrelativistic (“Non-rel” and dashed lines) geometry optimizations using the B3LYP functional. Tables with the values are presented in the
Supporting Information. [Color figure can be viewed at wileyonlinelibrary.com]

FULL PAPER WWW.C-CHEM.ORG

Journal of Computational Chemistry 2018, 39, 2589–2600 WWW.CHEMISTRYVIEWS.COM2594

http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM


contrast to the X-X bonds. But again the difference is large for
H2O2. For H2Se2 and H2Te2 our optimized X-H bond lengths are
1.4747 Å and 1.6701 Å, respectively, calculated with the dyall.
acv4z basis set.

For the two sets of angles, the X-X-H angles in Figure 3 and
the dihedral angles in Figure 4, we observe a somewhat differ-
ent picture, although the dyall.vnz basis set results still differ for
H2S2 and H2Te2 more from the results of the other basis sets
than for the other two molecules. However, the diffuse func-
tions in the acv2z basis set have a significantly larger impact on
the angles than on the bond lengths. Sufficiently converged
results for the X-X-H angles are again obtained already at the
dyall.cv3z level with the exception of the dihedral angles in
H2O2 and H2S2, where again the diffuse functions have some
influence. In general it is somewhat surprising to see that the

dihedral angle in H2O2 is much more basis set dependent than
in the other molecules. The relativistic effects on the angles are
percentagewise similar to the changes in the X-X bond lengths,
0.1% to 0.2%, and make both angles smaller.

Compared with the experimentally measured X-X-H
angles,[41,42] 94.8� in H2O2 and 97.88� in H2S2 our four-
component dyall.acv4z calculated values 100.78� and 98.70� are
in good agreement for H2S2 but exhibit a larger deviation, 6%,
for H2O2. The same holds also for the dihedral angles, where
the measured values are 119.8� and 90.3� and the four-
component dyall.acv4z calculated ones 113.31� and 90.64� for
H2O2 and H2S2, respectively. We, thus, note that in general the
B3LYP optimized structure of H2O2 is in less good agreement
with the experimental values than the geometry of H2S2. The
four-component dyall.acv4z optimized angles for the other two

Figure 4. The H-X-X-H dihedral angle (X = O, S, Se, Te) versus cardinal numbers n of the dyall.vnz, dyall.cvnz, and dyall.acvnz obtained in four-component
(“Rel” and solid lines) and nonrelativistic (“Non-rel” and dashed lines) geometry optimizations using the B3LYP functional. Note the four times larger scale of
the y-axis for H2O2. Tables with the values are presented in the Supporting Information. [Color figure can be viewed at wileyonlinelibrary.com]
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compounds are: Se-Se-H angle 96.66�, Te-Te-H angle 95.88� , H-
Se-Se-H angle 90.15� , and H-Te-Te-H angle 90.01� .

For the following calculations of the coupling constants and
coupling constant polarizabilities the dyall.acv3z geometry has
been employed.

Reduced one-bond spin–spin coupling constants

In Table 3, the results for the reduced one-bond X-H coupling
constants are shown. They were calculated both at the four-
component and nonrelativistic level with B3LYP functional with
the dyall.acvnz basis sets. The influence of the basis set is signif-
icant on going from the double-ζ to the triple-ζ basis sets: ~9%
for H2O2 and ~17% for both H2Se2 and H2Te2 at the nonrelativ-
istic level and somewhat smaller at the relativistic level. The
equivalent change for H2S2 is much smaller, negative and the
values with the double-ζ basis set actually larger in the relativis-
tic case. However, the differences to the quadruple-ζ basis set
are with 1% to 2% much smaller both at the relativistic and
nonrelativistic level. We have, therefore, also omitted the calcu-
lations with the dyall.acv4z basis set for H2Te2 in the following.

While the relativistic and nonrelativistic results for the one
bond O-H coupling are not quite identical, the differences are
still less than 1%. But the relativistic effects become gradually
larger with increasing nuclear charge so that they amount to
14% for the S-H coupling, 76% for the Se-H coupling and the
Te-H coupling is at the four-component relativistic level more
than 3 times as large as the nonrelativistic value—a change of
216%. The need for a relativistic description is, thus, very obvi-
ous in the case of spin–spin coupling constants involving for Se
and Te, while a nonrelativistic description seems to suffice for O
and almost for S. In addition one should notice that the
reduced coupling constants change sign in this series of similar
molecules, or expressed differently the one-bond X-H coupling
becomes smaller along the series H2O2, H2S2, H2Se2, H2Te2 and
between S and Se negative, which indicates a systematic
change in the electronic structure of these molecules as also
seen from the increasing bond lengths and decreasing angles
along this series.

