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Abstract
Identification of hot spots of land degradation is strongly related with the selection of soil tracers for sediment pathways. This
research proposes the complementary and integrated application of two analytical techniques to select the most suitable finger-
print tracers for identifying the main sources of sediments in an agricultural catchment located in Central Argentina with erosive
loess soils. Diffuse reflectance Fourier transformed in the mid-infrared range (DRIFT-MIR) spectroscopy and energy-dispersive
X-ray fluorescence (EDXRF) were used for a suitable fingerprint selection. For using DRIFT-MIR spectroscopy as fingerprinting
technique, calibration through quantitative parameters is needed to link and correlate DRIFT-MIR spectra with soil tracers.
EDXRF was used in this context for determining the concentrations of geochemical elements in soil samples. The selected
tracers were confirmed using two artificial mixtures composed of known proportions of soil collected in different sites with
distinctive soil uses. These fingerprint elements were used as parameters to build a predictive model with the whole set of DRIFT-
MIR spectra. Fingerprint elements such as phosphorus, iron, calcium, barium, and titanium were identified for obtaining a
suitable reconstruction of the source proportions in the artificial mixtures. Mid-infrared spectra produced successful prediction
models (R2 = 0.91) for Fe content and moderate useful prediction (R2 = 0.72) for Ti content. For Ca, P, and Ba, the R2 were 0.44,
0.58, and 0.59 respectively.
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Introduction

Soil erosion is a naturally occurring soil degradation agent,
which involves three specific processes: detachment, move-
ment, and deposition of soil particles. Soil erosion reduces
cropland productivity and contributes to the pollution of wa-
tercourses, wetlands, and lakes (Pimentel 2006). The exces-
sive sediment input to a river-dam system produces loss of
reservoir storage capacity due to siltation, damage to wetland
and estuary ecosystems, floodplains, and negative impacts on
infrastructure (Walling and Collins 2016). Therefore, informa-
tion on soil loss and sediment delivery is essential to imple-
ment effective management practices to reduce the overall on-
site and off-site impact of soil erosion (IAEA 2014).

Soil movement becomes even more critical in arid and
semi-arid zones (Manyevere et al. 2016). This is also the case
for the west-central region of Argentina, due to two main
reasons: (i) agricultural area has been expanded at expenses
of forest cover altering the hydrological balance (Giménez
et al. 2016), and (ii) associated with climate change, in the last
decades, the rains show tendency to sustained increase, with a
higher frequency of extreme rainfall events (Penalba and
Vargas 2004; de la Casa and Ovando 2014; Barros et al.
2015). Therefore, in order to implement effective strategies
for controlling excessive flow of sediment, it is necessary to
establish both the nature and location of the main sources of
sediments at the watershed scale.

Recent studies have demonstrated that the sediment finger-
printing technique can be an effective approach for assem-
bling information on suspended sediment sources (Collins
and Walling 2002; Blake et al. 2012; Palazón et al. 2015;
Owens et al. 2016). Fingerprinting techniques have been suc-
cessfully applied in different ecosystems using stable and ra-
dioactive isotopes, biomarkers, soil properties, and/or trace
elements (Walling and Woodward 1995; Collins et al. 1998;
Walling 2005; Gibbs 2008; Guzmán et al. 2013; Schuller et al.
2013; IAEA 2014; Bravo-Linares et al. 2018). However, until
now, there are no peer-reviewed studies of the application of
these tracing techniques in arid or semi-arid agro-environ-
ments across Latin America.

Sediment geochemistry has been widely used to identify
the spatial sources of sediments delivered to watercourses
(Hardy et al. 2010). At the catchment scale, fingerprint tech-
niques allow identification and quantification of transported
sediment from different sources, measuring sediment proper-
ties that allow recognizing sediments originating from differ-
ent areas or land uses (Collins et al. 1996, 1998). The geo-
chemical concentrations of eroded sediments are mainly con-
ditioned by the type of soils and the geological substratum
from which they originate. Essential parts of this technique
are the mixing models, as through them it is possible to infer
the relative contributions of different sources to the sediment
mixtures in the stream, river, or dam. However, before a

mixing modeling approach can be applied, it is necessary to
select the tracer properties that perform the best as fingerprints
of the land uses we would like to discriminate. This can be
achieved by the composition of artificial soil mixtures based
on existing sediment sources collected from the studied catch-
ment. The proportion of these sources in the artificial mixtures
is estimated by the mixing model, whose result is then com-
pared with the true values of the apportionment. Using an
artificial mixture, the most suitable fingerprints can then be
determined. The selected elements are then the appropriate
ones for studying the catchment.

