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1 Introduction

Since its formulation, quantum field theory (QFT) in de Sitter (dS) spacetime has been

a subject that has received a lot of interest and attention. One clear reason is that in a

dS spacetime, being a maximally symmetric curved space, it is possible to obtain exact

solutions and it is relatively simpler to quantize fields. Physical motivations increased

when realizing its application to the early universe, with the emergence of the inflationary

paradigm, and also because of the discovery of the late time accelerated expansion of the

Universe. This subject is clearly worth studying further.

The exponential expansion of the metric in dS spacetime produces an effective growth

in the couplings of the theory, that turns out to be crucial in the infrared (IR). For instance,

when considering a self-interacting scalar field of mass m in a λφ4 theory, the effective
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coupling becomes λH2/m2, and therefore the usual perturbative calculations break down

for light fields [1]. For massless free fields, minimally coupled scalar fields do not admit a

dS invariant vacuum state [2].

The understanding of IR effects in QFT in dS spacetime is still incomplete. For

massless interacting scalar fields in dS spacetime, this requires the use of nonperturbative

techniques. There has been a lot of progress in understanding the leading IR effects. Indeed,

there is more than one framework in which nonperturbative results have been obtained. For

instance, the so-called dynamical mass of a quantum scalar field φ with classical potential

λφ4/8 has been computed using the well known stochastic approach [3, 4] and also by

formulating the theory on Euclidean dS space (a 4-sphere) [5], yielding

m2
dyn =

√
3λH2Γ

(

1
4

)

8πΓ
(

3
4

) , (1.1)

which is clearly nonperturbative in λ. As was originally emphasized in [6], using the analogy

with finite-size effects in condensed matter, the generation of a dynamical mass represents

an important and characteristic IR effect of the theory. Indeed, by splitting the field into

an IR part, consisting of the near-homogeneous sector of the field, φIR, plus the remaining

ultraviolet (UV) part, φ = φIR + φUV , it can be shown that the dynamical mass is related

to the curvature of the effective potential in the symmetric phase, and to the leading IR

order (leading order in
√
λ) of the correlator of the IR part of the field,

〈φIR(x)φIR(x
′)〉 ≃ 3H3

8π2m2
dyn

. (1.2)

The above nonperturbative result is important to cure the divergence appearing in the free

massless correlator. However, corrections beyond this constant IR contribution are neces-

sary to understand the long distance limit of the correlators. This last claim is of course

irrelevant for the sphere, which is compact, but it is crucial for the theory in dS spacetime.

For a theory with only one scalar field, a nonperturbative method that allows a system-

atic calculations of such corrections is very difficult and, to our knowledge, it is still lacking.

One possibility recently explored involves the use of nonperturbative renormalization group

techniques [7]. There are also nonperturbative calculations based on stochastic methods

from which it is possible to obtain a numerical solution that predicts how the correlator

of the IR sector 〈φIR(x)φIR(x
′)〉 decays when the dS-invariant distance between the two

points, r(x, x′), approaches infinity. To achieve this, the method is based on an unequal

treatment of the IR and UV parts of the field. It is not clear however how robust this

result is against the way in which the field is split and it is unknown how to compute cor-

rections to the leading order result in a systematic way. The relation between the different

approaches (stochastic, Lorentzian, Euclidean), has been the subject of many works [8–12].

The O(N)-symmetric model has been considered before in the large N limit [13–20]. In

particular, in [17, 18] we have presented a systematic nonperturbative resummation scheme

in the case the number of fields N is sufficiently large so that it is possible to assume a

double expansion in 1/N and
√
λ. It is based on the theory on the sphere. It consists on
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a reorganization of the perturbative expansion and on an analytic continuation to the dS.

The main advantages are: it improves the IR behavior of correlation functions in dS; it can

be systematically improved, and the renormalization process is well understood.

In this paper we consider the same O(N)-symmetric model as in [17, 18]. We start

by summarizing (in section 2) the main relevant properties of QFT in dS spacetime, and

its analytical continuation to the sphere. In section 3 we present a simpler derivation of

the reorganized perturbative (in 1/N and λ1/2) expansion, and we provide diagramatic

rules (which we call resummed Feynman rules) to systematically account for corrections.

In section 4 we analyze the long wavelength limit of the correlators in the large-N limit

up to next-to-leading order in 1/N . We show that, when analytically continued to dS

spacetime, an additional nonperturbative resummation is necessary to take into account

all relevant diagrams at long distances. After this resummation, the correlators tend to

zero as r(x, x′) → ∞. The next to leading IR contribution, which determines the decay

law as r(x, x′) → ∞, is evaluated using the resummation of section 3 for all values of N .

We present our conclusions in section 5. The appendices provide additional details of the

calculations and the extension of the resummation scheme to negative-squared-mass fields.

2 QFT in Euclidean de Sitter space

The line element of Euclidean de Sitter space can be obtained from the one of dS spacetime

in the so-called global coordinates,

ds2 = −dt2 +
1

H2
cosh2(Ht)dΩ2, (2.1)

by the analytical continuation to imaginary time t → i(τ − π/2H). The periodicity condi-

tion τ = τ + 2πH−1 must be imposed in order to avoid a multivalued metric. This leads

to the metric of a d-sphere of radius H−1

ds2 = H−2
[

dθ2 + sin(θ)2dΩ2
]

, (2.2)

with θ = Hτ .

We consider a O(N) scalar model with quartic self-interaction living in this metric

with Euclidean action given by

S =

∫

ddx
√
g

[

1

2
φa

(

−�+m2
)

φa +
λ

8N
(φaφa)

2

]

, (2.3)

where φa are the components of an element of the adjoint representation of the O(N)

group, with a = 1, . . . , N . The sum over repeated indices is implied.

Following the properties of the metric in eq. (2.2), the field can be expanded in a

discrete set of modes

φa(x) =
∑

~L

φ~L,aY~L(x). (2.4)
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It can be easily seen that the free propagator in the symmetric phase is then expressed in

the following way

G
(m)
ab (r) == δabH

d
∑

~L

Y~L(x)Y
∗
~L
(x′)

H2L(L+ d− 1) +m2
= δab

(

1

Vdm2
+ Ĝ(m)(r)

)

, (2.5)

where the superscript m stands for the mass,

Vd =
1

|Y~0|2Hd
=

∫

ddx
√
g =

2π
d+1
2

Γ
(

d+1
2

)

Hd
(2.6)

is the surface area of the d-sphere, and r is the dS invariant distance,

r(x, x′) = 2
(

1− cos(θ) cos(θ′)− sin(θ) sin(θ′)~w · ~w′
)

, (2.7)

with ~w and ~w′ unit vectors on the d−1-sphere. In the last equality of eq. (2.5) we explicitly

separated the zero-mode (~L = ~0) part of the propagator, which has an IR divergence for

m → 0, thereby defining Ĝ(m)(r) as the inhomogeneous (i.e. L > 0) part, which is instead

finite in that limit.

2.1 Analytical continuation

After analytic continuation back to dS, the dS invariant distance can be immediately

computed in the standard cosmological patch. Using conformal coordinates,

ds2 =
1

H2η2
[

−dη2 + δijdx
idxj

]

, (2.8)

we obtain

r(x, x′) =
−(η − η′)2 + (~x− ~x′)2

ηη′
. (2.9)

There are no ambiguities with this procedure for invariant functions depending only on

two points x and x′ through r(x, x′).

For massive fields, the dS free propagator decays at large distances as

G(m)(r) ≃ 1

Vdm2
r−

m2

d−1 . (2.10)

Moreover, it was also shown [21–23] that loop corrections to the two-point function of a mas-

sive field also enjoy such decay at large distances. In this way, the standard perturbative ex-

pansion is well defined for massive fields in dS, by analytically continuation from the sphere.

In the case of massless fields the story is different. Firstly, we must work with the

modified propagator Ĝ(0)(r), as defined in eq. (2.5) by substracting the (divergent) zero-

mode contribution to the standard propagator. Then, although not divergent for m → 0,

it still suffers from IR effects once taken to dS in the form of a secular behavior at long

distances. Indeed, using eq. (2.10),

Ĝ(0)(r) ≃ lim
m→0

1

Vdm2

(

r−
m2

d−1 − 1

)

= − log(r)

Vd(d− 1)
. (2.11)

This secular behavior slips into each loop correction, worsening as the number of loops

increases [1]. Then, unlike the massive case, the standard perturbative expansion breaks

down at large distances/late times in dS. This demands a nonperturbative treatment that

not only gives a mass to the zero modes, but also to the inhomogeneous modes.
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3 Reorganizing the perturbative expansion

In the context of the QFT on the sphere, let us first consider the approach introduced in

refs. [5, 6], and later extended in ref. [24], which addresses the divergence for m → 0 in

the full propagator G by means of a reformulation of the theory in terms of Ĝ. The main

point of the approach is to split the field as φa(x) = φ0a + φ̂a(x), and treat the constant

zero modes φ0a nonperturbatively, separately from the inhomogeneous parts φ̂a(x). The

interaction part of the action (2.3) is separated as follows:

Sint =
λVd

8N
|~φ0|4 + S

(2)
int [φ0a, φ̂a], (3.1)

where S
(2)
int contains at least two powers of φ̂a (note that the term linear in φ̂a vanishes

identically by orthogonality). Then, since the zero modes are constant, the path integral

over them turns into an ordinary integral, which can be performed exactly (i.e. nonpertur-

batively in the coupling constant λ). The generating functional becomes

Z[J0, Ĵ ] = N
∫

dNφ0

∫

Dφ̂ e−S−
∫

x(
~J0·~φ0+Ĵaφ̂a)

= exp

(

−S
(2)
int

[

δ

δJ0
,
δ

δĴ

])

Z0[J0]Ẑf [Ĵ ], (3.2)

where J0a and Ĵa are external sources and we introduced the shorthand notation
∫

x =
∫

ddx
√
g. The zero part Z0[J0] is defined as the exact generating functional of the theory

with the zero modes alone,

Z0[J0] =

∫

dNφ0 e
−Vd

[

λ
8N

|~φ0|4+
m2

2
|~φ0|2+ ~J0·~φ0

]

∫

dNφ0 e
−Vd

[

λ
8N

|~φ0|4+
m2

2
|~φ0|2

] . (3.3)

The simplest example of application is to compute the variance of the zero modes. For

a massless field m = 0, the well known finite result is obtained,

〈φ0aφ0b〉0 =
∫

dNφ0 φ0aφ0b e
−

Vdλ

8N
|~φ0|4

∫

dNφ0 e
−

Vdλ

8N
|~φ0|4

= δab

√

2

Vdλ

2√
N

Γ
(

N+2
4

)

Γ
(

N
4

) ≡ δab
Vdm

2
dyn

, (3.4)

which allows the identification of a dynamical mass m2
dyn by analogy with the free massive

field. This result is valid at LO in
√
λ and for all N . Corrections coming from the

inhomogeneous modes can then be computed by treating S
(2)
int in eq. (3.2) perturbatively.