Calculation of the reduced spin–spin coupling polarizability

tensor KIαJβ
γ

In the following we will discuss the results of the calculations of

reduced coupling polarizability vector AXH
γ both at the four-

component relativistic and the nonrelativistic level. The defini-
tion of the x, y, z axis is shown in Figure 5. The y axis is chosen

to coincide with the direction of the X-H bond in all molecules,
that is, along the bond between the atoms, which coupling is
studied. The X-X bond is in the x-y plane, and the z axis is per-
pendicular to this plane.

The components Ax and Ay of the reduced coupling constant
polarizability vector are in general one or two orders of magni-
tude greater than the Az-component, that is, for H2O2 Az/
Ax ≈ 0.09, for H2S2 Az/Ax ≈ 0.006, for H2Se2 Az/Ax ≈ 0.02, and for
H2Te2 Az/Ax ≈ 0.008. This behavior can be understood qualita-
tively considering a reflection with respect to the x-y plane. The
isotropic coupling polarizability vector is a polar vector, there-
fore, applying a reflection with respect to that plane its compo-
nents are transformed as

A0
x ¼Ax ð15aÞ

A0
y ¼Ay ð15bÞ

A0z ¼ −Az ð15cÞ

Additionally, both the studied X-H bond and the X-X bond
are contained in the x-y reflection plane, while the second X-H
bond, which changes its orientation on the considered reflec-
tion, is relatively far away from the atoms of the studied cou-
pling constant. Therefore, the vectors A and A’ must be very
similar to each other. And if the eq. 15c is taken into account, it
follows that Az/Ax � 1 and Az/Ay � 1. Applying the same rea-
soning, the behavior of Az/Ax ≈ 0.1 for H2O2, while Az/Ax ≈ 0.01
for the other molecules can be also understood. The O-O dis-
tance is significantly shorter than the X-X distance of the other
systems, consequently it is expected that the other O-H bond,
that is, the one that is out of the x-y plane, has greater influ-
ence on the polarization vector of the studied one-bond
coupling.

The basis set dependence of the components of the reduced

coupling polarizability vector, AXH
γ [γ = x, y, z; eq. 9] is repre-

sented in Figures 6 and 7, for the dyall.acvnz basis sets with
n = 2, 3, 4 for H2O2, H2S2, and H2Se2, and n = 2, 3 for H2Te2.

The AXH
x and AXH

y components increase somewhat with the

basis set size, in both the relativistic and nonrelativistic calcula-

tions for all four compounds studied here. Particularly, the AXH
x

component increases by ~3% to ~4% from dyall.acv2z to dyall.
acv3z at the nonrelativistic level. The same comparison for rela-
tivistic calculations gives increments in the order of ~3% to
~5% on going from the dyall.acv2z to dyall.acv3z basis sets for
the four compounds. The comparison between dyall.acv3z and
dyall.acv4z shows increments of only ~0.5% in both the

Table 3. X-H one-bond reduced coupling constants (in 1019 J−1 T2) calculated at the four-component and nonrelativistic DFT/B3LYP level with various
basis sets.

dyall.acv2z dyall.acv3z dyall.acv4z

KXH No-rel Rel No-rel Rel No-rel Rel

1H2
17O2 27.23 26.98 29.70 29.42 30.37 30.09

1H2
33S2 12.19 10.65 11.96 10.29 12.19 10.48

1H2
77Se2 −25.35 −45.49 −29.63 −52.16 −29.98 −52.85

1H2
125Te2 −32.75 −108.82 −38.27 −120.88 −38.68
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nonrelativistic and relativistic calculations, for compounds

with O, S, and Se. The analysis of the AXH
y component, which in

itself is larger than the AXH
x component, shows an increment of

~7.5% on going from the dyall.acv2z to the dyall.acv3z basis set
for H2O2 and H2S2, and of ~6% and ~4% for H2Se2 and H2Te2,
respectively. The comparison between the dyall.acv3z and dyall.
acv4z results shows increments of ~1.9% for H2O2, ~1.4% for
H2S2, and ~1.3% for H2Se2, respectively. Similar increments are
observed for the corresponding relativistic calculations.