Differences in the soil content of some geochemical ele-
ments could be an appropriate attribute to identify the propor-
tions with which various sources form a mixed soil sample.
These differences can be originated mainly by (a) the compo-
sition of the soil on site, (b) changes in the content of these
elements due to previous spatial alterations (in depth or sur-
face, e.g., grooves formation), and (c) distinctive soil uses.

Mass concentration of geochemical element in soil can be
assessed by energy-dispersive X-ray fluorescence (EDXRF)
spectroscopy, a technique barely used nowadays with this
purpose (Fryirs and Gore 2013; Melquiades et al. 2013) and
with several advantages: (i) this is a non-destructive analytical
method; (ii) it allows fast measurement and involves simple
sample preparation (i.e., pressed pellets); (iii) a wide range of
elements from sodium to uranium can be measured simulta-
neously; (iv) analytical sensitivity of approximately 10 μg g−1

(depending on the element) is appropriate for determining
most metal concentration. On the other hand, this technique
may not be the cheapest one and may require sampling prep-
aration skills, time, and specific equipment for making the soil
pellets prior to measurement.

Due to the high costs for determining the elemental compo-
sition and other soil properties, in recent years, there has been a
growing interest in the use of diffuse reflectance Fourier trans-
form mid-infrared spectroscopy (DRIFT-MIRS) (Cobo et al.
2010; Demyan et al. 2012, 2013; Towett et al. 2015). This
technique combined with chemometric multivariate statistical
methods can produce accurate prediction of soil properties, as
elemental composition, at low costs. Among the multivariate
methods used, partial least squares regression (PLSR) analysis
is the most widely used because of its ability to address
multicollinearity of spectral data (Viscarra Rossel et al. 2006;
Stenberg et al. 2010). The performance of this model relies on
the ability to extract important spectral characteristic features
(e.g., electron transitions, overtones, and combination of funda-
mental vibrations in the mid-infrared frequencies) relevant to
the soil attributes of interest (Viscarra Rossel et al. 2006;
Viscarra Rossel and Lark 2009). PLSR is based on the assump-
tion of a linear relationship between the dependent variable of
interest (e.g., soil concentration of chemical elements) and a
predictor variable (e.g., absorbance peaks in the MIR spectra).
Nevertheless, most models have been validated with traditional
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wet analytical techniques. In this study, we evaluate the capa-
bility of DRIFT-MIR spectroscopy to predict the selected fin-
gerprint element contents measured by EDXRF. The main ob-
jective of this research work was to identify the more efficient
set of fingerprint elements in order to use them in a subsequent
study on the erosion-sedimentation process in the catchment.
Summing up, the objectives were the following: (i) evaluate the
fingerprint selection process for EDXRF measurement results,
(ii) identity specific elemental tracers of land use with artificial
mixtures, and (iii) find a predictor model for these elements
using DRIFT-MIR spectroscopy.

Materials and methods

Study site

The Estancia Grande sub-catchment (Fig. 1) is located in
central Argentina (S 33° 10′; W 66° 08′), 23 km northeast
of San Luis City (province of San Luis) at 1100 m a.s.l. The
studied area is about 4.7 km2, and it is a portion of the Rio
Volcán catchment. The average annual temperature is 17 °C,
while in summer (December to March) the mean tempera-
ture is 23 °C. Annual rainfall ranges from 600 to 800 mm,
with a tendency to increase and a rising frequency of ex-
treme rainfall events during the last decades (Penalba and
Vargas 2004; de la Casa and Ovando 2014) (Fig. 1 of
Supporting Material). Rainfall varies seasonally, with a dry
season from May to October and a rainy season from
November to April. Rains in the dry season are scarce and
sporadic, with occasional drizzles.

