REVIEW

Proteomics

Bioinformatics

www.proteomics-journal.com

Computational Tools for the Identification and Interpretation
of Sequence Motifs in Immunopeptidomes

Bruno Alvarez, Carolina Barra, Morten Nielsen, and Massimo Andreatta*

Recent advances in proteomics and mass-spectrometry have widely expanded
the detectable peptide repertoire presented by major histocompatibility
complex (MHC) molecules on the cell surface, collectively known as the
immunopeptidome. Finely characterizing the immunopeptidome brings about
important basic insights into the mechanisms of antigen presentation, but
can also reveal promising targets for vaccine development and cancer
immunotherapy. This report describes a number of practical and efficient
approaches to analyze immunopeptidomics data, discussing the identification
of meaningful sequence motifs in various scenarios and considering current
limitations. Guidelines are provided for the filtering of false hits and
contaminants, and to address the problem of motif deconvolution in cell lines
expressing multiple MHC alleles, both for the MHC class | and class Il
systems. Finally, it is demonstrated how machine learning can be readily
employed by non-expert users to generate accurate prediction models directly

been beneficial to define more accurately
the rules of peptide-MHC binding?*
and have also a tremendous poten-
tial in defining pathogen-derived T-cell
epitopest® and neo-epitopes unique to
cancerous cells.” 1% Part of the ap-
peal of MS-based approaches is that
they do not require prior knowledge
of MHC motifs, and there is no hu-
man intervention in defining a library of
candidate sequences to be tested. There-
fore, MS provides a large but rela-
tively unbiased sampling of the popu-
lation of processed and presented pep-
tides available for T-cell recognition.?

In most MS-based pipelines, spectra
from eluted peptides are matched against

from mass-spectrometry eluted ligand data sets.

1. Introduction

The comprehensive set of peptides presented on the cell surface
by major histocompatibility complex (MHC) molecules, collec-
tively referred to as the immunopeptidome, represents a unique
fingerprint of the health of a cell. T lymphocytes routinely scan
this pool of MHC-associated peptides, and can help eliminating
infected or cancerous cells that present abnormal peptides on
their surface. MHC class I molecules mainly bind peptides de-
rived from intracellular pathogens (such as viruses and some bac-
teria) and present them to cytotoxic T lymphocytes; MHC class II
epitopes are mainly derived from extracellular proteins and are
presented to T-helper lymphocytes.

Recent technological advances in the field of mass spec-
trometry (MS) have brought about a revolution in the study
of immunopeptidomes (reviewed by Caron et al.l!l), with sev-
eral thousands of peptides that can be detected in a single ex-
periment. Large data sets of naturally presented peptides have
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a reference database of natural proteins

using algorithms like MaxQuant™ or

PEAKS,!">13 and filtered against a decoy

database to limit the false discovery rate
(FDR). Strict FDR filters (typically in the order of 1%) should en-
sure that most spectra are correctly assigned to bona fide ligands,
but often leads to discarding a large portion of the spectra. Sev-
eral approaches have been proposed to increase the yield of spec-
tral assignment. For example, Mascot Percolator performs ma-
chine learning on high-confidence matches to rescore database
search results for lower-confidence peptides.*l Instead of match-
ing spectra to an entire protein database, SpectMHC constructs
reduced, targeted databases of potential MHC ligands, effectively
reducing the amount of spurious decoy hits.[*>! Recent work has
also suggested that a portion of the unassigned spectra may also
be explained by proteasome-generated spliced peptides, which
would require the inclusion of spliced variants in the target
database.['17]

After spectral assignment to amino acid sequences, peptides
must often be aligned and/or clustered to extract meaningful
sequence motifs of antigen presentation. The analysis proto-
cols here will generally differ depending on the type of receptor
(MHC I vs MHC class II) and type of sample used (cellular vs
soluble MHC molecules and mono- vs poly-allelic cell lines). On
the one hand, MHC I ligands have a limited range of lengths,
typically 8-11 amino acids long, and are characterized by very
conserved amino acid preferences at the positions interacting
with the MHC binding groove (anchor positions). On the other
hand, MHC II ligands are normally longer, with only a portion,
the binding core, directly interacting with the MHC groovel'®); in
this case a more sophisticated alignment process is needed to ex-
tract conserved binding preferences. In transgenic cells express-
ing a single MHC molecule (mono-allelic), only one specificity is
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expected to be present in the data and motif identification is rela-
tively straightforward. Conversely, unmodified cells will naturally
present peptides bound to multiple MHC alleles (up to six for
HLA class I), with generally different binding preferences; in this
case, the multiple specificities contained in the data must be de-
convoluted, either by assigning MHC restriction with predictive
methods, or by unsupervised clustering.