Although now the correlator is finite for m → 0, the perturbation theory built with a

massless Ĝ(0) is still ill defined when analytically continued to dS and at long distances/late

times, due to the divergent behavior described in eq. (2.11). Solving this issue requires

further resummations of contributions that also involve the inhomogeneous modes. A

subclass of such contributions come from the terms in S
(2)
int that are quadratic in both φ̂a

and φ0a, which dress Ĝ with a nonperturbative mass. This treatment was introduced by

us in ref. [17] for the O(N)-model (while in ref. [25] it was considered for the special case

N = 1). Here we will present a simpler formulation, which has the added benefit of being

more easily generalizable to other cases, such as for negative squared-mass.

– 5 –
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3.1 Resummation of bi-quadratic terms

In the spirit of the separation of the interaction part of the action done in eq. (3.1), we

further isolate the bi-quadratic terms,

S
(2)
int =

λ

8N

∫

ddx
√
g
[

2|~φ0|2|φ̂|2 + 4(~φ0 · ~̂φ)2
]

+ S
(3)
int , (3.5)

where now S
(3)
int contains terms with at least three powers of φ̂a. The main idea is then

to include the bi-quadratic terms in the definition of the propagator Ĝ. The generating

functional becomes

Z[ ~J0, Ĵ ] = N exp

(

−S
(3)
int

[

δ

δJ0
,
δ

δĴ

])
∫

dNφ0 e
−Vd

[

m2

2
|~φ0|2+

λ
8N

|~φ0|4+ ~J0·~φ0

]

×
∫

Dφ̂ exp

(

−1

2

∫∫

x,y
φ̂aĜ

−1
ab (

~φ0)φ̂b +

∫

x
Ĵaφ̂a

)

, (3.6)

where the ~φ0-dependent inverse propagator of the φ̂a fields is given by

Ĝ−1
ab (

~φ0) = −δab�+m2
ab(

~φ0) , (3.7)

with the following mass matrix

m2
ab(

~φ0) = m2δab +
λ

2N
(δabδcd + δacδbd + δadδbc)φ0cφ0d

= m2
1 Pab +m2

2 ǫaǫb, (3.8)

where in the second line we have split the matrix into the parallel and transverse compo-

nents with respect to the ǫa ≡ φ0a/|~φ0| direction, by means of the projector Pab = δab−ǫaǫb,

and we defined

m2
1 = m2 +

λ

2N
|~φ0|2, (3.9)

m2
2 = m2 +

3λ

2N
|~φ0|2. (3.10)

This tells us there are (N − 1) inhomogeneous fields with mass m2
1 and a single one with

mass m2
2. Diagonalizing the mass matrix m2

ab, we can factorize the free φ̂a part of the path

integral (last factor of eq. (3.6))
∫

Dφ̂
(1)
i e−

1
2

∫∫

x,y φ̂
(1)
i (Ĝ1)−1φ̂

(1)
i +

∫

x Ĵ
(1)
i φ̂

(1)
i ×

∫

Dφ̂(2) e−
1
2

∫∫

x,y φ̂(2)(Ĝ2)−1φ̂(2)+
∫

x Ĵ(2)φ̂(2)

∼
√

det Ĝ1

N−1

Ẑf

[

Ĵ
(1)
i ,m2

1

]

√

det Ĝ2 Ẑf

[

Ĵ (2),m2
2

]

, (3.11)

where φ̂
(1)
i ≡ Pibφ̂b and φ̂(2) ≡ ǫaφ̂a are the transverse and parallel components with respect

to the ~φ0-direction respectively, and now the indexes i, j run from 1 to N − 1. We also use

the shorthand Ĝα ≡ Ĝ(mα), with α = 1, 2. Putting this back into eq. (3.6) we obtain

Z[ ~J0, Ĵ
(1)
i , Ĵ (2)] = exp

(

−S
(3)
int

[

δ

δJ0
,
δ

δĴ

])

Z[ ~J0, Ĵ
(1)
i , Ĵ (2)], (3.12)
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where we are introducing a new “free” generating functional,

Z[ ~J0, Ĵ
(1)
i , Ĵ (2)] = N

〈

√

det Ĝ1

N−1√

det Ĝ2 Ẑ1[Ĵ
(1)
i ] Ẑ2[Ĵ

(2)]

〉 ~J0

0

,

≡
〈

Ẑ1[Ĵ
(1)
i ] Ẑ2[Ĵ

(2)]
〉 ~J0

0̄
(3.13)

where Ẑα ≡ Ẑf

[

Ĵ (α),m2
α

]

is the free generating functional of a single inhomogeneous field

of mass mα, normalized to Ẑα[0] = 1, and we have defined the notation

〈. . . 〉 ~J0
0̄

≡

〈

√

det Ĝ1

N−1√

det Ĝ2 . . .

〉 ~J0

0
〈

√

det Ĝ1

N−1√

det Ĝ2

〉

0

, (3.14)

choosing the normalization N such that Z[0] = 1. The superindex ~J0 indicates that the

0̄-expectation value is taken over the zero modes in the presence of an external source ~J0.

Notice that the functional derivatives with respect to the full Ĵa can be split in terms

of derivatives with respect to Ĵ
(1)
i and Ĵ (2),

δ2

δĴa(x)δĴb(x′)
=

Pab

(N − 1)
δij

δ2

δĴ
(1)
i (x)δĴ

(1)
j (x′)

+ ǫaǫb
δ2

δĴ (2)(x)δĴ (2)(x′)
, (3.15)

where we are taking advantage of the already manifest O(N − 1)-symmetry of the fields

of mass m1, in the plane orthogonal to ~φ0. Afterwards, when applying these derivatives

either to Ẑ1 or Ẑ2, we will drop the superindices (1) and (2) as there will be no ambiguity

on which Ĵ is which.

Later on, when setting ~J0 = 0, the expectation value taken over the zero modes has

the effect of averaging over the direction of ~φ0, giving rise to manifestly O(N)-symmetric

expressions for the correlators.

3.2 Resummed Feynman rules

After having performed the above resummation of the bi-quadratic interactions, we now

have a new “free” generating functional eq. (3.13) where the propagators Ĝα are massive,

with masses that depend on | ~φ0|. If the remaining interaction terms in S
(3)
int are treated

perturbatively, the new type of perturbative corrections can be computed using new Feyn-

man rules, which we call Resummed Feynman rules, or R-Feynman rules for short. The

R-Feynman diagrams are built with the dressed propagators Ĝ1 and Ĝ2 as internal lines.

The last step is to evaluate the weighted average over the zero modes. The derivation of

the new rules is straightforward, but with an important new ingredient that we will discuss

below. First, let us write the interactions explicitly (according to the decomposition in the

– 7 –
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x, i x′, j

Ĝ1(x, x
′)δij

x x′

Ĝ2(x, x
′)

Figure 1. Massive inhomogeneous propagators Ĝ1 and Ĝ2 are used in the internal lines.

i j

k l

− λ
8N

Aijkl

3

i j

− λ
4N δij − λ

8N

i j

−λ|~φ0|
2N δij −λ|~φ0|

2N

Figure 2. Vertices. The factor Aijkl/3 = (δijδkl + δikδjl + δilδjk) /3 in the first vertex accounts

for the possible permutations of the indices.

fields φ̂1 and φ̂2),

S
(3)
int =

∫

ddx
√
g

[

λ

2N
(~φ0 · ~̂φ)|~̂φ|2 +

λ

8N
|~̂φ|4

]

=

∫

ddx
√
g

[

λ|~φ0|
2N

φ̂2

(

|~̂φ1|2 + φ̂2
2

)

+
λ

8N

(

|~̂φ1|4 + 2|~̂φ1|2φ̂2
2 + φ̂4

2

)

]

. (3.16)

In what concerns the Feynman rules, the | ~φ0| factor in front of the first two terms shall

not be regarded as a “leg” of those vertices, but rather just as a coefficient.1 The rules are

summarized in figures 1 and 2.