Soils are dominated by haplic Kastanozems (IUSS
Working Group WRB 2014). These soils originated from
loamy loess material and possess a high level of organic mat-
ter in their upper 25 cm. The area is currently being used for
agriculture (crop rotation), and livestock (free grazing and
feedlots), and some fields are used for growing nut trees (wal-
nuts and almonds) (Peña Zubiate et al. 2006).

The studied catchment belongs to the loess belt of North East
Argentina (Teruggi 1957), and there is no rocky outcrop in the
investigated watershed, being loess sediment. The soil is com-
posed of silt-sandy materials of aeolian origin (Ojeda 2005).

Regarding cropping and soil management practices, for more
than 10 years, direct seeding mulch-based systems have been
adopted as the main practice for crop cultivation. This practice
has increased crop yield and reduced soil erosion. The main
cultivated crops are soybean, maize, and wheat. The used her-
bicides are atrazine and glyphosate. Fertilizers are not applied
with the same regularity on the agricultural land. Farmersmainly
use N-P-K-based fertilizers such as urea ammonium nitrate
(UAN) 32-0-0, monoammonium phosphate (MAP) 11-52-0,
triple superphosphate 0-46-0, and biological growth promoters
depending on the crop. Feedlot cattle are fed with maize, oats,
sunflower meal, and grazing hay. Mineral supplements of sodi-
um chloride, calcium, phosphorus, and magnesium are also giv-
en to the cattle, which are necessary for growing young animals.

Sampling

Soil and sediment sampling were conducted in April 2015.
Top 20 mm of surface soil samples (source samples) were
collected from the different land uses following the

Fig. 1 Soil samples and location
of the study area
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procedures proposed by Gibbs (2008, 2014). The sampling
procedure involved removing the leaves and plant material
that was found in the place before taking a soil layer 20 cm2

and 20-mm thick of exposed soil using a stainless steel flat
spatula. At each location, multiple subsamples from an area of
about 100–200 m2 were combined in a plastic bucket as a
composite sample to ensure the sample was representative of
that land use. Land uses included crops, grassland, feedlot,
walnuts, stream banks, and fallow lands. Sediment samples
(mixture samples in the water courses) were collected at the
top 20 mm of the deposition zone of the watershed on little
floodplains where deposition process was observed. In total,
29 samples were collected among sources and mixtures. Four
of these samples (four different land uses) were used to create
two artificial mixtures, for selection of the best suitable set of
tracers. The number of selected samples was decided based on
(a) the number of different sediment sources and land uses,
which was in total eight (six for livestock and agriculture lands
and two minimal areas intended for dirt roads and barns), and
(b) the compound-specific stable isotope (CSSI) analyses (not
reported in this study), applied to be further correlated in a
later stage with EDXRF and MIRS analyses (the bottle neck
for the number of samples is CSSI, with normally one com-
posite sample per land use or sediment source and sediment
deposition zones). In the future, a more complete study will
aim at identifying the sedimentary sources and their destina-
tion with a more complete sampling plan and statistical
validation.

Analytical methods

The samples were dried at 50 °C, disaggregated, and then
sieved through a 2-mm sieve at the GEA-IMASL
Laboratory. Two artificial mixed samples (MIX 1 and MIX
2) were then composed using identified source samples fol-
lowing the below proportions:

MIX1 ¼ 10%S1þ 25%S2þ 40%S3þ 25%S4
MIX2 ¼ 3%S1þ 45%S2þ 20%S3þ 32%S4

The soil source S1 originated from a riverbank.
The sources S2 and S4 were two soil samples collected in

crop rotation commercial farms. During the sampling, one of
these sources was under corn and the other one under soybean
cultivation, respectively. These cultivations change between
corn and soybean yearly.

The source S3 came from a feedlot.
The proportions were chosen in such a way that they rep-

resent the possible distributions of sediment origin, including
the end-members of sediment contribution to make sure that
the model testing gets results outside the uncertainty margins
of the model. The two resulting artificial mixtures were ho-
mogenized prior to analysis.