A popular tool for the unsupervised identification of sequence
motifs in immunopeptidomes is GibbsCluster,*?l a web-based
and downloadable method that has been included into numer-
ous pipelines for the deconvolution of ligand motifs in the MHC
class 1192231 and MHC class 112420 systems. The GibbsClus-
ter algorithm takes as input a list of peptide sequences (poten-
tially of variable length), and uses a heuristic search to group
them into information-rich groups. Besides the sequence motif
defining each group, additional properties such as the ligand
length distribution of each cluster can be analyzed. A similar
method, MixMHCp,??’l has shown performance comparable to
GibbsCluster, with the limitation that it can only handle pep-
tides of uniform length. A useful feature of GibbsCluster is the
“trash cluster,” a check on internal motif consistency that can fil-
ter out outliers that cannot be assigned to any clusters. In the
context of MS eluted ligand data, spurious data points can orig-
inate both from LC-MS/MS contaminants and from erroneous
spectral matches. As a noise filter, GibbsCluster can be benefi-
cial also for mono-allelic data sets where no motif deconvolution
is required.

While sequence motifs are generated by GibbsCluster in an
unsupervised manner, the method cannot directly assign the
MHC restriction of each ligand; this must be done by compar-
ing the unsupervised motifs with published binding motifs of
the MHC molecules in the sample.*8! While this comparative ap-
proach is in most cases feasible for human MHC, whose most
prevalent alleles have been well characterized and documented,
it will fall short for samples containing uncharacterized speci-
ficities. Aiming to overcome this limitation, Bassani-Sternberg
et al.?’l suggested a strategy for automatic, unbiased annotation
of MHC restriction by comparing motifs detected in multiple
data sets with known haplotypes. Exploiting the co-occurrence of
MHC alleles across different data sets, they were able to assign
motifs to individual alleles without relying on a priori assump-
tions on their binding specificity, also for alleles without previ-
ously documented ligands.

Over the past decades, many efforts have been dedicated to the
development of computational methods for the prediction of pep-
tide binding to MHC class I molecules. Most of these T-cell epi-
tope prediction methods have been traditionally trained solely on
in vitro data of peptide-MHC binding affinity. Although peptide-
MHC affinity is arguably the most selective step in antigen pre-
sentation, other factors influence the likelihood of a peptide be-
ing presented on the cell surface for T-cell recognition.?>3% In
vitro binding affinity data does not address the fact that anti-
gen presentation is a complex, integrative physiological pro-
cess that combines antigen processing, transport and binding
affinity/stability of the peptide-MHC complex. Finally, in vitro
data fails to reflect any peptide length preference of different
MHC-I alleles. Because naturally eluted ligands incorporate in-
formation about these additional properties of antigen presen-
tation, large MS-derived sets of peptides can potentially enable
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the generation of more accurate prediction models. Recent stud-
ies have suggested that models trained on MHC class I lig-
and data outperform binding affinity-based predictors when it
comes to identification of eluted ligands and T-cell epitopes,
both in an allele-specific setting®>?! as well as with pan-allelic
coverage.! Generic tools for machine learning from peptide se-
quences such as NNAlign®!3? can be applied to individual MS
data sets to generate custom-made prediction models, which can
in turn be employed for further downstream analyses of the
immunopeptidome.

The rapidly expanding collection of naturally eluted ligands re-
vealed by MS and the analysis toolkits developed in its wake hold
great promise in understanding the structure of the immunopep-
tidome and the rules of antigen presentation. However, because
of the complexities inherent to MS eluted ligand data, it is not
a trivial task to analyze and interpret the information these data
sets contain. In this report, we seek to address some common is-
sues and describe strategies to analyze MS ligand data and derive
sequence motifs in the various scenarios outlined above (MHCI
vs MHCII; mono-allelic vs poly-allelic cell lines), with guidelines
and examples on publicly available datasets.