There is an important difference with traditional Feynman rules to consider here. As

a consequence of the definition of the new “free” generating functional in eq. (3.13) as

a weighted average over the zero modes, there is no direct cancellation of disconnected

graphs when computing perturbative corrections. Indeed, consider a correction ∆Ẑ to the

generating functional of the inhomogeneous modes, which at LO is just Ẑ1Ẑ2, prior to the

1In the terminology of the standard perturbative expansion, the integration over the zero modes in

〈. . . 〉0̄ takes care of summing over all possible ways of connecting the legs associated to φ0a, both the ones

that here appear explicitly in the vertices in figure 2 as well as those that are implicit in the masses of the

resummed propagators m2
1( ~φ0) and m2

2( ~φ0).
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zero mode average. The corrected complete2 generating functional Z ′ now reads

Z ′[ ~J0, Ĵ
(1)
i , Ĵ (2)] =

〈

Ẑ1[Ĵ
(1)
i ] Ẑ2[Ĵ

(2)] + ∆Ẑ[Ĵ
(1)
i , Ĵ (2)]

〉 ~J0

0̄
, (3.17)

which corrects eq. (3.13). Now consider a corrected n-point function of inhomogeneous

fields computed from the previous expression,

1

Z ′

δnZ ′

δĴa1(x1) . . . δĴan(xn)

∣

∣

∣

∣

∣

J=0

=

〈

δn(Ẑ1Ẑ2)

δĴa1(x1) . . . δĴan(xn)

∣

∣

∣

∣

∣

Ĵ=0

〉

0̄

+

〈

δn∆Ẑ

δĴa1(x1) . . . δĴan(xn)

∣

∣

∣

∣

∣

Ĵ=0

〉

0̄

−
〈

∆Ẑ
〉

0̄

〈

δn(Ẑ1Ẑ2)

δĴa1(x1) . . . δĴan(xn)

∣

∣

∣

∣

∣

J=0

〉

0̄

, (3.18)

where we used the normalization Ẑα[0] = 1, with α = 1, 2, and we also treated the correc-

tion ∆Ẑ perturbatively. The first term in the right-hand side is the leading contribution

obtained from eq. (3.13), while the second and third terms are the corrections. In the usual

case, the second term contains both connected and disconnected contributions, the latter

of which are cancelled by the third term. However, in the current situation this does not

occur due to the weighting over the zero modes. Indeed,

〈

∆Ẑ
δn(Ẑ1Ẑ2)

δĴa1(x1) . . . δĴan(xn)

∣

∣

∣

∣

∣

J=0

〉

0̄

6=
〈

∆Ẑ
〉

0̄

〈

δn(Ẑ1Ẑ2)

δĴa1(x1) . . . δĴan(xn)

∣

∣

∣

∣

∣

J=0

〉

0̄

. (3.19)

By adding and subtracting the left-hand side of the above equation to eq. (3.18), we can

identify two contributions to the correction of the n-point function as follows: a connected

part

∆〈φ̂a1(x1) . . . φ̂an(xn)〉C =

〈

δn∆Ẑ

δĴa1(x1) . . . δĴan(xn)

∣

∣

∣

∣

∣

Ĵ=0

−∆Ẑ
δn(Ẑ1Ẑ2)

δĴa1(x1) . . . δĴan(xn)

∣

∣

∣

∣

∣

J=0

〉

0̄

,

(3.20)

which is built in the standard way with the connected R-Feynman diagrams using the

above rules; and a 0-connected part

∆〈φ̂a1(x1) . . . φ̂an(xn)〉0C =

〈

∆Ẑ
δn(Ẑ1Ẑ2)

δĴa1(x1) . . . δĴan(xn)

∣

∣

∣

∣

∣

J=0

〉

0̄

−
〈

∆Ẑ
〉

0̄

〈

δn(Ẑ1Ẑ2)

δĴa1(x1) . . . δĴan(xn)

∣

∣

∣

∣

∣

J=0

〉

0̄

, (3.21)

which accounts for graphs that are disconnected according to the R-Feynman rules (that

is, graphs that are not connected by lines associated to the propagators Ĝα), but when

written in terms of the original perturbation theory they are actually connected by the

2It is complete in the sense that both zero and inhomogeneous modes are taken into account.
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lines that would correspond to the zero-modes. This means that in general, one has to

include both contributions (3.20) and (3.21) when computing corrections to the correlators

using this formalism. However, as we show in appendix A, the 0-connected parts (3.21)

are suppressed by extra powers of λ with respect to the connected parts (3.20). This will

become clearer next, after considering an example in which we compute the 0-connected

parts and verify they are of higher order in λ. For this reason, we will not need to compute

the 0-connected parts for the computations we will consider here.

3.3 Resummed two-point functions

Let us apply the formalism just described to compute the two-point functions. We have to

consider two distinct contributions,

〈φa(x)φb(x
′)〉 = 〈φ0aφ0b〉+ 〈φ̂a(x)φ̂b(x

′)〉. (3.22)

First ignoring corrections from S
(3)
int , we only need to take derivatives of Z[ ~J0, Ĵ

(1)
i , Ĵ (2)] in

eq. (3.13). For the constant part, i.e. the first term of eq. (3.22), we take two derivatives

with respect to ~J0a and then set all external sources to zero. Exploiting also the O(N)-

symmetry, it can be expressed as

〈φ0aφ0b〉 =
δab
N

〈|~φ0|2〉0̄. (3.23)

For the inhomogeneous part 〈φ̂a(x)φ̂b(x
′)〉, we use eq. (3.15) applied to eq. (3.13), obtaining

〈φ̂a(x)φ̂b(x
′)〉 = 1

Z[0]

δ2Z
δĴa(x)δĴb(x′)

∣

∣

∣

∣

∣

J=0

=

〈

Ĝ1(r)Pab + Ĝ2(r)ǫaǫb

〉

0̄

, (3.24)

where now it is straightforward to perform the integration over the directions of ~φ0. Indeed,

using

∫

dΩN Pab f(|~φ0|) = ΩN δab

(

1− 1

N

)

f(|~φ0|), (3.25a)

∫

dΩN ǫaǫb f(|~φ0|) = ΩN
δab
N

f(|~φ0|), (3.25b)

we arrive at

〈φ̂a(x)φ̂b(x
′)〉 = δab

N

〈

(N − 1)Ĝ1(r) + Ĝ2(r)

〉

0̄

, (3.26)

which is now explicitly O(N)-symmetric. The remaining step is to compute the zero-mode

expectation value. Prior to elaborating on how to do this, let us briefly discuss some

perturbative corrections to these expressions.

3.3.1 Corrections

As a usage example of the R-Feynman rules, we compute the corrections coming from some

of the interactions in S
(3)
int . The simplest ones are local diagrams with at most one of the

quartic vertices in eq. (3.16).

– 10 –



J
H
E
P
1
0
(
2
0
1
8
)
0
1
6

Figure 3. Bubble diagrams contributing to ∆Ẑ at lowest order.

x, i x′, j x, i x′, j

x x′ x x′

Figure 4. Connected diagrams correcting the two point function of the daisy type. The first two

are proportional to δij (and using eq. (3.15) contribute proportional to Pab), while the last two

enter proportionally to ǫaǫb.

We start by noticing that according to the R-Feynman rules we cannot build connected

diagrams that correct 〈φ0aφ0b〉,
∆〈φ0aφ0b〉C ≡ 0. (3.27)

There are, however, corrections in the form of 0-connected diagrams from the fact that

there are bubble diagrams (i.e. corrections to Ẑ1Ẑ2) that do not cancel in general. Indeed,

∆〈φ0aφ0b〉0C = 〈∆Ẑ φ0aφ0b〉0̄ − 〈∆Ẑ〉0̄〈φ0aφ0b〉0̄, (3.28)

where ∆Ẑ is given by the bubble diagrams shown in figure 3,

∆Ẑ = −λ

8

(

(N + 2)[Ĝ1]
2 + 2[Ĝ1][Ĝ2] +

3

N
[Ĝ2]

2

)

. (3.29)

Let us now consider corrections to the inhomogeneous part of the two-point function,

eq. (3.24). The needed connected R-Feynman diagrams are shown in figure 4. Notice

that from eq. (3.15), the diagrams with two external lines associated to φ̂1 contribute

proportional to Pab, while those where the external lines correspond to φ̂2 go with a factor

of ǫaǫb. Therefore, using the R-Feynman rules the connected part reads

∆〈φ̂a(x)φ̂b(x
′)〉C =

〈

Pab

(

λ

2N
(N + 1)[Ĝ1]

∂Ĝ1(r)

∂m2
+

λ

2N
[Ĝ2]

∂Ĝ1(r)

∂m2

)

(3.30)

+ǫaǫb

(

λ

2N
(N − 1)[Ĝ1]

∂Ĝ2(r)

∂m2
+

λ

2N
3[Ĝ2]

∂Ĝ2(r)

∂m2

)〉

0̄

,

where we are using the property

∂Ĝ(x, x′)

∂m2
= −

∫

z
Ĝ(x, z)Ĝ(z, x′). (3.31)
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Further simplification using properties (3.25) and dropping terms of order O(1/N2) leads to

∆〈φ̂a(x)φ̂b(x
′)〉C ≃ δab

λ

2

〈

[Ĝ1]
∂Ĝ1(r)

∂m2
+

1

N

(

[Ĝ2]
∂Ĝ1(r)

∂m2
+ [Ĝ1]

∂Ĝ2(r)

∂m2

)〉

0̄

. (3.32)

Finally, for the 0-connected part, according to the definition (3.21) for n = 2, we have

∆〈φ̂a(x)φ̂b(x
′)〉0C =

〈

∆Ẑ
δ2(Ẑ1Ẑ2)

δĴa(x)δĴb(x′)

∣

∣

∣

∣

∣

J=0

〉

0̄

−
〈

∆Ẑ
〉

0̄

〈

δ2(Ẑ1Ẑ2)

δĴa(x)δĴb(x′)

∣

∣

∣

∣

∣

J=0

〉

0̄

, (3.33)

where
δ2(Ẑ1Ẑ2)

δĴa(x)δĴb(x′)

∣

∣

∣

∣

∣

J=0

= Ĝ1(r)Pab + Ĝ2(r)ǫaǫb. (3.34)

In order to evaluate the corrected two-point functions, we need to compute explicitly

the integrals over the zero-modes that define the expectation values on the right hand sides

of eqs. (3.23), (3.26), (3.28), (3.32), and (3.33). This can be systematically performed order

by order assuming a double expansion in λ and 1/N , as we show next.