For EDXRF spectrometry analysis, the samples were
ground into fine powder, which was used to produce pressed
pellets of 25-mm diameter and 2.5-g weight. The pellets were
measured at the Nuclear Science and Instrumentation
Laboratory (IAEA Laboratories, Seibersdorf, Austria), using
a heavy-duty, fully software-controlled EDXRF spectrometer
(Pd-anode X-ray tube) utilizing five secondary targets
(SPECTRO X-LAB 2000).

DRIFT-MIRS analyses were carried out at the Applied
Chemistry Research Laboratory of the Central University of
Venezuela. The samples were milled for 45 s in a micromill.
The spectral data were obtained in a Nicolet Si10 DRIFT-
MIRS and finely ground dry KBr was used as background.
The spectra were collected between 4000 and 400 cm−1 with
4 cm−1 of resolution and 64 scans; the analyses were run in
triplicates. The TQ analyst 9.4.45 software of Nicolet was
used to perform the PLSR of the EDXRF analysis in combi-
nation with the DRIFT-MIRS. The selection of calibration and
validation samples was done through an algorithm included in
the software, from the condition of covering the whole con-
centration range (for the five parameters involved) in the best
possible way to obtain a robust model. No random selection of
these groups was made due to the reduced number of samples.
In this study, focusing on the identification of suitable geo-
chemical fingerprints for tracing sediments in the investigated
basin, 29 soil samples were collected over the entire catch-
ment of 4.7 km2. Additionally, two artificial mixtures, using
four of these 29 samples, were composed, for validating
mixing models. For building the prediction model using
MIR spectra, we used the 29 collected samples and one of
the artificial mixtures. In summary, the analysis carried out
by MIR spectroscopy included 30 soil samples. Raw spectral
data as well as first and second derivative of the spectral were
applied for developing prediction models that provide insight
into a rapid and inexpensive estimate of the fingerprint ele-
ments in soils and sediments compared to conventional chem-
ical procedures.

Mixing models

The EDXRF provided the concentration of more than 40 ele-
ments for each sample. The interpretation of this significant
amount of data required the use of mixing models (MM) to
deconstruct sediment mixtures into their source components.
An appropriate application of MM needs the identification of
a subset of discriminating elements (fingerprints) whose con-
centrations are input parameters into this MM.

The two artificial mixed samples were used to select the
suitable set of fingerprints to explain an accurate proportion of
each source in the artificial samples composition. Following
the methodology proposed by (Collins and Walling 2002) for
the identification of fingerprints, the Kruskal–Wallis H test
was used in this study as the first step to reject fingerprint
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properties that are redundant. This procedure is a non-
parametric method equivalent to analysis of variance
(ANOVA). Through it, the differences between the sources
of sediments according to each measured property are ana-
lyzed. Then, as a second step, discriminate function analysis
(DFA) was used to test the ability of the parameters that passed
Kruskal–Wallis H test to classify all the source samples from
the catchment into the correct categories. DFAwas performed
in R software using the KlaR package (Roever et al. 2014). A
greedyWilks’ test was applied for the DFA. This test performs
a stepwise forward variable selection using the Wilks’
Lambda criterion: select the set of properties that minimizes
the Wilks’ lambda of the model including the variable if its p
value still shows statistical significance.

The third and last step consists in a visual analysis of 2-D
plots of the elements that were statistically selected. The 2-D
plots were used to select the most appropriate elements for the
mixing model run. Thus, all possible combinations of element
pairs as bi-plots were created; if a mixture lies outside the
source polygon, then one or both of the elements pair should
not be used. After examining all of the 2-D plots, there will be
a selection of elements that are valid, and these should be used
in the mixing model run. Then, the CSSIAR v1.00 software
(de los Santos-Villalobos et al. 2017) was used as MM to
determine the contribution of the source samples to the mix-
tures. This software has a friendly environment and is written
in R language (R Core Team 2014). This mixing model is
based on SIAR (Stable Isotope Analysis in R) (Parnell et al.
2010; Jackson 2013). It runs a Bayesian mixing model with
the given tracers to find the best solution for a specific prob-
lem. In addition, this software provides the analysis of larger
sets of data and gives more detailed statistical information
such as the uncertainty. It is possible to get the proportion of
sediment contribution from different land uses in the catch-
ment. Moreover, the simple isotopic MM IsoSource (Phillips
and Gregg 2003) was used to compare its output with the
result obtained by CSSIAR.