2. MHC Class |, Mono-Allelic Cells

In a recent publication, Abelin et al.’!l described the development
of transgenic cells that express a single human MHC class I al-
lele (HLA), and used them to generate a large set of MHC lig-
ands covering 16 HLA class I alleles. There are obvious advan-
tages in using mono-allelic cells to characterize MHC ligands:
firstly, no deconvolution/clustering is required to define motifs
at the single-allele resolution; secondly, the assignment of indi-
vidual peptides to their allele does not have to depend on binding
predictions or prior knowledge of the motifs. Apart from techni-
cal difficulties in the cell generation, a possible drawback is that
the relative level of expression of different MHC alleles in a given
cell, and the amount of ligands they present, is lost in a mono-
allelic setting. The amount of ligands presented by different al-
leles may also depend on competition between MHC molecules,
where the newly available digested peptides from an unfolding
antigen fragment would presumably be captured by MHCs with
the highest affinity.**]

Although most software for MS spectra mapping uses a
strict false discovery rate (FDR) threshold, incorrect ligands
may still be present among the matches that pass the FDR
check. These may consist of common contaminants such as
keratin or histone proteins, as well as residual peptides from
previous runs of the LC-MS/MS instruments used for sample
preparation.B’**! GibbsCluster is a useful tool to detect and re-
move such contaminants and false hits. For each allele in the
Abelin data set,*! we applied GibbsCluster-2.0 with default pre-
set options for “MHC class I ligands of lengths 8-13,” spec-
ifying a single cluster. Between 0.4 and 16% of the peptides
(mean 4%) of lengths 8-13 were inconsistent with the mo-
tif identified by GibbsCluster-2.0 and were removed by the
program as noise. While distinct motifs can be discerned be-
fore trash cluster filtering (see three representative alleles in
Figure 1A), the post-filtering motifs have higher information con-
tent and more well-defined anchor residues (Figure 1B). Pep-
tides in the “trash cluster” may sometimes hint at the origin of
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Figure 1. Visualizing motifs and removing contaminants with GibbsCluster. Sequence motifs of three representative alleles (A) before trash cluster
filtering and (B) after filtering. The post-filtering motifs have higher information content and lack the putative K/R contamination at P9. C) Distribution
of NetMHCpan-3.0 percentile rank scores for peptides in the main cluster (red) and in the trash cluster (blue).

the contamination: for example, the observation of terminal argi-
nine/lysine preferences at the C-terminus in several of the 16 al-
leles points towards tryptic peptides polluting the mixtures (Sup-
porting Information, Figure 1). The ligands in the Abelin data
set have in general very good correspondence to known MHC
binding preferences, with an average NetMHCpan-3.0 percentile
rank®® well below 1% for most alleles (Figure 1C, red boxplots).
In contrast, peptides in the trash cluster match very poorly the
preferences of their MHC and are assigned high NetMHCpan
rank scores (Figure 1C, blue boxplots).

3. MHC Class |, Poly-Allelic Cells

Unmodified antigen-presenting cells will generally express up
to six different MHC class I alleles (two each for HLA-A,
HLA-B, and HLA-C). The immunopeptidome of these cells there-
fore consists of multiple specificities mixed together, where the
global haplotype is known but the restriction of each individual
ligand is unknown. For example, Bassani-Sternberg et al.’!! de-
scribed the LC-MS/MS analysis of peptides eluted from seven
different cancer cell lines and primary cells, which had been
HLA-typed at high resolution, and demonstrated how the Gibb-
sCluster approach could be used to deconvolute the individual
peptide restrictions. Here we illustrate the application of Gibb-
sCluster to one of the cell lines from the Bassani-Sternberg study,
HCC1143, which expresses the five alleles HLA-A*31:01, HLA-
B*35:08, HLA-B*37:01, HLA-C*04:01, HLA-C*06:02.
GibbsCluster finds an optimal solution of four clusters, with
a close correspondence to all but one of the HC1143 alleles
(Figure 2), failing to separate HLA-C*04:01 ligands. HLA-C
molecules have low expression levels and rather degenerate bind-
ing preferences,*”*’! making the deconvolution of their motifs
more challenging. The motifs determined by unsupervised clus-
tering show a remarkable correspondence with the binding pref-
erences predicted by NetMHCpan-3.0.2¢ There are, in some
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instances, subtle differences between the NetMHCpan and Gibb-
sCluster motifs, as in the case of additional secondary anchors
(e.g., a positively charged P5 for HLA-B*37:01). This suggests
that motifs directly derived from eluted ligands may carry an
additional level of information on peptide presentation (for in-
stance, secondary anchors conferring improved peptide-MHC
complex stability) compared to the NetMHCpan motifs, which
were constructed from in vitro binding affinity data. The sizes of
the clusters give an indication of the relative level of expression
of the different alleles, with the largest group corresponding to
the homozygous HLA-A*31:01 (1253 peptides), followed by the
two HLA-B alleles (610 and 460 peptides, respectively) and by
the lowly expressed HLA-C*06:02 (409 peptides). Finally, 45 pep-
tides were collected by the trash cluster. Interestingly, for six out
of seven cell lines in the Bassani-Sternberg data set, we noted a
C-terminal enrichment for arginine/lysine in peptide discarded
in the trash cluster (Supporting Information, Figure 2). A simi-
lar observation was made for the Abelin data set discussed pre-
viously, and hints that residual peptides derived from trypsin di-
gestion may often be present in the LC column.