The AXH
z components, Figure 7, are very small for all four mol-

ecules compared to the in-plane components AXH
x and AXH

y ,

ranging from −0.3 × 108 T2 m J−1 V−1 for H2O2 to
~2 × 108 T2 m J−1 V−1 for H2Te2. It practically does not depend

on the basis set size in the case of H2O2. But for H2S2, ASH
z

decreases by 33% on going from dyall.acv2z to dyall.acv3z and
by ~7% from the dyall.acv3z to dyall.acv4z basis sets in the
nonrelativistic calculations. For H2Se2 the same component
decreases by ~6% on going from dyall.acv2z to dyall.acv3z and
by ~0.3% from dyall.acv3z to dyall.acv4z also in the nonrelativ-
istic calculation. In the relativistic calculations, the decrease is
~18% on going from dyall.acv2z to dyall.acv3z and ~3% from
dyall.acv3z to dyall.acv4z for H2S2. Conversely, for H2Se2 the
result increases by ~2.2% on going from dyall.acv2z to dyall.

Figure 5. H2X2 geometry. The y axis has direction of -X-H bond. The X-X
bond is in the x-y plane, and the z axis is perpendicular to this plane. [Color
figure can be viewed at wileyonlinelibrary.com]

Figure 6. Basis set dependence of the x- and y-components of the reduced of spin–spin coupling constant polarizability vector A (108 T2 m J−1 V−1) at the
DTF/B3LYP level with the dyall.acvnz basis sets (n = 2, 3, 4). The left axes are for the x-components and the right axes are for the y-components. [Color figure
can be viewed at wileyonlinelibrary.com]
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acv3z and by ~2.1% from dyall.acv3z to dyall.acv4z. From this
analysis, it becomes clear that the calculations are sufficiently
converged with the dyall.acv3z basis set, differing in less than
2.5% from dyall.acv4z basis set results. The only exception is

the ASH
z component for H2S2 in the nonrelativistic calculation.

However, the z-component is so much smaller than the other
two components.

For the H2Te2 molecule, due to limited computational
resources, we did not carry out the relativistic calculation with
the dyall.acv4z basis set. The convergence of the results
reported for H2O2, H2S2, and H2Se2 in Table 3 and Figures 6–8
suggests, however, that the dyall.acv3z basis set should be
close to convergence also for H2Te2 and in particular is suffi-
cient for estimating the importance of relativistic effects on the
coupling constant polarizability. We also evaluated the reduced
coupling polarizability vector at the no-relativistic level employ-

ing the dyall.acv4z basis for H2Te2, the ATeH
x and ATeH

y compo-

nents increase by ~1% from dyall.acv3z to dyall.acv4z, while

the much smaller ATeH
z component decreases by 2.6% from

dyall.acv3z to dyall.acv4z.
Turning now to the importance of relativistic effects on the

coupling constant polarizabilities, we observe that four-
component relativistic results for the same components of the
electric field derivatives of the isotropic reduced coupling are
comparable to the nonrelativistic results in the case of H2O2

and H2S2, but differ significantly for H2Se2 and H2Te2. Including
relativistic effects always increase the smaller Ax- and Az-compo-
nents, while it reduces the larger Ay-component. For H2S2 the

ASH
x -component is, thus, increased by 5%, while the other two

components like all the components for H2O2 are only margin-

ally changed. In H2Se2 the ASeH
x -component is then already

increased by 21% and the ASeH
y -component is reduced by 7% in

the relativistic calculation. In H2Te2, finally, relativistic effects

increase the ATeH
x -component by 52% and reduce the

ATeH
y -component by 25%. These large changes lead to that the

ATeH
x -component, which is predicted to be smaller than the

ATeH
y -component by the nonrelativistic calculations, turns out to

be larger in the relativistic calculations, as can be seen in
Figure 6. Compared to the changes in the coupling constants in
Table 3, we find a similar increase of the importance of relativis-
tic corrections for the components of the coupling constant
polarizability vector, but the relative changes in the coupling
polarizability are nevertheless smaller.

The pseudoscalar K
1ð Þ
XH of the reduced coupling constant

polarizability tensor is for the four systems shown in Figure 8
calculated both at the four-component relativistic and nonrela-
tivistic level using the dyall.acv3z basis set and the B3LYP func-
tional. The corresponding values for the other basis sets are
reported in the Supporting Information. There are two impor-
tant observations to be made from Figure 8. First of all there is

a systematic trend for K
1ð Þ
XH in this series of molecules, where it

changes from being negative for H2O2 to positive but small in
H2S2 and then keeps on increasing to H2Te2. Second, Figure 8
allows us to appreciate the great importance of using relativis-

tic calculations for the pseudoscalar K
1ð Þ
XH in the molecules con-

taining Se and Te, H2Se2 and H2Te2. The relativistic values are
~5 times larger for the Se and 20 times larger for the Te-com-
pound, while for S it is a factor 3.5 and none for O. The relative
relativistic effects on the pseudoscalar are, thus, much larger
than for the components of the coupling constant polarizability

vector AXH
γ or the reduced coupling constants.