Results

As mentioned before, this study was carried out to properly
select geochemical elements that are able to act as fingerprints
of different land uses encountered in the Estancia Grande ba-
sin. At the same time, it was tested if the selected tracers can
be predicted through DRIFT-MIR spectroscopy.

Elemental tracers’ selection

Seven elements were selected after applying the Kruskal–
Wallis H test and DFA with minimization of Wilks’ lambda,
such as phosphorus (P), iron (Fe), calcium (Ca), magnesium
(Mg), barium (Ba), manganese (Mn), and titanium (Ti). From

analysis of the 2-D plots generated, it was concluded that most
of these seven elements performed as expected. This means
that taking each element content as vertical and horizontal
axes, it is possible to draw a polygon (with the sources points
as vertices) which encloses the mixtures’ points. Some exam-
ples are depicted in Fig. 2a: Ca–Ba, P–Fe, and Ba–Ti plots
show artificial mixtures’ points enclosed by the polygon that
was generated by their sources. These plots indicate that using
these five elements (Ca, Ba, P, Fe, and Ti), it is possible to
explain the mixtures’ contents as a vector sum of their
sources’ contents.

In Fig. 2b, P–Mg, Ti–Mn, and Fe–Mn plots show some
examples in which one or both artificial mixtures’ points are
outside the polygon created by the sources. In these combina-
tions of elements, it is not possible to explain the mixture
concentrations as a vector sum of sources’ concentrations.
Therefore, Mn andMgwere taken out of the set of fingerprint-
ing elements.

Passing all tests, phosphorus, iron, calcium, barium, and
titanium were selected as fingerprints for the study. Table 1
shows the mean and standard deviation of the selected finger-
print concentrations for the different land uses. Marked in
italics are the land uses sediments that participate in the artifi-
cial mixtures.

The concentrations of these five elements were used in the
CSSIAR v1.0 and IsoSource software, in order to reconstruct
the two artificial mixtures into their soil sources. CSSIAR’s
outputs are the source proportions and the uncertainties of
these proportions (given by the standard deviation). The cal-
culated proportions by CSSIAR can be found in Fig. 3, for
both mixtures. IsoSource calculated similar proportions as
CSSIAR, although without uncertainty information. Both
models found an accurate and realistic solution when using
the set of P, Fe, Ca, Ba, and Ti, with a mean absolute error
(MAE) of 5.1% for each of the two artificial mixtures using
the CSSIAR software (Fig. 3), and aMAE of 7.5 and 4.5% for
each respective mixture (MIX 1 and MIX 2) using IsoSource
was found.

The error bars in the charts represent the associated uncer-
tainty when preparing the artificial mixtures. For the calculat-
ed soil proportions, we used the standard deviation output
provided by the tested mixing model. It can be noticed that
for the artificial mixture MIX 1, the calculated decomposition
is accurate as it identifies the main contributor and the source
with less proportion in the mixture. The mean absolute error is
5.1%, which can be considered as a good result. For MIX 2,
we obtained the same MAE, although this solution is not
pinpointing the main contributor in the mixture, i.e., corn soil,
proposing as the greatest proportion the soybean soil. The
swap in these two sources is mainly due to the fact that these
soil sources were under different crop rotations, one under
corn and the other one under soybean when the sampling took
place. But in previous years, the cropping system had the
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crops in reverse location. This feature is clear when the con-
centrations of the selected tracers are inspected. Indeed, the
mentioned sources have very similar concentration values for
Ti, Fe, and Ca. This issue can be interpreted as a limitation of
geochemical elements to accurately distinguish between two
fields used for the same crop in different years. Nevertheless,
it is important to highlight that if these sources are considered
together (S2 + S4), the mixingmodel proposed a proportion of
76.5% in the MIX 2 for them, when the actual proportion is
77%. This is a very accurate result highlighting that the agri-
cultural land uses are the main contributor versus bank and

feedlot soil, which were accurately predicted as shown in the
chart. The bank’s contribution to the mixture is in accordance
with the actual proportions in both mixtures; in MIX 1, the
difference between the calculated and the actual value is only
4%, while in MIX 2 this difference is 1.7%. Furthermore, for
feedlot source apportion, the result is close to the actual value;
in MIX 1, the absolute difference between the calculated and
the actual proportion is 6%, and in MIX 2 it is only 2%. Thus,
the selected elemental tracers work properly to identify the
main soil sources: feedlot, rotation crops (as a whole), and
bank.