As an alternative approach to unsupervised clustering, one can
assign each peptide to a MHC allele using peptide-MHC bind-
ing prediction methods; then deriving sequence motifs from the
resulting groups of peptides. We applied NetMHCpan¥ to the
peptides eluted from the HCC1143 cell line, assigning peptides
to the MHC molecule in the haplotype with the lowest predicted
NetMHCpan percentile rank. If a peptide could not be assigned
to any MHC molecule with rank <2%, then it was discarded in
a trash cluster. While this setup mimics the GibbsCluster strat-
egy, it has the very important difference that NetMHCpan utilizes
known motif preferences of the MHC molecules to make the as-
signments, whereas GibbsCluster is unsupervised and requires
no prior knowledge of the motifs. In the case of the HCC1143 cell
line, the MHC molecules are all well characterized and the solu-
tions found by the two approaches are remarkably similar (Sup-
porting Information, Figure 3). Assignment by NetMHCpan has

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


http://www.advancedsciencenews.com
http://www.proteomics-journal.com

ADVANCED
SCIENCE NEWS

Proteomics

www.advancedsciencenews.com

nce

Kullbach Leibler dista

Bits

3
Number of clusters

www.proteomics-journal.com

Assoclated NetMHCpan
Motifs

Optimal GibbsCluster
Solution

HLA-B*37:01

=0

e
-
=

N1 T3 43 T

HLA-A*31:01

Figure 2. Clustering results for the HCC1143 cell line. The single cluster solution (left) is a mixture of multiple specificities, dominated by the most
abundant alleles. The solution with highest information content corresponds to four clusters, with motifs highlighted in the red box (center). The motifs
identified by unsupervised clustering show a remarkable correspondence with those predicted by NetMHCpan-3.0 (right). The GibbsCluster method
was run using the default preset parameters for “MHC class | ligands of lengths 8-13,” except for the number of iterations which was set to 100 (slower
but more accurate), and number of groups, which was allowed to vary between 1 and 6. NetMHCpan logos were obtained from the NetMHCpan-3.0
website (http://www.cbs.dtu.dk/services/NetMHCpan-3.0/logos.php) and were constructed from the top 1% scoring peptides from a large set of natural

random peptides.

the potential advantage that atleast a fraction of peptides could be
assigned to HLA-C*04:01, a specificity that was not detected by
unsupervised clustering. However, in cases where the haplotype
is not fully characterized, or when the known MHC alleles have
poorly studied motifs, the assignment by NetMHCpan would fail.
This is exemplified by a recent study of bovine MHC ligands,?®!
for which the motifs derived by GibbsCluster differed dramati-
cally from the assignments made by NetMHCpan due to paucity
of training data available to NetMHCpan for these alleles. Note
also, that the number of ligands discarded to the trash cluster us-
ing this approach was more than ten times higher compared to
those discarded by GibbsCluster (463 versus 45).

4. MHC Class I, Mono-Allelic Cells

Analyzing MHC class II binding data is for many reasons more
complex compared to MHC class I. First and foremost, the
HLA class II binding groove is open at both ends, accommo-
dating peptides of a wide range of length by letting them pro-
trude at either terminus of the nonamer binding core. Sophisti-
cated alignment methods are therefore required to identify the
conserved binding preferences of MHC class 1T molecules.**!!
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Secondly, the binding motifs for MHC class II are in general
more degenerate compared to the highly conserved MHC class I
motifs.*>*] These observations make the analysis and interpreta-
tion of MHC class II binding data, including MS ligands, highly
challenging.