3.4 Computation of zero-mode expectation values in a double λ and 1/N-

expansion

In order to perform a systematic evaluation of the expectation values over the zero modes

〈. . . 〉0̄, order by order in 1/N , we can use the saddle-point approximation (Laplace method).

Indeed, by a simple change of variables u = λ|~φ0|2/2N , the entire N dependence can be

collected in an overall factor in the exponential, so that for a generic function of u, g(u),

the zero-mode expectation values can be written as

〈g(u)〉0̄ =
∫∞
0 duD(u) g(u) eNh(u)

∫∞
0 duD(u) eNh(u)

, (3.35)

where we have introduced the following functions

h(u) =
1

2
log(u) +

1

2
log(det Ĝ1)−

m2Vd

λ
u− Vd

2λ
u2, (3.36)

D(u) =
1

u

√

det Ĝ2

det Ĝ1

. (3.37)

We explicitly emphasize the dependence of the propagators Ĝ1 and Ĝ2 with u through

their masses m2
1 = m2 + u and m2

2 = m2 + 3u.

Assuming an expansion for large values of N , as described in the appendix A, we can

approximate

〈 g(u) 〉0̄ ≃ g(ū) +
1

N

[

B
(1)
1 g′ +B

(1)
2 g′′

]

ū
+O

(

1

N2

)

, (3.38)

where a prime means a derivative with respect to u. The coefficients B
(1)
i (u), as well as the

higher order ones, are built from the functions h(u) and D(u) and their derivatives, while
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ū is the solution of h′(ū) = 0, provided that h′′(ū) < 0. For our function h(u) defined in

eq. (3.36), ū is the solution of

[

1 +
λ

2

∂[Ĝ(m)]

∂m2

]

ū2 +

[

m2 +
λ

2
[Ĝ(m)]

]

ū− λ

2Vd
= 0, (3.39)

where we have approximated [Ĝ1] for small ū at linear order, assuming that ū ≪ H2.

The coincidence limit of the UV propagator is divergent and shall be renormalized in the

standard way, however we defer this discussion to the appendix B. After the renormaliza-

tion procedure, the expressions of these quantities turn out to be the same, but with the

coincidence limit of the propagators and their derivatives replaced by the corresponding

finite counterpart, and the constants m and λ by the renormalized quantities. From now

on, we assume the replacements have been done, but for the sake of simplicity, we use the

same notation for the finite quantities. The relevant (positive) solution is then

ū =
−
(

m2 + λ
2 [Ĝ

(m)]
)

+

√

(

m2 + λ
2 [Ĝ

(m)]
)2

+ 2λ
Vd

(

1 + λ
2
∂[Ĝ(m)]
∂m2

)

2
(

1 + λ
2
∂[Ĝ(m)]
∂m2

) . (3.40)

Another property, shown in appendix A, that will be useful for the computation of

0-connected parts is

〈 g(u)k(u) 〉0̄ − 〈 g(u) 〉0̄〈 k(u) 〉0̄ ≃
C

(1)
2

N
g′k′ (3.41)

+
1

N2

[

C
(2)
2 g′k′ + C

(2)
3

(

g′k′′ + g′′k′
)

+ C
(2)
4

(

g′k′′′ + g′′k′′ + g′′′k′
)

]

+O
(

1

N3

)

,

where g(u) and k(u) are arbitrary (although sufficiently smooth) functions of u , and all

quantities on the right-hand side are evaluated at ū. The coefficients C
(1)
2 (u) and C

(2)
i (u)

depend of h(u), D(u) and their derivatives and are given in the appendix A. Notice that

in this case it is important to keep the N−2 terms due to the typical extra overall factor

of N in the bubble diagrams (see for example eq. (3.29)).

3.4.1 Massless case

We now focus on the case of a massless, minimally coupled field we are interested in. It

can be readily seen that setting m = 0 it leads to an expansion in powers of
√
λ. Indeed,

expanding eq. (3.40) up to order λ we have

ū(m = 0) =

√

λ

2Vd
− λ

4
[Ĝ(0)] +O(λ3/2). (3.42)
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Then, evaluating the coefficients of the expansions eqs. (3.38) and (3.41) at this ū, allows

them to be expanded in a similar fashion

B
(1)
1 ≃ −1

2

√

λ

2Vd
− 3λ[Ĝ(0)]

8
+O(λ3/2), (3.43a)

B
(1)
2 ≃ λ

4Vd
+O(λ3/2), (3.43b)

C
(1)
2 ≃ λ

2Vd
+O(λ3/2), (3.43c)

C
(2)
2 ≃ − λ

4Vd
+O(λ3/2), (3.43d)

C
(2)
3 ≃ −λ2[Ĝ(0)]

8Vd
+O(λ5/2), (3.43e)

C
(2)
4 ≃ λ2

8V 2
d

+O(λ5/2). (3.43f)

With all these ingredients we can now compute the two-point functions up to next-to-

next-to LO (NNLO) in
√
λ and next-to LO (NLO) in 1/N . At such order, it is enough to

evaluate the sum of the contributions in eqs. (3.23) and (3.26), and the connected correction

to the inhomogeneous part eq. (3.32) (recall there is no such correction for the constant

part). For completion, in what follows, we also show separately the 0-connected corrections,

both the constant eq. (3.28) and the inhomogeneous eq. (3.33) corrections, and we verify

that they are of higher order in
√
λ with respect to the parts we keep.

The results are the following. For the constant part

〈φ0aφ0b〉 = δab

[

√

2

λVd
− [Ĝ(0)]

2
− 1

2N

(

√

2

λVd
+

3[Ĝ(0)]

2

)]

ū

; (3.44)

while for the inhomogeneous part

〈φ̂a(x)φ̂b(x
′)〉+∆〈φ̂a(x)φ̂b(x

′)〉C = δab

{

Ĝ1(r) +
λ

2
[Ĝ1]

∂Ĝ1(r)

∂m2
+

1

N

[

Ĝ2(r)− Ĝ1(r)

+

(

−1

2

√

λ

2Vd
− 3λ[Ĝ(0)]

8
+

λ[Ĝ2]

2

)

∂Ĝ1(r)

∂m2
+

λ

4Vd

∂2Ĝ1(r)

∂(m2)2

+
λ

2
[Ĝ1]

∂Ĝ2(r)

∂m2

]}

ū

. (3.45)

where we have dropped terms of order λ3/2. At this point we have arrived to a result that

is the equivalent of the main result of our previous work [17],3 once the new expression is

properly expressed in terms of propagators with masses
√

λ/2Vd and 3
√

λ/2Vd by expand-

ing ū as in eq. (3.42).4 Also, the coincidence propagators need to be expressed in terms of

the massless one, λ[Ĝ1], λ[Ĝ2] ≃ λ[Ĝ(0)] +O(λ3/2).

3See eq. (5.26) of this reference.
4Notice that in ref. [17] a further approximation was assumed to be valid, namely λ ∂Ĝ(

√
3mdyn)(r)/∂m2 ≃

λ ∂Ĝ(mdyn)(r)/∂m2 +O(λ3/2), where m2
dyn =

√

λ/(2Vd). This is correct on the sphere, but it actually fails

in dS at sufficiently long distances.
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For the 0-connected parts we take eqs. (3.28) and (3.33), and use (3.29) and eqs. (3.34)

together with properties (3.25) and the expansion (3.41) with (3.43). Finally dropping

higher order terms in 1/N we obtain, for the constant part

∆〈φ0aφ0b〉0C = −λδab
4Vd

[

[Ĝ1]
∂[Ĝ1]

∂m2
+

1

N

(

3

2
[Ĝ1]

∂[Ĝ1]

∂m2
+ [Ĝ1]

∂[Ĝ2]

∂m2
+ [Ĝ2]

∂[Ĝ1]

∂m2

)]

ū

≃ −λδab
4Vd

(

1 +
7

2N

)

[Ĝ(0)]
∂[Ĝ(m)]

∂m2

∣

∣

∣

∣

∣

0

, (3.46)

while for the inhomogeneous part

∆〈φ̂a(x)φ̂b(x
′)〉0C ≃ −λ2δab

8Vd

{

(

1 +
1

2N

)

[Ĝ1]
∂[Ĝ1]

∂m2

∂Ĝ1(r)

∂m2

+
1

N

(

∂[Ĝ1]

∂m2
[Ĝ2] + [Ĝ1]

∂[Ĝ2]

∂m2

)

∂Ĝ1(r)

∂m2
+

1

N
[Ĝ1]

∂[Ĝ1]

∂m2

∂Ĝ2(r)

∂m2

+
λ

4VdN
[Ĝ1]

∂[Ĝ1]

∂m2

(

∂3Ĝ1(r)

∂(m2)3
− Vd[Ĝ

(0)]
∂2Ĝ1(r)

∂(m2)2

)

+
λ

4VdN

(

∂[Ĝ1]

∂m2

2

+ [Ĝ1]
∂2[Ĝ1]

∂(m2)2

)[

∂2Ĝ1(r)

∂(m2)2
− Vd[Ĝ

(0)]
∂Ĝ1(r)

∂m2

]

+
λ

4VdN

(

3
∂[Ĝ1]

∂m2

∂2[Ĝ1]

∂(m2)2
+ [Ĝ1]

∂3[Ĝ1]

∂(m2)3

)

∂Ĝ1(r)

∂m2

}

ū

, (3.47)

In both cases, with these explicit expressions we can now confirm that the 0-connected

contributions are suppressed by extra factors of λ with respect to eqs. (3.44) and (3.45).