Fig. 2 a Examples of 2-D plots in which the polygon encloses the mixtures. These elements work properly. b Examples of 2-D plots in which the
polygon does not enclose the mixtures. Mn and Mg do not work properly as fingerprints

Table 1 Descriptive statistics
parameters for the selected five
elements. In italics, land uses
involved in the artificial mixtures

Elemental concentrations (% ×10−2)

Sources Number of
samples

P Ca Fe Ti Ba

Mean SD Mean SD Mean SD Mean SD Mean SD

Stream
banks

6 9.9 0.7 293 46 391 42 46.3 3.8 5.4 0.5

Rotation
crops

3 11.1 0.8 239 9 370 26 45.2 2.0 5.3 0.5

Walnuts 1 13.5 – 214 – 332 – 41.4 – 5.2 –

Grassland 2 14.7 0.1 321 20 375 66 44.0 4.0 4.9 0.6

Feedlot 2 039.5 0.9 318 7 292 1 37.2 0.5 4.9 0.1

Fallow
lands

3 9.3 0.4 306 14 418 33 45.9 1.7 5.0 0.2
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Prediction models using DRIFT-MIR spectroscopy

Once the most efficient set of fingerprint elements to trace
sediment movement in the studied catchment was identified,
DRIFT-MIR spectroscopy was used to predict the concentra-
tion of these fingerprint elements through the produced spec-
tra, with a wave number range between 3851.15 and
2400 cm−1, 2200 and 766.08 cm−1, and 578.54 and
508.63 cm−1, through partial least square modeling. This ap-
proach allowed increasing the number of data without the
disadvantage of the major cost and intensive sample

preparation for XRF analysis. These spectral regions were
selected to include functional soil properties such as clay min-
erals and phosphorus (P) soil compounds, as reported in the
literature (Table 2), given that clay minerals are the main soil
components responsible for the transport of fingerprint ele-
ments, such as the cations Ca2+, Ti4+ and Ba2+, Fe2+/3+, and
P in its various forms. DRIFT-MIR spectra combined with
PLS (raw, first, and second derivative) is one of the most
common techniques for spectral calibration and prediction
modeling. Using the geochemical contents measured by
EDXRF, it is possible to generate good prediction models of

Table 2 Spectral regions. Bibliography of functional soil properties associated with the regions selected by TQ analyst software

Soil component Wavenumber
(cm−1)

Related bonds Reference

Clay minerals 3690–3620
950–600

–OH stretch band of Kaolinite (Janik et al. 1998; Madejová et al. 2017; Nguyen et al. 1991)

3630–3620 –OH stretch band of smactite (Janik et al. 1998; Madejová et al. 2017; Nguyen et al. 1991)

1200–700 Si–O stretch bands (Janik et al. 1998; Madejová et al. 2017; Nguyen et al. 1991)

600–400 Si–O bending

Carbonates 2520–2513 CO3
–2 (Bruckman and Wriessnig 2013; Van der Marel

and Beutelspacher 1976)1798 Carbonates calcite dominated

1445 Carbonates, carboxylates

Iron oxides 600–700 Fe–O (Van der Marel and Beutelspacher 1976)

Iron oxyhydroxides 3100, 900, 800 Fe–O–O–H (Van der Marel and Beutelspacher 1976)

Phosphorous compounds 1250–750 P–O–H stretch bands and bending (Janik et al. 1998; Kizewski et al. 2011)

Aluminum and Fe phosphates 1090 and 1150 P–O–H stretch bands (Kizewski et al. 2011)

Metal phytates 900–790 triplet P–O–C stretch bands (He et al. 2006a, b)