In a recent paper by Ooi et al.,*) MS eluted ligand data were
used to investigate how patients expressing different HLA class
IT alleles have different susceptibility to autoimmune diseases. To
characterize the specificity for each allele, they generated trans-
genic mice bearing the human HLA-DR1 MHC class II allele.
On these data, we illustrate how the GibbsCluster method can
be used to identify the binding motif of MHC class II molecules
from mono-allelic MS ligand data and at the same time remove
potential outliers. The 5740 non-redundant raw eluted peptide
sequences were uploaded to the GibbsCluster web server, set-
ting the recommended preset parameters for MHC class II pep-
tides, except for the number of iterations per sequence per tem-
perature step (set to 100) and the number of temperature steps
(set to 50); these parameters entail a slower, but more accurate,
motif search. The method recovered the binding motif for allele
HLA-DRB1*01:01, with strong amino acid preferences at anchor
residues at P1, P4, P6, and P9 (Figure 3A). These preferences
were observed both without (Figure 3A, left panel) or with a trash
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ligand data. The method identifies distinct amino acid preferences at the

anchor positions P1, P4, P6, and P9 both without (left panels) and with (right panels) the trash cluster activated. A) Visualizing the motif and removing
outliers from the mono-allelic human-DR1 mouse-transfected cell lines. B) Motif identification on mixed allelic data of DR15-DR51-EBV transformed cell

lines.

cluster activated (Figure 3A, right panel). By activating the trash
cluster option with a threshold of 2, 179 peptides (3% of data)
were removed, and the logo showed a 20% increase in informa-
tion content (Figure 3A, right panel).

5. MHC Class Il, Poly-Allelic Cells

Another data set obtained from the Ooi et al. study™* con-
sists of peptides eluted from HWO09013 cells that express the
HLA-DR15/DR51 class I alleles. On this poly-allelic data set of
MS eluted ligands, we set out to demonstrate how the Gibb-
sCluster can be used to separate multiple specificities in MHC
class II ligand data. The set of 2782 unique eluted peptides was
submitted to GibbsCluster, using the recommended preset pa-
rameters for MHC class II and allowing the program to search
up to three clusters. The unfiltered, single-cluster solution shows
a motif with the correct P1, P4, P6, and P9 anchor positions, but
with low information content and preferences that are a mixture
of the two alleles in the sample (Figure 3B, left panel). Activating
the trash cluster with a threshold of 2, the maximum information
content is observed for the solution with two clusters (Figure 3B,
right panel). The amino acid preferences identified by GibbsClus-
ter resemble previously published motifs derived from binding
affinity data for HLA-DRB1*15:01 and HLA-DRB5%01:01,314]
and closely overlap with the global peptidome of DR15/51 charac-
terized in a recent study.*% Specifically, cluster 1 was composed
of 1610 peptides (57.9%) and its motif resembles the HLA-DR15
binding preferences; cluster 2 comprised 1050 peptides (37.7%)
and corresponds to the HLA-DR51 alleles; 122 peptides (4.4%)
did not match to either group and were collected by the trash
cluster.

In order to validate the solutions generated by GibbsCluster,
we examined the composition of the clusters in terms of binding

Proteomics 2018, 18, 1700252 1700252

potential predicted by NetMHCIIpan-3.1.%] Both for the mono-
allelic DR1 and poly-allelic DR15/51 serotypes discussed above,
we obtained predicted percentile rank scores for all peptides
in the cluster solutions and in their relative trash cluster
(Figure 4). The predicted median rank score for HLA-
DRB1*01:01 in the DR1 cluster was 4% (first quartile (Q1) = 0.9,
third quartile (Q3) = 12), whereas the trash cluster had a median
rank score of 41% (Q1 = 20.5, Q3 = 75). In the poly-allelic data,
cluster 1 was associated with HLA-DRB1*15:01, and showed
a median rank score of 13% (Q1 = 5, Q3 = 30); cluster 2 was
associated to HLA-DRB5%01:01 and obtained a median rank

I GC-DR1 GC-DR15/51 WM Trash Clusterl

100

Amount of ligands
in trash cluster

DR1: 179 (3%)
DR15/51: 122(4.4%)