It is interesting to analyze the large distance behavior of resummed two-point func-

tions obtained after our procedure. First, notice that in the final expression for the inho-

mogeneous part, eq. (3.45), the free inhomogeneous propagators Ĝ1(r) and Ĝ2(r) are now

evaluated for positive masses M2
1 ≡ m2

1(ū) and M2
2 ≡ m2

2(ū),

M2
1 =

√

λ

2Vd
− λ

4
[Ĝ(0)] +O(λ3/2), (3.48a)

M2
2 = 3M2

1 . (3.48b)

Therefore, upon analytic continuation to dS, both approach a constant exponentially at

large distances, as discussed in subsection 2.1 for massive fields (eq. (2.10) minus a constant

part), rather than the logarithmic divergence of massless fields (as in eq. (2.11)), that

plagued the perturbative expansion prior to our resummation.

However, notice that the result eq. (3.45) also contains derivatives of Ĝ1(r) and Ĝ2(r)

with respect to their masses, and moreover, the number of derivatives increases with the

orders in the double
√
λ and 1/N -expansion. This is due to the treatment given to the

zero-mode weighted integrals (see eq. (3.38)). The behavior of these derivatives in dS and
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at large distances is easily obtained from eq. (2.10) and found to be

∂pĜ(m)(r)

∂(m2)p
≃ 1

Vdm2

(

− log(r)

d− 1

)p

r−
m2

d−1 + . . . , (3.49)

meaning that, although there is an overall exponential decay, for large enough distances

higher order terms become as relevant as the lower order ones, thus breaking the expansion.

The origin of this problem is in the assumption used when computing (3.45) in the

double expansion in
√
λ and 1/N , which requires

√
λ log(r) ≪ N . A proper analysis of the

long distance behavior must then consider the opposite hierarchy
√
λ log(r) ≫ N , and will

be discussed in the next section. Nevertheless, this does not invalidate the result (3.45), as

long as one is only interested in points not too far apart (or in the Euclidean correlators).

Let us close this section by pointing out a related aspect to be considered when using

the results on the sphere to study the large distance (IR) behavior by analytical continua-

tion to dS, which is the use of power counting rules to select the relevant diagrams. Notice

that the power counting in the coupling constant λ we use here5 assumes there is no addi-

tional nonperturbative IR enhancement. This is certainly the case for the sphere, but is not

when the correlators are analytically continued to dS. Indeed, due to the non compactness

of the dS spacetime, it turns out that the counting used here applies only up to a certain

maximum distance, but not beyond. This demands going beyond perturbative R-Feynman

diagrams to understand the far IR limit by collecting all contributions at a given order in

λ that are relevant in this limit. In order to make this feasible, an organizing principle

such as powers of 1/N is necessary. We will discuss more on this in the following section.

4 Long wavelength behavior of the two-point functions for massless fields

4.1 Leading IR contribution: a consistent calculation beyond N → +∞

Let us first discuss the limiting value of the two-point functions, once analytically continued

back to dS, for large distances/late times, r → +∞. Contributions to this limit may come

either from the zero-mode part, or from the limiting value of the inhomogeneous part.

Indeed, according to eqs. (2.5) and (2.10), in this limit the massive UV propagators Ĝα go to

Ĝα(r) → − 1

Vdm2
α

, (α = 1, 2), (4.1)

with m2
2 = 3m2

1 = 3u. However, once all the constant contributions are put together, one

expects the full two-point function to approach a vanishing value.

After the resummation of the bi-quadratic terms, the full two-point function without

any corrections from S
(3)
int is

〈φa(x)φb(x
′)〉 = δab

N

〈

|~φ0|2 + (N − 1)Ĝ1(r) + Ĝ2(r)

〉

0̄

. (4.2)

5Following previous works on the sphere [5, 24], |~φ0| ∼ λ−1/4 and Ĝ(0) ∼ λ0.

– 16 –



J
H
E
P
1
0
(
2
0
1
8
)
0
1
6

Combining the constant contributions, we have

〈φa(x)φb(x
′)〉LO → δab

N

〈

2N

λ
u−

(

N − 1 +
1

3

)

1

Vdu

〉

0̄

≃ −
√

2

Vdλ

4

3N
+O(N−2, λ0), (4.3)

where we used Laplace’s method at NLO in 1/N to compute the integrals.6

First observe that this result vanishes at LO in the large N limit, N → +∞. This

is because the family of diagrams that contribute at large-N is that of the daisy and

superdaisy type, which add a local part to the self-energy, and whose leading contribution

in
√
λ is already completely taken into account by the exact treatment of the zero modes.

Starting at NLO in 1/N we encounter a nonvanishing value. The reason is that at

NLO in 1/N there are diagrams that contribute at LO in
√
λ that are not of the type

included in the resummation above. Indeed, the relevant diagrams that must be added to

the self-energy are non local and have the form of a bubble-chain. These are only partially

accounted for in our treatment so far, even at the LO in
√
λ. This stems from the fact

that, although on the sphere there is a hierarchy between interactions with ~φ0 and
~̂
φ in

terms of powers of
√
λ, upon analytical continuation to dS, when r → ∞ the correlators

of inhomogeneous modes receive an enhancement that makes them as relevant as the zero

mode correlators,

〈| ~φ0|2〉0̄ ∼
1√
λ
, 〈φ̂a(x)φ̂b(x

′)〉0̄ →∼ δab√
λ
. (4.4)

Therefore, a consistent calculation of the two-point function at large distances at in dS,

at LO in
√
λ and NLO in 1/N , requires the addition of diagrams correcting eq. (3.24).

To show this explicitly, let us now evaluate the limiting value of the diagrams when the

distance between the two points goes to infinity. Doing this, we will get a non-vanishing

result that should be added to eq. (4.3).

In order to identify the relevant diagrams that potentially contribute to the limiting

value at LO in
√
λ we use the scaling in eq. (4.4) as a new way of counting the correspond-

ing order in
√
λ. An strategy to perform the calculation of the diagrams consists in the

following two steps: I) use the R-Feynman rules described in section 3.3 to compute the

corrections to the propagators Ĝ1 and Ĝ2 (with |~φ0|-dependent masses) and replace the

corrected propagators into eq. (3.24); II) evaluate the two point functions using (3.25), as

for eq. (3.26), and taking the expectation value over |~φ0| assuming the double expansion in√
λ and 1/N . Recall that the 0-connected diagrams are suppressed by extra factors of

√
λ.

From eq. (3.26) it is immediate to conclude that for Ĝ1 it is necessary to compute the

NLO correction in 1/N , while for Ĝ2 the LO is enough. We illustrate the calculation with

the diagram in figure 5a, that corrects the propagator Ĝ2. To begin with, it is easy to see

that the diagram does not vanish at N → ∞.

Our method to obtain the contribution of a given diagram in the large-distance limit is

based on general theorems proved in refs. [21, 22]. The theorems imply that a calculation

of a two-point Feynman diagram using full massive propagators Gα (i.e. the standard ones)

6Although in this case the integrals can be computed exactly for any N .
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(a) (a′)

Figure 5. Diagrams contributing to the corrections of Ĝ2.

= + +

= + +

Figure 6. Diagrams defining the solid black bubble as a sum of infinite diagrams involving partially-

dressed bubbles which are drawn as gray bubbles. The gray bubble is in turn defined as a chain of

bubbles as shown in the second line of the figure.

instead of Ĝα (both inside the loops and in the external legs) would give a vanishing result

at large distances. The R-Feynman rules involve the modified propagators

Ĝα = Gα −G(0)
α , (α = 1, 2), (4.5)

that differ from the standard massive propagators by the constant contributions of the

Euclidean zero modes. Therefore we can make the substitution above into the R-Feynman

diagrams and keep, in the large distance limit, only the contributions that are not connected

by Gα. This is so because after making the substitution (4.5), any two-point diagram

connected by full massive propagators Gα, up to constant factors (possibly involving factors

of G
(0)
α ), can be thought as a particular two-point Feynman diagram which are known to

vanish at large distances [21, 22].

There is an infinite number of diagrams that contribute to this order, that can be

obtained by dressing the bubble in figure 5a. The dressed diagram in figure 5a′ contains

the chains of bubbles given in figure 6. Fortunately, this set of diagrams can be computed

and resummed, following the same method applied for the one with a single bubble, that

is, writing the propagator Ĝα in terms of the usual massive propagator and the zero-

mode contribution. The details are presented in appendix D, as well as the analysis of

the corrections to the propagator Ĝ1. It is shown there that all diagrams given in figure 7

should be included at O
(√

λ, 1/N
)

, and that when the constant part of those diagrams are

included, the full two-point function indeed decays to zero in the IR also at NLO in 1/N .

At higher orders, there are even more additional diagrams contributing to the constant

limiting value. This can be seen from the fact that the exact treatment of the zero modes

contains contributions at all orders in 1/N , which however are not compensated by the

limiting value of the diagrams included so far for the inhomogeneous part, even at the LO

in
√
λ. Indeed, while the diagrams in figure 6 are enough at NLO in 1/N , using eq. (4.4)

one can see that a diagram of the type shown in figure 8, which is NNLO in 1/N , should

also be taken into account at LO in
√
λ.
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Figure 7. Diagrams contributing to the large distance limit of the two-point functions at LO in√
λ and at NLO in 1/N . The solid black bubbles are the dressed bubbles defined in figure 6.

Figure 8. Example of a class of R-Feynman diagrams contributing to the two-point functions (cor-

recting Ĝ1 in this case) at NNLO or higher orders in 1/N , but at LO in
√
λ at large distances in dS.

Despite the added complexity to perform a consistent calculation at large distances

beyond N → +∞, the situation now is nevertheless much better than before resumming

the bi-quadratic terms, where the correlators of the inhomogeneous modes were massless

and outright divergent in the IR (see eq. (2.11)).

4.2 Asymptotic IR behaviour of the two-point functions

The next step is to study the decay of the full two-point function at large distances. To

do this properly at a given order in 1/N , again it would be necessary to include the most

relevant r-dependent parts of all the diagrams that contribute at that order. We intend to

pursue this in a systematic way in future work. Our aim here is to just analyze what kind

of decay is expected after resumming the bi-quadratic terms and the exact treatment of

the zero modes.