Fig. 3 Artificial mixed samples.
In blue, reconstruction using
CSSIAR v1.0 mixing model. In
green, reconstruction using
IsoSource, and in red, the actual
proportions. The source
contributions are properly
calculated using P, Fe, Ca, Ti, and
Ba as tracers
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the content of the identified fingerprint elements, through their
different concentration ranges in all the soil/sediment samples.
The first derivative spectra give the best prediction models
compared with using second derivative and raw spectra.
Furthermore, working with no smoothing on the spectra was
more appropriate for obtaining better models given the param-
eters used for the quantification. The useful regions of the
spectra were selected by TQ analyst software. Three regions
were used: 3851.15–2400 cm−1, 2200–766.08 cm−1, and
578.54–508.63 cm−1. The cross-validation plots for the PLS
regression of the first derivative using the DRIFT-MIR spectra
data for all samples (sources and mixed) are shown in Fig. 4.
Regarding the calibrations, the five parameters were properly
quantified as the calculated contents made by the model have a
correlation coefficient higher than 0.85. When testing themod-
el with the validation samples, iron (Rpred = 0.95) and titanium
(Rpred = 0.85) showed a better correlation between the calculat-
ed and the actual contents. Phosphorus hasRpred = 0.76, despite
it shows an excellent correlation coefficient in the calibration
(Rcal = 0.99). Barium has a similar result, with an Rpred = 0.77
and a very good correlation coefficient in the calibration
(Rcal = 0.94). Notwithstanding these good results, for the vali-
dation samples, calcium does not show a satisfactory correla-
tion between the content calculated by themodel and the actual
one (Rpred = 0.67 and Rcal = 0.87). Following the guidelines
proposed by (Malley et al. 2004), predictions for Fe was clas-
sified as successful prediction (0.95 ≤ R2 < 0.90) and for Ti
moderate useful prediction (0.8 ≤ R2 < 0.7). Table 3 summa-
rizes the results of the prediction model.

Discussion

The selected tracers are Ca, Ba, P, Fe, and Ti. Despite in this
set of fingerprinting tracers Ca and Fe are major elements,
they can be used as good fingerprint tracers due to the partic-
ular features the land uses have in the study area. Calcium
content is lower in the topsoil of the agricultural fields as
compared to the soil from the stream banks and fallow land
without human intervention. Calcium carbonates in the lower
subsoil could originate from the vertical, horizontal, or in situ
resettlement of carbonates during pedogenesis in the soil-
sedimentary environment. At the stream banks, this subsoil
may appear at the surface, due to erosion. In the natural fallow
land, erosion may let appear the subsoil at the surface as well.
Further leaching through intensive agricultural practices may
reduce the Ca in the topsoil. Calcium content is high also in
the feedlot soil, which may be caused by enrichment through
the cows’ manure probably holding calcium from the animal
feed (Edmeades 2003). Iron may show different concentra-
tions as well. The lower content of Fe may be due to the
constant application of fresh manure in the feedlot soils
(Whalen et al. 2000). Besides, it is expected a lower Fe content

in the trees’ topsoil (walnuts) than in the fallow and grassland
top soils (Little and Bolger, 1995), as a higher content of organ-
ic matter can be found due to accumulation of humic substances
caused by decomposition of dead plant residues and other or-
ganic (animal) materials on walnuts’ soils. Regarding the use of
phosphorus, it is expected to find the highest content of this
element in the feedlot due to the cattle manure (Sharpley and
Moyer 2000). For similar reasons, it is expected an increased
concentration of P in the soil in grazing pasture areas (grass-
land). An increased P content in the agricultural fields might be
due to the use of fertilizers (Roger et al. 2014) and to a lesser
extent herbicides (Peruzzo et al. 2008). Titanium content may
be inherited from the parent material and the variability in this
element content may show differences due to the origin of the
loess materials (Karathanasis A.D. 2009). This would explain
the variability in Ti comparing cultivated and uncultivated
areas, as banks and fallow lands.