10

%RANK

0.1

0&\’
Figure 4. NetMHClIpan percentile rank score for GibbsCluster solutions
in the DR1 and DR15/51 data sets. Percentile rank scores were predicted
by netMHCllpan-3.1 for each GibbsCluster group with matching alle-
les present in MS data samples. In the case of the mixed allele dataset
DR15/51, peptides in the trash cluster were scored by NetMHClIpan to
both DRB1*15:01 and DRB5*01:01, selecting the lowest rank score of the
two.
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score of 4% (Q1 = 1.1, Q3 = 11); peptides in the trash cluster
were evaluated against both alleles, assigning the best rank
of the two, which resulted in an average rank score of 41%
(Q1 = 23, Q3 = 75) (Figure 4). Overall, the NetMHCIIpan
percentile score distributions suggest that the trash cluster could
successfully collect peptides with very poor correspondence to
the known preferences of the MHC class II molecules, and
that probably derived either from incorrect spectral matches or
from contaminants. The relatively high predicted rank values
for the peptides mapped to the HLA-DRB1#*15:01 cluster further
suggest that the binding motif for this molecule predicted by
NetMHCIIpan-3.1, which was trained on binding affinity data,
shared a rather weak overlap with the binding motif contained
within the MS ligand data. This observation underlines the high
potential of MS ligand data to complement our knowledge on
peptide characteristics required for MHC antigen presentation,
as previously remarked for MHC class L.2-21:23]

6. Generating Prediction Models from MS Ligand
Data

The approaches described so far in this report are mainly
concerned with extracting and visualizing meaningful patterns
within complex, often noisy, mixtures of peptides sequences. A
further step is the generalization of the motifs identified in the
data at hand, by constructing prediction models. Machine learn-
ing algorithms such as NNAlign,*¥ when provided with train-
ing examples suitably labeled (e.g., ligands vs non-ligands), can
be instructed to automatically learn the features that distinguish
positive from negative examples. Such models can then be ap-
plied on external data sets to discover more occurrences of the
patterns learned on the training data. In the context of peptide-
MHC interactions, a good prediction model should have the abil-
ity to capture the binding preferences contained in the training
data, both in terms of sequence motifs and peptide length distri-
bution. In the next two sections, we illustrate some simple exam-
ples of prediction models directly constructed from MHC class I
and class II eluted ligands.

6.1. MHC Class | Prediction Model

As an example application, we continue with the Abelin lig-
and elution dataset previously analyzed and filtered using
GibbsCluster-2.0 (Figure 1). For each of the representative alle-
les HLA-A*68:02, HLA-B*35:01, and HLA-B*57:01, we prepared
a training set consisting of post-filtering ligands (positive in-
stances) and random natural peptides (negative instances). Posi-
tive instances were labeled with a target value of 1, negatives with
a target value of 0. In line with earlier work,¥ the amount of ran-
dom negatives was imposed to be the same for each length 8-
13, and corresponded for each length to five times the amount
of positives for the most abundant peptide length. This uniform
length distribution of the random negatives was adopted as a
background against which machine learning can be employed
to learn the amino acid and length preference of the natural
binders.
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On each of the three data sets, we trained a prediction model
with the NNAlign-2.0 web server, using the recommended preset
options for MHC class I ligands of variable length. In a cross-
validation experiment, the three models returned an area un-
der the Receiver Operating Characteristic curve (AUC) of 0.961,
0.984, and 0.979, respectively. In order to derive the amino acid
and peptide length preferences learned by the model, we used it
to evaluate a large set of 900 000 random natural peptides with a
flat length distribution, and extracted the top 0.1% scoring pep-
tides. The composition of these high-scoring peptides should re-
flect the main preferences identified by the method to distin-
guish positive from negative instances. Indeed, the binding motif
drawn from the top 0.1% peptides closely reflects the amino acid
preferences of the training data (Figure 5A, B). Moreover, all three
methods could capture the preference for 9mer peptides over
other peptide lengths; 10mers were moderately allowed, 8mers
and 11mers were observed more infrequently (Figure 5C).