Here, being interested in the asymptotic behavior at large distances and/or late times,

we work out a different approach to compute the r-dependent part of the two-point function

in the r → +∞ limit for all N . For this, we will assume that this limit can be taken before

integrating over the zero modes.

For r → +∞, we can approximate the analytically-continued (to dS) propagators

Gα(r) ≃
1

Vdm2
α

e−m2
αy, (α = 1, 2), (4.6)

provided m2
2 = 3m2

1 = 3u ≪ H2. Here we have defined y = log(r)/(d−1). Looking only at

the r-dependent part, having already discussed the constant part, the two-point functions

at long distances are given by the following expression

〈φa(x)φb(x
′)〉IR ≃ δab

NVd

∫∞
0 duuN/2−2

[

(N − 1)e−uy + 1
3e

−3uy
]

eh̃(u)
∫∞
0 duuN/2−1 eh̃(u)

, (4.7)
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where

h̃(u) =
(N − 1)

2
log(det Ĝ1) +

1

2
log(det Ĝ2)−N

Vd

2λ
u2 (4.8)

≃ N

2
log(det Ĝ(0))− Vd

(N + 2)

2
[Ĝ(0)]u− Vd

(

(N + 8)

4

∂[Ĝ(m)]

∂m2

∣

∣

∣

0
+

N

2λ

)

u2

≡ h̃(0)−Au− Bu2

4
. (4.9)

In the second line we have expanded the propagators for small u up to quadratic order. Here

we can see that the integrands of eq. (4.7) are exponentially suppressed for u ≫
√

λ/2Vd,

and therefore, for small enough λ the approximation of eqs. (4.6) is justified. Notice that

for the cases N ≤ 2 there is a IR divergence in the integral of eq. (4.7). This divergence

is spurious and is actually absent when one considers both the r-dependent and constant

parts together.

The needed integrals are of the form

∫ ∞

0
duuα e−Au−Bu2

4 =
A

B1+α/2
Γ(1 + α)U

(

1 +
α

2
,
3

2
,
A2

B

)

, (4.10)

where U(a, b, z) is the Tricomi confluent hypergeometric function, and A and B are the

linear and quadratic in u coefficients of h̃(u) respectively, defined in eq. (4.9). With these

expressions, we can evaluate eq. (4.7),

〈φa(x)φb(x
′)〉IR ≃ δab

NVd

Γ
(

N
2 − 1

)√
B

Γ
(

N
2

)

U2(0)

[

(N − 1)
(

1 +
y

A

)

U0(y) +

(

1

3
+

y

A

)

U0(3y)

]

,

(4.11)

where we defined Ut(x) = U
(

N+t
4 , 32 ,

(A+x)2

B

)

as a shorthand. Although we have assumed

a large value of y when using eqs. (4.6), nothing has been said about N . For N → +∞,

the limit must be taken carefully and before y → +∞, since the parameter N enters in

several arguments of the hypergeometric functions. Doing this, as crosscheck, we recover

the known result for the asymptotic behavior at large distances of the two-point function,

〈φa(x)φb(x
′)〉IR ≃ 1

Vdm
2
dyn

e−m2
dyny, (N → +∞), (4.12)

with m2
dyn =

√

λ/(2Vd). We are now in position to study the y → +∞ asymptotic behavior

for fixed N . For this we can use that U0(x) ≃ BN/4x−N/2 at large x, and therefore the

resummed UV two-point function takes the following form,

〈φa(x)φb(x
′)〉IR ≃ δabC(N,λ) y1−N/2, (4.13)

where we kept the most relevant term for y → +∞. The coefficient is defined as

C(N,λ) =
2B

(N+2)
4

[

N − 1 + 3−N/2
]

VdN(N − 2)AU2(0)
∼ 1

λN/4
, (4.14)
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Free L-loop Resummed

N = 1
√

log(r)

N = 2 log(log(r))

N > 2 log(r) log(r)L log(r)−(N−2)/2

N → ∞ r−m2
dyn/(d−1)

Table 1. Asymptotic behavior of the resummed two-point function in the massless case (m = 0)

for different values of the number of fields N as the de Sitter invariant distance r → +∞. After

resummation of the bi-quadratic interaction terms, the usual logarithmic divergences present in

the perturbative calculation (at all N) are softened when N = 1, 2 and cured for N > 2. Here

m2
dyn =

√

λ/(2Vd).

with their LO dependence in λ explicitly shown. The behavior of the resummed two-point

functions at large distances changes drastically with N , as seen from eq. (4.13). On the

one hand, for N > 2 they decay as a power law for y → +∞. On the other hand, for

the cases N ≤ 2, as already mentioned, both the r-dependent and constant parts must be

kept during the computation. This allows to show that for N = 1, 2 the two-point function

diverges as
√
y and log(y) respectively.7 These distinct asymptotic behaviors for different

values of N are summarized in table 1, where also the standard perturbative results (prior

to the resummation of bi-quadratic interactions) are shown for comparison.

We now have a more complete picture of the asymptotic behavior at large dis-

tances/late times of the resummed two-point functions. Indeed, for large but not strictly

infinite N , the behavior can initialy be well described by eq. (3.45) as quasi-exponential.

But as y approaches and exceeds ∼ N/
√
λ, the behavior changes to a power-law of log(r),

as shown in this section, with an exponent strongly dependent on the value of N .

In summary, in this section we have analyzed the effects of the resummation on the IR

behavior of the two-point functions. Given that the bi-quadratic interactions between the

zero and UV modes are treated nonperturbatively, the UV modes acquire a | ~φ0|-dependent
mass, and therefore the IR behavior is affected. It is convergent or less divergent, depending

on the value of N . To understand these results, we go back to eq. (3.26), that shows

that the interacting two-point function is a weighted average of free and massive two-

point functions. As the free correlators decay exponentially, one could naively expect the

interacting correlator to have the same behavior. However, for massless fields m = 0

the bi-quadratic interaction induces a mass for the UV modes that is proportional to

u = λ|~φ0|2/2N and vanishes at u = 0. Therefore, the IR behavior is dominated by the

contributions coming from the region u ≪ H2 in the integral of eq. (4.7). Due to the

volume factor uN/2−1 in that equation, these contributions are suppressed for large values

of N , and the correlators decay more strongly as N increases.

7Although ref. [25] reports log(y) for N = 1.
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It is unclear whether additional corrections coming from the remaining (infinitely

many) R-Feynman diagrams that contribute at each order in 1/N , when treated non-

perturbatively, might change this behavior. This can be particularly important for small

N , for which the decay given by the current resummation is milder, or absent altogether.

For instance, if the UV modes were to have an additional dynamical mass coming from the

interactions in S
(3)
int , this mechanism could dominate the IR behavior.

5 Conclusions

In this paper we have considered the same O(N)-symmetric theory and the same reorga-

nization of the perturbation theory on the sphere (in λ and 1/N), as in [17]. We have

presented a procedure that allows the systematic perturbative expansion we developed

in [17] for massless fields to be performed in a much simpler way. Another advantage of

the present procedure is that it can be immediately extended to fields with negative mass

squared, as we show in appendix C.

The results presented here also extend the previous ones, providing an explicit eval-

uation of the long wavelength limit of the two-point functions for arbitrary values of the

number of fields N . The resummed two-point function is given in eq. (3.26), that shows

that it can be written as a weighted average of free, massive two-point functions. This

result can be interpreted as a spectral representation of the two-point correlation func-

tion of an interacting field, analogous to the Källen-Lehmann representation in Minkowski

spacetime [25]. Being an average of functions that decay exponentially at large distances,

the IR behaviour of the resummed two-point function is improved: it tends to a constant

as r → ∞ for all N > 2. The aymptotic r-dependence summarized in table 1 shows how

this constant value is approached. These results should be contrasted with the usual di-

vergent results obtained in perturbation theory for interacting massless fields. In the IR,

the weighted average is dominated by the contributions of free two-point functions of small

masses, that become more relevant for low values of N . Because of this reason, for N = 1, 2

the resummed two-point functions do not tend to a constant as r → ∞, but diverge with

a milder divergence than in perturbation theory.

The reorganization of the perturbation theory, implemented by treating exactly the

bi-quadratic interaction terms between the constant zero modes and the inhomogeneous

fields, is not enough to describe the far IR behaviour of the correlation functions. The

corrections computed within a combined double expansion in 1/N and
√
λ show that

higher order terms become as relevant as lower order ones when the correlation functions are

analytically continued to dS spacetime, and evaluated at very long distances
√
λ log(r) & N

(note that this is not a problem when computing the correlator functions on the sphere,

which is compact). We have shown that in order to analyze the behaviour of the two-

point functions for such large distances, an additional resummation is mandatory, since

an infinite number of diagrams that correct the inhomogeneous propagators contribute at

order O
(√

λ, 1/N
)

in the double expansion. We have identified these diagrams, broadly

speaking, as those containing chains of an arbitrary number of bubbles. The fact that the R-

Feynman rules needed in the additional resummation involve the free massive propagators
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that come from the first resummation, allowed us to use general results about the IR

behaviour of interacting massive propagators in dS spacetime, and to perform explicitly

the resummation of the bubble chains in the large-r limit. Within the double expansion

in 1/N and
√
λ we have shown that the contribution of the bubble chains changes the

behaviour of the two-point functions, that now tend to zero (instead of a constant) as

r → ∞ up to O
(√

λ, 1/N
)

. We expect the resummation of bubble chains to modify the

decays in table 1 for large values of N as well, when the subleading IR parts are included.

When the number of fields is small, the situation is less clear, since even more diagrams

would be needed to understand the large-r limit. We consider this is out of the scope of

the present paper, but we hope to address this issue in the future.