Using this set of tracers, out of the 43 geochemical elements
measured with X-ray fluorescence, the calculated soil propor-
tions are very close to the real initial proportions. The artificial
mixture MIX 2 is more complex including only 3% of the
source bank. This was carried out to test the strength of the
technique in difficult situations expected in the real sediment
mixtures of our studied catchment. For the MIX 1, the mean
absolute error (MAE) is 5.1% (7.5% using IsoSource); for the
MIX 2,MAE is 5.1% (4.5% using IsoSource). It is a very good
result considering the complexity of thesemixtures. The results
obtained by using CSSIAR and IsoSource are close to each
other, which proves that the mixing model software used is not
critical for the analysis of the mixtures. One important aspect to
consider is that CSSIAR output includes the standard deviation
of the calculated proportions. This key information allows es-
tablishing the uncertainty limits of the calculations.

Our findings highlight the importance of testing different
tracers using artificial mixtures with known soil proportion
sources from the study area prior to analyzing the whole set
of field samples and sediment mixtures. The third and last
step of the selection process (visual analysis of the bi-plots)
ends up being a valuable step. Thanks to this, we move
from having a solution with a MAE of 7 and 15%, for
MIX1 and MIX2 (using the tracers selected by statistical
tests), to get a MAE of 5% for each mixture (using P, Ca, Fe,
Ti, and Ba). Then with this approach (three steps for the
selection of tracers), the set of fingerprint elements is the
one that provides the more precise results on the calculated
proportions of the artificial mixtures. As previously report-
ed by (Haddadchi et al. 2014), we consider as well this
preliminary test an important calibration step for validating
a fingerprinting technique.

The attempt to find a prediction model using DRIFT-MIR
spectra through the PLS regression was partially successful.
The study shows a good predictive model using the first de-
rivative of the spectral data. The coefficients of determination
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for the predictions (R2
pred) are similar and in some cases better

than the ones reported before by other authors. The R2 values
for the validation of P and Fe are in agreement with themedian

reported in a recent review on the performance of infrared
reflectance spectroscopy for the prediction of soil properties
(Soriano-Disla et al. 2014) and slightly above the values
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reported by Soriano-Disla et al. (2013) for agricultural and
grazing European soils. The predictions made for Ba and Ti
are in agreement and slightly above the values reported in the
mentioned paper. The prediction made for Ca content
(R2

pred = 0.44) is not satisfactory as it is not in agreement with
the median found in several other studies (R2 = 0.79) (Soriano-
Disla et al. 2014). The model is fairly correct, for predicting
four of the five fingerprinting elements, considering the re-
duced number of samples used to build the model.
Although, when these predicted contents were used in the
mixing model as inputs, no expected results were found. The
MAE of these proportions is 15%, which is three times the
MAE calculated when using the measured contents with
EDXRF. The model can predict realistically Fe and Ti con-
tents from the spectra of the samples but the predictions on the
rest of the fingerprint elements are not that accurate for being
used as a replacement of these element contents when appor-
tioning the mixture.

Conclusions

This study shows that a good predictive model using the first
derivative of the spectral data can be built using EDXRF mea-
surements of element contents as parameters in a PLS regres-
sion. It is possible to predict the parameters P, Ca, Fe, Ti, and
Ba with relative accuracy, especially P which is difficult to
predict using DRIFT-MIRS and PLS regression with wet an-
alytical techniques. As a first approach, the results obtained in
this study reveal the need for a larger number of samples in
order to determine the quantitative potential of the prediction
models using DRIFT-MIR spectra with EDXRF as a finger-
printing technique. However, these results are very encourag-
ing since they show that geochemical tracers can be used in
small areas where the geology is very homogeneous, an ap-
proach that has not been studied so far. Furthermore, the use of
the element contents has the advantage over isotopic tracers
(such as δ13C of fatty acids) that it is does not need conversion
from the isotopic proportions (result of the MM) into soil

proportions, since mass concentrations are used as tracers,
i.e., the conversion factor is 1 for all the sources.

The development of new analytical methods that can in-
volve geochemical tracers in combination with land use,
through the use of relatively economic analytical methods,
opens a new perspective in erosion evaluation which in turn
delivers essential information for effective and precise soil
erosion management.

It is important to highlight that this study is a preliminary
assessment, necessary to select and validate proper tracers; a
more complete study aimed at identifying the contributions of
major sources of sediments will demand a more extensive
sampling strategy.
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