6.2. MHC Class Il Prediction Model

To illustrate how the NNAlign framework can be used to con-
struct MHC class II prediction models, we go back to the DR1
and DR15/51 data sets from Ooi et al.*¥ previously filtered and
clustered with GibbsCluster (Figure 3). To enrich the positive
instances with artificial negative examples, a set of natural ran-
dom negatives of lengths 11-19 amino acids was added to each
eluted ligands data set. Positive instances were labeled with a tar-
get value of 1, negatives with a target value of 0. Similarly to the
training set preparation described above for MHC class I, the
amount of random negatives for each length corresponded to
five times the amount of positives for the most abundant peptide
length. For each of the three specificities deconvoluted by Gibb-
sCluster in the DR1 and DR15/51 cells, we applied NNAlign-
2.0 to generate a prediction model, using the preset parameters
for MHC class II recommended by the NNAlign server. For the
mono-allelic DR1 serotype, all ligands except those removed by
the trash cluster were used to train a model. For the DR15/51
cells, for which the clustering analysis revealed two separate
specificities, we generated a separate model from the ligands con-
tained in each of the two clusters.

The three models revealed high internal consistency, with
cross-validated performance of AUC = 0.952, 0.974, and 0.952,
respectively. NNAlign automatically generates a matrix (and logo)
representation of the motif learned by the method, constructed
from the top 1% scoring predictions from a large set of ran-
dom natural peptides. We may compare the motifs learned by
NNAlign to: i) the binding preferences in the MS training data,
identified by GibbsCluster, ii) the GibbsCluster motifs identified
in tetramer-validated epitopes extracted from the IEDB for the
three DR molecules, iii) the binding preferences predicted by
NetMHCIIpan-3.1 for these DR molecules. In general, the mo-
tifs learned by the NNAlign models share a remarkable over-
all correspondence to the preferences found by GibbsCluster
for the MS ligand data, with similar amino acid enrichments
at the anchor positions P1, P4, and P6, as well as the strong
P9 for the DR51-associated ligands (Figure 6, first and sec-
ond columns). Likewise, the binding motifs constructed from
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Figure 5. Generating prediction models from MS ligand data. A) Sequence motifs of the training data for three MHC class | alleles, aligned and filtered
by GibbsCluster; B) sequence motifs captured by NNAlign-2.0; C) ligand length preferences in the training MS data compared to length preferences

learned by the NNAlign model.

the rather small amount of tetramer-validated epitopes obtained
from the Immune Epitope Database (IEDB)® for the three DR
molecules (231 for HLA-DRB1*01:01, 129 for HLA-DRB1*15:01,
73 for HLA-DRB5%01:01) correspond well with the motifs of
the NNAlign models, and the MS ligand data (Figure 6, third
column). In contrast, the logos derived from in vitro binding
affinity data (NetMHCIIpan) in all cases show substantial dif-
ferences to both the MS- and epitope-derived motifs (Figure 6,
fourth column). These discrepancies are most pronounced for
HLA-DRB1%*15:01, where the NetMHCIIpan motif has weakly
defined preferences at the anchor residues, and an enrichment
of arginine (R) throughout the binding motif: a preference that
is completely absent from the MS and epitope-derived mo-
tif. Another, more subtle difference is the enrichment of glu-
tamic acid (E) at P4 in the MS and epitope motifs for HLA-
DRB1*01:01; this preference is absent in the NetMHCIIpan
motif. Finally, NetMHClIpan displays a preference for R/K at
position P8 for HLA-DRB5*01:01; this anchor is completely
absent in the motif derived from MS and tetramer-validated
epitope data. Taken together, these results show that ligand
elution is a stronger correlate of epitope presentation than
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peptide-MHC binding affinity, suggesting that epitope prediction
models may greatly benefit from incorporating MS eluted ligand
data.

7. Final Remarks

The binding specificities of MHC molecules have been tradi-
tionally characterized using in vitro assays of binding affin-
ity. The peptide-MHC binding data amassed through decades
of painstakingly low-throughput experiments have had a
tremendous contribution to the characterization of the binding
preference for the most prevalent MHC molecules, and more
generally to the understanding of the peptide repertoire avail-
able for T-cell recognition. However, because of the extreme poly-
morphism of the MHC-encoding genes, with up to several thou-
sand allelic variants per locus, the full characterization of their
specificities remains infeasible. Tandem mass spectrometry has
emerged in the past decade as a powerful, high-throughput alter-
native for the identification of peptides eluted on the surface of
antigen-presenting cells.
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motifs for NetMHClIpan-3.1 were determined by evaluating 100 000 random peptides, and visualizing the core motif of the top 1% scoring sequences.