Finally, let us comment about the applicability of our method to physical situations

that involve n-point functions with n > 2. This is in principle non trivial, due to the fact

that the method directly applies to the sphere rather than to dS. Although it is immediate

to obtain the different two-point functions in dS spacetime given the unique two-point

function on the sphere (which is well-known [26] and is completely analogous to the same

problem in Minkowski space), it is unclear how to proceed in general for n-point functions.

Notice however that this problem arises due to causality, there is no such a problem as far as

one is interested in computing n-point functions for spatially-separated points. Therefore,

the calculation of n-point functions using our resummation could have several cosmological

applications. We plan to consider this problem, starting with the calculation analogous to

that in ref. [27] for comparison of the methods.
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A Double expansions in 1/N and λ of 〈. . . 〉0̄

The expectation values over the zero modes can be computed in a 1/N expansion by a

saddle-point approximation (Laplace’s method). Consider an integral of the form

∫ +∞

0
du f(u) eNh(u), (A.1)

which is approximated up to NLO in 1/N by the following formula

√

2π

|h′′(ū)|N eNh(ū)

[

f +
1

N

(

− f ′′

2h′′
+

f h′′′′

8(h′′)2
+

f ′h′′′

2(h′′)2
− 5f(h′′′)2

24(h′′)3

)

]

, (A.2)

where it is understood that all the functions are evaluated in the saddle-point ū, i.e. h′(ū) =

0, h′′(ū) < 0. If there were more than one point that satisfies these conditions, the solution
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would involve a sum over them of the previous expression. We can now apply this result

to expressions of the kind

〈 g(u) 〉0̄ =
∫∞
0 duD(u) g(u) eNh(u)

∫∞
0 duD(u) eNh(u)

, (A.3)

by choosing f(u) = D(u)g(u) and expanding the denominator in 1/N as well. This last step

will ensure the cancelation of any NLO terms without derivatives of g(u). The resulting

expression is

〈 g(u) 〉0̄ ≃ g(ū) +
1

N

[

B
(1)
1 g′ +B

(1)
2 g′′

]

ū
, (A.4)

where

B
(1)
1 =

(

γE +
η

2

)

, (A.5a)

B
(1)
2 =

γ

2
, (A.5b)

and γ = 1
|h′′| , η = h′′′

(h′′)2
, σ = h′′′′ and E = D′/D.

Another useful combination that appears when computing perturbative corrections is

the following,

〈 g(u)k(u) 〉0̄ − 〈 g(u) 〉0̄〈 k(u) 〉0̄ ≃ (A.6)

≃
{

C
(1)
2

N
g′k′ +

1

N2

[

C
(2)
2 g′k′ + C

(2)
3

(

g′k′′ + g′′k′
)

+ C
(2)
4

(

g′k′′′ + g′′k′′ + g′′′k′
)

]

+ . . .

}

ū

,

where

C
(1)
2 = γ, (A.7a)

C
(2)
2 = η2 + γηE +

γ3σ

2
+ γ2E′, (A.7b)

C
(2)
3 = γη + γ2E, (A.7c)

C
(2)
4 =

1

2
γ2. (A.7d)

For this last expression it was necessary to extend eq. (A.2) up to NNLO in 1/N .

In the massless case, ū ∼
√
λ, and the coefficients up to order λ are expanded as

B
(1)
1 ≃ −1

2

√

λ

2Vd
− 3λ[Ĝ(0)]

8
+O(λ3/2), (A.8a)

B
(1)
2 ≃ λ

4Vd
+O(λ3/2), (A.8b)

C
(1)
2 ≃ λ

2Vd
+O(λ3/2), (A.8c)

C
(2)
2 ≃ − λ

4Vd
+O(λ3/2), (A.8d)

C
(2)
3 ≃ −λ2[Ĝ(0)]

8Vd
+O(λ5/2), (A.8e)

C
(2)
4 ≃ λ2

8V 2
d

+O(λ5/2). (A.8f)
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As it turns out, all of the C coefficients start at least at order λ. When the combina-

tion (A.6) comes from a perturbative calculation, there will be another λ in front, meaning

that up to higher order terms, it is valid to factorize a mean value over the zero modes

of a product, in terms of products of mean values, i.e. 〈 g k 〉0̄ ≃ 〈 g 〉0̄〈 k 〉0̄, even beyond

the large-N limit. This greatly simplifies calculations of perturbative corrections. Indeed,

the application of this property to the 0-connected parts defined in eq. (3.21), implies that

they are suppressed by extra powers of
√
λ with respect to the connected parts (3.20).

B Renormalization

The functions h(u) and h̃(u), defined in eqs. (3.36) and (4.8) respectively, contain divergent

contributions from the coincidence limit of the UV propagator [Ĝ(m)] and its first derivative

(second and higher order derivatives are finite in this limit). These can be absorbed in the

usual way by the introduction of counterterms associated with each of the parameters m2

and λ. Consider for instance the function h̃(u) for an arbitrary mass m2,

h̃(u) ≃ N

2
log(det Ĝ(m))− Vd

(

Nm2
B

λB
+

(N + 2)

2
[Ĝ(m)]

)

u

−Vd

(

(N + 8)

4

∂[Ĝ(m)]

∂m2
+

N

2λB

)

u2, (B.1)

where the labels B have been added to denote the bare quantities. Splitting these into a

finite part and a conterterm, λB = λ + δλ and m2
B = m2 + δm2, it is straightforward to

see that the following choice of counterterms allows for perturbative renormalization,

δm2 = − λ

2N
(N + 2)[Ĝ(m)]div, (B.2a)

δλ =
λ2

2N
(N + 8)

(

∂[Ĝ(m)]

∂m2

)

div

, (B.2b)

leading to

h̃(u) ≃ N

2
log(det Ĝ(m))− Vd

(

Nm2

λ
+

(N + 2)

2
[Ĝ(m)]ren

)

u

−Vd





(N + 8)

4

(

∂[Ĝ(m)]

∂m2

)

fin

+
N

2λ



u2. (B.3)

Although the first term is still divergent, it actually drops from any physical quantity due

to the normalization of the generating functional. For the sake of clarity, we avoid the ren

and fin labels in the main text.

C Negative squared-mass case

In this appendix we consider an extension of the resummation to cases with negative-

squared-mass fields, and we show that our method can be applied without any substantial
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modification. Indeed, we can directly evaluate eq. (3.40) for a negative squared-mass

m2 = −µ2 < 0, and then expand in λ

ū(−µ2) = µ2 +
λ

2Vdµ2
− λ

2
[Ĝ(0)]− λµ2

2

∂[Ĝ(0)]

∂m2
+O

(

λ2
)

. (C.1)

Then, the constant part of the two-point function (3.23) now reads, at the leading order in λ,

〈φ0aφ0b〉 ≃ δab
2µ2

λ
, (C.2)

which is a well known result. The positive value of the dynamical mass shows that the

symmetry is restored in the effective potential due to the IR effects. For the two-point

function at separate points, we find that the effective masses of the propagators are

M2
1 (−µ2) =

λ

2Vdµ2
− λ

2
[Ĝ(0)]− λµ2

2

∂[Ĝ(0)]

∂m2
+O(λ2), (C.3)

M2
2 (−µ2) = 2µ2 + 3M2

1 (−µ2). (C.4)

It is worth remarking that both masses are strictly positive, showing that this resummation

is enough to overcome the divergences appearing for the tree-level propagators. When

analytically continuing the results to dS, again the same discussion as for massless fields

applies, that is, the results can only be trusted for points not too far apart.

Let us briefly comment on the perturbative corrections. The main aspect to take into

account is that now the effective coupling is different than in the massless case. From

eq. (C.2) we have the scaling

√

〈| ~φ0|2〉0 ∼ λ−1/2, and therefore the IR enhancement is

stronger than for the massless case (

√

〈| ~φ0|2〉0 ∼ λ−1/4). Hence, all the interaction terms

in S
(3)
int contribute about the same. Indeed, taking into account that the terms of the form

λ( ~φ0 · ~̂φ)|~̂φ|2 must always be considered in pairs (by symmetry considerations, correlators

with an odd number of factors of φ0a will vanish), their contribution will go as λ2〈| ~φ0|2〉0 ∼
λ. Given that the effective coupling in this case is also λ, the perturbative corrections

contribute already at the NLO level. Of course, a calculation of all contributions at that

order will be much more involved than for the massless case, but, in principle, it can be

performed using the R-Feynman rules.

D Long distance limit at O
(√

λ, 1/N
)

In this appendix we provide the details of the calculation of the long distance limit,

r(x, x′) → ∞, of the two-point functions at leading order in
√
λ and next-to-leading (NLO)

order in 1/N . As mentioned in section 4.1, there is an infinite set of Feynman diagrams

contributing to the two-point functions in this limit.

We need to compute all Feynman diagrams which contribute at NLO in 1/N and are

in turn enhanced at long distances, in the sense that they give a correction at LO in
√
λ in

the limit r(x, x′) → ∞. The first diagram given in figure 4 is an example that contribute

at NLO in 1/N (and also at LO), but that is clearly NLO in
√
λ, since the propagator
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in the loop is evaluated at coincident points and therefore cannot give an enhancement

for r(x, x′) → ∞. Hence, note the diagrams we need contain at least two vertexes. To

proceed, we use the R-Feynman rules described in section 3.3 to compute corrections to

both propagators Ĝ1 and Ĝ2 whose masses depend on | ~φ0|. Then, the two point functions

can be evaluated using eq. (3.25). Hence, for Ĝ1 it is necessary to compute the NLO

correction in 1/N , while for Ĝ2 the LO is enough. To count the power of 1/N at leading

order in the limit N → ∞, it is useful to note that |~φ0| must be considered as counting

as
√
N . In other words |~φ0| =

√

2Nu/λ and u, as it turns into an integration variable, is

considered to be independent of N . As usual, each trace with solid lines gives a factor of N .