One should remember that it is this pseudoscalar K
1ð Þ
XH , which

is important for the discrimination of chiral molecules by NMR.
The trend of an increasing pseudoscalar in this series of mole-
cules, in particular after considering relativistic effects, hints that
the suggested chiral discrimination might be possible in com-
pounds containing Se and Te. This possibility has recently
already been supported by calculations on cyclic systems con-
taining Se and Te reporting pseudoscalars of the related
nuclear magnetic shieldings polarizabilities which were two
orders of magnitude larger than those previously reported.[12]

Figure 7. Basis set dependence of the z-components of the reduced of
spin–spin coupling constant polarizability vector A (108 T2 m J−1 V−1) at the
DTF/B3LYP level with the dyall.acvnz basis sets (n = 2, 3, 4). [Color figure can
be viewed at wileyonlinelibrary.com]

Figure 8. The pseudoscalar, K
1ð Þ
XH (in 108 T2 m J−1 V−1), associated with the

reduce spin–spin coupling polarizability tensor calculated at the DTF/B3LYP
level with the basis set dyall.acv3z. [Color figure can be viewed at
wileyonlinelibrary.com]
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Finally, we consider important some discussion about further
comparison with experimental results, when they will be avail-
able. Vibrational corrections, not considered here, are many
times important for getting good agreement with experimental
values.[45] Previous articles on the kind of coupling constants
encountered in this work[38,46] show that those corrections
could be between 0.1% to 3%. To fulfill the reproduction of the
typical experimental setup one should also include solvent
effects, which nowadays can be treated either by continuum
solvation models[47] or combined quantum and classical
(QM/MM) methods,[48] and which we neither included yet in
our calculations.

Conclusions

We have investigated by four-component relativistic calcula-
tions at the DFT/B3LYP level whether it would become possible
to use NMR spectroscopy and in particular the changes in the
indirect nuclear spin–spin coupling constants to achieve chiral
discrimination for molecules with larger nuclear charge and,
thus, larger relativistic effects. For this purpose, we have investi-
gated the pseudoscalar of the spin–spin coupling constants
polarizability tensor for a series of chiral model compounds:
H2O2, H2S2, H2Se2, and H2Te2.

In a first step, we have optimized the geometries of all four
molecules both at the four-component relativistic and at the
nonrelativistic level with Dyall’s relativistic basis sets. We find
that the extra diffuse functions in the augmented basis sets are
of no importance for the optimization of the geometry with
maybe the exception of the bond angles in the smallest basis
sets. Overall, the dyall.cv3z basis set turned out to lead to
geometry close to convergence for all four molecules both at
the relativistic and nonrelativistic level. Interestingly, the dyall.
vnz basis set was for S found to give results more differing from
the results obtained with the larger basis sets than for the other
atoms, possibly indicating a deficiency in this basis set for the
third row atoms. With respect to relativistic effects on the
geometry, we observe that the X-X bonds become longer, while
the X-H bonds are shortened and the bond and dihedral angles
are reduced.

For the reduced one-bond X-H coupling constant and its
reduced coupling constant polarizability vector and pseudosca-
lar we find that the results are also close to convergence with
the dyall.acv3z basis set.

The reduced coupling constants change systematically in the
series of molecules from being positive for H2O2 and H2S2 to
negative for H2Se2 and H2Te2. Also the relativistic effects
increase along this series and become important for the Se and
in particular for the Te compound, where the relativistic value
for the coupling constant is about 3 times larger than the non-
relativistic value. This clearly shows again that relativistic effects
cannot be ignored in calculations of NMR parameters for com-
pounds with atoms like Se and Te.

For the reduced coupling constant polarizability vector AXH
γ

and for the isotropic pseudoscalar K
1ð Þ
XH we observe that they

significantly increase along the series of these molecules. This
increase becomes even more important on inclusion of

relativistic effects. Their importance for the pseudoscalar K
1ð Þ
XH in

the molecules with Se and Te is remarkable. K
1ð Þ
XH becomes

5 times as large for H2Se2 and 20 times as large for H2Te2 from
a nonrelativistic to the relativistic calculation.

The ability to discriminate enantiomers in NMR spectroscopy
is linked to the value of this pseudoscalar. Supported by the
increasing coupling constant polarizabilities with heavier nuclei,
our calculations suggest that enantiomeric discrimination is
experimentally possible in molecules containing heavy nuclei.
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