The appeal of MS-based techniques does not only reside in the
sheer amount of ligand data that can be detected in a single exper-
iment. Because MS ligands are derived from a biological system
that incorporates all properties of antigen presentation includ-
ing binding affinity, binding stability, proper peptide processing
and translocation, and impact of MHC binding chaperones, these
techniques should capture additional signals besides the binding
affinity measurable by in vitro assays. Accurate tools for the iden-
tification of sequence motifs in eluted ligand datasets are essen-
tial to interpret the patterns underlying the immunopeptidome
and to benefit from this data deluge.

In this report, we described some straightforward, efficient ap-
proaches to extract motifs from immunopeptidomes in a num-
ber of scenarios commonly encountered in the field. We outlined
analyses for MHC class I and class I1, both in cell lines expressing
a single MHC allele and in unmodified cells with multiple MHC
allelic variants. GibbsCluster?” is our tool of choice because it
can effectively remove residual contaminants after FDR filtering,
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deconvolute multiple motifs in a mixture of peptides of variable
length, and because it works both for MHC class I and class II
ligands. In general, MHC class I molecules have strong, well-
defined motifs, and even in samples containing several speci-
ficities it is often feasible to separate them into individual clus-
ters. Unambiguously associating each cluster to individual MHC
molecules remains an unresolved problem, especially for alleles
with unknown binding motifs. So far only Bassani et al.”’! have
attempted to tackle this question, exploiting the co-occurrence
of MHC class I alleles across different data sets of known hap-
lotype to assign motifs to individual alleles. More work along
these lines is needed to automatically annotate the MHC restric-
tion of peptides in poly-allelic datasets. The current implemen-
tation of GibbsCluster assumes that each peptide is restricted
to one and only one MHC molecule. When cells express differ-
ent alleles with similar binding motifs, or in the case of MHC
class II ligands binding to multiple alleles in different alignment
frames, it is likely that an individual peptide can act as ligand for
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multiple MHCs in a mixture. Future improvements to the algo-
rithm should aim to address this limitation and account for po-
tential multiple restrictions of individual ligands.

Ultimately, prediction methods can only be as good as the
data used to train them. While MHC ligands sequences obtained
by mass spectrometry show remarkable reproducibility and pro-
duce binding motifs consistent with those derived with more
low-throughput assays, there remain several potential sources
of error and bias in MS-based pipelines for ligand sequenc-
ing. For example, there is a documented underrepresentation
of cysteine in MHC ligand data sets, as this amino acid inter-
feres with MS precursor fragmentation.??”] Different software
tools for spectrum-peptide mapping use different functions to
score candidate sequences, and they will generally identify non-
identical sets of ligands. Post-translational modifications (PTMs)
have also been shown to have a role in shaping the MHC ligand
repertoire.*'However, accounting for such modified residues
further complicates accurate spectrum-peptide matching and
PTMs are often not comprehensively considered in MS pipelines.
Finally, common contaminants such as keratin and histone pro-
teins are often co-eluted with MHC ligands and add a level of
noise to the sequenced immunopeptidome.?** Reducing biases
and sources of error in the data-generation pipelines will also in-
evitably affect in a positive way the data interpretation and the
prediction tools constructed on these data.

A number of recent reports have described the first prediction
methods trained on MHC class I ligand elution data from mass
spectrometry.}*2850 Their results indicate that methods trained
on naturally presented peptides largely outperform prediction
methods trained solely on in vitro binding affinity data when it
comes to the identification of MHC ligands and epitopes. No re-
ports have yet been published on models directly trained on MHC
class II eluted ligands. Because the performance of MHC class II
prediction methods still lags far behind their class I counterparts
for epitope prediction, antigen processing factors are likely to play
a major role in the generation of MHC class II ligands. Incorpo-
rating naturally processed ligand from MS experiments in the
training pipelines of MHC class II prediction methods is an ex-
citing and yet unexplored opportunity to close that gap. A simple
but powerful approach to generate prediction models from lig-
and data is the NNAlign method.?? We illustrated the construc-
tion of models from MS eluted ligands both for MHC class I and
MHC class I, and showed that they capture the preferences of
the training data both in terms of binding motif and ligand length
distribution. Taken together, these computational tools allow re-
searchers to interpret motifs contained in immunopeptidomes
and generate prediction models to scan protein databases for epi-
tope candidates.
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