Let us first consider the diagrams correcting Ĝ2. Taking the above considerations into

account, it is simple to see the diagram in figure 5a does not vanish at N → ∞. There

are two ways of adding corrections to this diagrams that can be thought as dressing the

bubble in the middle in two steps: first, the bubble can be corrected by adding another

bubble with a vertex with four solid lines (this gives a trace and therefore a factor N that

compensate the one suppressing the vertex). A sum of the chain of bubbles corrected in

this way gives a partially-dressed bubble, which we draw as a solid gray circle,

= + + + . . . ≡ B̂ , (D.1)

and we will denote as B̂. Second, each partially-dressed bubble can be further dressed by

adding two vertexes with two solid lines and a discontinuous one, as follows:

= + + + . . . ≡ B̂ . (D.2)

The dressed bubble (which is plotted as a black solid circle and we will denote as B̂) is

obtained by summing this chain of diagrams. Therefore, the diagram we need to compute

can be represented as in figure 5a′.

We now consider the diagrams correcting Ĝ1. We start by writing all the different

diagrams that contribute at order 1/N and have the minimum amount of vertexes. These

are given in the first line of figure 9. Then, as for Ĝ2, there is actually a set of diagrams

contributing at the same order, and the sum of them can be expressed in terms of the same

resummed bubbles as in the second line of figure 9.

Of course, a brute-force evaluation of the diagrams we have drawn is too difficult,

however, our aim here is to compute the leading order in
√
λ in the long distance limit. To

achieve this, we will explote the knowledge of perturbation theory for massive fields [21, 22].

The main observation is that the R-Feynman rules are built from modified “massive” propa-

gators Ĝ1 and Ĝ2, which differ from standard massive propagators only by an homogeneous

(constant) contribution (see figure 10 for the corresponding diagrammatic representation):

Ĝα = Gα −G(0)
α , (with α = 1, 2) , (D.3)

where Gα is the standard propagator with mass ma and

G(0)
α =

1

Vdm2
α

. (D.4)
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(a) (b) (c)

(a′)

+

(b′) (c′)

Figure 9. Diagrams that correct the two-point function Ĝ1. The first line shows diagrams with

up to 4 vertexes. The second line includes bubble resummations.

x, i x′, j

G1δij

x x′

G2

x, i x′, j

G
(0)
1 δij

x x′

G
(0)
2

Figure 10. Top: diagrammatic representation of the standard massive propagators: G1 with

m2
1 = λ

2N |~φ0|2 ≡ u, and G2 with m2
2 = 3λ

2N |~φ0|2 = 3u. Bottom: diagrammatic representation of the

euclidean zero-mode part of the massive propagators: G
(0)
a = (Vdm

2
a)

−1 (a = 1, 2).

With the use of eq. (D.3), the two-point diagrams we need to compute can be split into

diagrams where the two points are connected by at least one massive propagator Gα and

disconnected diagrams. It has been shown that any connected two-point diagram built

with massive propagators and standard cubic or quadratic vertexes vanishes at long dis-

tances [21, 22]. Therefore, we need to keep and compute only the two-point diagrams

that once split according to eq. (D.3) have the two points disconnected. All of these facts

will become clearer in a moment, after considering a few examples. Let us start with the

diagram in figure 5a′. Notice that the bubble itself, B̂(z, z′), can be split into a connected

bubble, B(z, z′) (represented as a black square), plus an homogeneous disconnected part,

Bd (drawn as a cut bubble):

B̂(z, z′) =
z z′

=
z z′

+ ≡ B(z, z′) + Bd (D.5)
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Then, the diagram in figure 5a′ can be split as

= +

∼ +

−2 − 2

+ ,

where in the last line we discarded the connected contributions, which vanish at long

distances. In formulas:
∫

z,z′
Ĝ2(x,z)B̂(z,z′)Ĝ2(z

′,x′)=

∫

z,z′

(

G2(x,z)−G
(0)
2

)

(B(z,z′)+Bd)
(

G2(x,z)−G
(0)
2

)

(D.7)

∼G
(0)
2

2
∫

z,z′
(B(z,z′)+Bd)−2G

(0)
2

∫

z,z′
(B(z,z′)+Bd)G2(z

′,x′)+Bd

∫

z,z′
G2(x,z)G2(z

′,x′),

where the integrals go over all dS spacetime and in the last line we have only kept the

disconnected contributions.

Now, the disconnected diagrams can be easily computed. Recalling that
∫

z′ G1(z
′, x′) =

∫

z G1(x, z) = G
(0)
1 Vd and taking into account that

∫

z B̂(z, z′) cannot give an IR enhance-

ment, we obtain that at leading order only the last term contributes

∫

z,z′
Ĝ2(x, z)B̂(z, z′)Ĝ2(z

′, x′) ∼ V 2
d G

(0)
2

2
Bd, (D.8)

with the diagrammatic representation of this result given by

∼ . (D.9)

The remaining diagrams can be split similarly, and the corresponding results are:

∼ − , (D.10)

+ ∼−2 , (D.11)

+ ∼ − . (D.12)

Therefore, to evaluate this kind of diagrams we need to compute the cut bubbles and the

proper symmetry factors for each diagram. The latter can be done as usual, while we

provide some details to achieve the former computation next.

Let us first focus on the partially-resummed bubble in eq. (D.1). We start by computing

the leading order contribution of the fundamental bubble, and of the diagram with two
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and three fundamental bubbles, as shown in eqs. (D.13a), (D.13b) and (D.13c),

= 2Ĝ2
1(z, z

′) ∼ 2G
(0)2
1 , (D.13a)

= −2
λ

2

∫

y1

Ĝ2
1(z, y1)Ĝ

2
1(y1, z

′) ∼ 2
λVd

2
G

(0)
1

2
G

(0)
1

2
, (D.13b)

= 2

(

λ

2

)2 ∫

y1,y2

Ĝ2
1(z, y1)Ĝ

2
1(y1, y2)Ĝ

2
1(y2, z

′)

∼ 2

(

λVd

2
G

(0)
1

2
)2

G
(0)
1

2
, (D.13c)

. . .

n

= 2

(

λ

2

)n ∫

y1,y2,··· ,yn

Ĝ2
1(z, y1)Ĝ

2
1(y1, y2) · · · Ĝ2

1(yn, z
′)

∼ 2

(

λVd

2
G

(0)
1

2
)n

G
(0)
1

2
, (D.13d)

∼ Bd = 2
+∞
∑

n=0

(

λVd

2
G

(0)
1

2
)n

G
(0)
1

2
=

2G
(0)
1

2

1− λVd
2 G

(0)
1

2 , (D.13e)

where we have taken into account the symmetry factors of the diagrams.

There are two main steps we have followed in the derivation of the result in eq. (D.13e):

the first one is to note that given a diagram with n fundamental bubbles, once it is discon-

nected the value at leading order is the same as the fully disconnected diagram (i.e., the

one where all the propagators are cut), up to a sign, with a minus (−) if the number of

cut lines is odd and a plus (+) if it is even. The next step consist in counting the amount

of disconnected diagrams with a given sign and sum all of them taking into account the

relative sign. These procedure, which might seem complicated at first, it is not so much,

since one can show that the series becomes an alternated one so that once combined with

the additional minus (−) sign accompanying each vertex, the contribution of each diagram

goes always with a plus (+) sign (see eqs. (D.13)).

In a similar way, we can sum the partially-resummed bubbles to obtain the solid black

one, as

∼ 2

(

λ

2

)2

2

(

BdVd

2

)2
(

−G
(0)2
2 |~φ0|2
N

)

, (D.14a)

. . .

n+ 1

= 2

(

λ

2

)2n

2n
(

Bd

2

)n+1
(

−G
(0)2
2 V 2

d |~φ0|2
N

)n

, (D.14b)

∼ Bd = Bd

+∞
∑

n=0

(

−λV 2
d BduG

(0)
2

2

)n

=
Bd

(

1 + λVdBd
6

) , (D.14c)

where in the last line we have used that |~φ0|2/N = 2u/λ and G
(0)
2 = 1/(3Vdu).
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Having evaluated the bubbles, we can now express all the diagrams we need as a

function of u, and the result is given in by:

∼
(

λ

2

)2

BdG
(0)
2

2
V 2
d

(

2u

λ

)

, (D.15a)

∼ − 1

N

(

λ

2

)2

BdG
(0)
1

3
V 2
d , (D.15b)

+ ∼ 4

N

(

λ

2

)3

BdG
(0)
1

3
G

(0)
2

(

2u

λ

)

V 3
d , (D.15c)

+ ∼ 0. (D.15d)

In order to obtain the final result we need to perform the integration in u, which in

the 1/N expansion can be done systematically using the Laplace method, as described in

appendix A. The result cancels the constant in eq. (4.3) in the main text, and makes the

two-point functions to vanish in the long distance limit.

We finally mention here that the inhomogeneous 0-connected contribution (3.47), which

we dropped in the calculation on the sphere, will also be enhanced in dS. This enhancement

is stronger the more derivatives with respect to m2 act on the propagators Ĝ1 and Ĝ2, and

therefore it will be more important for the 0-connected part than for the part we kept (3.45).

This is why we kept those terms with the most derivatives acting on the r-dependent

functions in (3.47). However, it is straightforward to check that even with the stronger

enhancement, the 0-connected part is still at least suppressed by one factor of
√
λ with

respect to the other parts. Moreover, this is true beyond the specific diagrams computed in

previous section, and in particular it remains true for the infinite set of diagrams that we

need to resum here in order to deal with the limiting value for r → ∞. This follows directly

from counting powers of λ in the expansion (3.41) with coefficients (3.43), and taking into

account that only one of the two functions g(u) and k(u) depends on r and therefore

receives an enhancement in dS of a factor λ−1/2 for each derivative acting on it. Therefore,

we can still ignore the 0-connected parts in dS in the current discussion, as it does not

affect the limiting value of the two-point functions for r → ∞, at least up to NNLO in
√
λ.
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