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A B S T R A C T

Vibration control systems are usually classified into: passive, active and semi-active. Semi-active control systems
are based on formerly passive mechanical devices, such as springs and dampers, whose characteristics are ad-
justed in real-time by active means. The attractiveness of semi-active control systems mainly relies on their
assumed “inherent stability”, which makes them almost as reliable and fault-tolerant as passive control systems.

The present paper shows that these assumptions are only partially true, by applying passivity formalism and
bounded-input bounded-output stability definitions. Based on this study, semi-active control devices are ra-
tionally classified into three classes with two subclasses each: (1.1) non-negative variable-damping dampers,
(1.2) possibly-negative variable-damping dampers, (2.1) independently-variable-stiffness springs, (2.2) re-
settable-stiffness springs, (3.1) independently-variable-inertance inerters, and (3.2) resettable-inertance inerters.
It is found that a control system using any of the semi-active control devices of type (1.2), (2.1) or (3.1) is not
inherently stable, as it is assumed in some previous papers; because those devices are “active” from the per-
spective of the passivity formalism. Interestingly, hybrid combinations of independently-variable-inertance in-
erters with non-negative variable-damping dampers can be designed to produce inherently-stable control sys-
tems. Following this framework, several published works on semi-active control systems are reviewed and
classified.

The presented methodology is useful when developing new devices. This is demonstrated by proposing a
novel control device, which is classified and assessed in terms of inherent passivity. Moreover, this passivity
assessment is conveniently used to propose a control law for the device. Finally, a frame structure controlled by
the device is numerically simulated through a number of scenarios including instability and a countermeasure
for its mitigation.

1. Introduction

Structural vibrations are detrimental to the performance of many
engineering applications and, therefore, several methods of vibration
control have been proposed to reduce them. These methods are gen-
erally classified into: Passive Control (PC) [1,2], Active Control (AC)
[3,4], or Semi-Active Control (SAC) [5,6]; although hybrid combina-
tions (HC) are also common [3]. In a SAC system, the properties of
formerly passive devices (e.g., viscous dampers, springs, pendula) are
conveniently adjusted in real-time through auxiliary actuators (e.g.,
valves, motors) according to a control law [7]. SAC is attractive since it
offers the reliability of PC; while approaching the adaptability and ef-
fectiveness of AC, without imposing high power demands. Furthermore,
it is common to assume that SAC systems are “inherently stable” [6].

An important benefit of “inherent stability” is a guaranteed stability
irrespectively of control-law design, modelling errors, and failures in
miscellaneous hardware of the SAC system, i.e. sensors, transmission

equipment, control computers, auxiliary actuators, and power supplies
(see Fig. 1). The fault-tolerance of these subsystems is particularly im-
portant in three cases: (1) applications that remain in standby for many
years until their operation is needed, as mitigation of seismic vulner-
ability in civil structures [8]; (2) applications under harsh environ-
ments, such as smart suspension systems for vehicles [9]; and (3) ap-
plications deployed in remote locations, such as artificial satellites and
other space structures [10]. AC systems, which are not inherently
stable, can yield a dangerously large structural response if any fault is
present in the hardware or if its design is inadequate.

An additional benefit of “inherent stability” is that researchers and
practicing engineers that are not familiar with non-linear control theory
can use and/or propose new semi-active devices without destabilization
risk. Moreover, new control laws can be proposed without stability
analysis; e.g. heuristically as in [11]. This advantage of the assumed
“inherent stability” is important since vibration control design is a
multidisciplinary task that involves not only control engineers but also
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mechanical, electronics and civil engineers.
Many investigations [6,8,12–20] appeal to the “inherent stability”

of SAC systems and justify it on the “passivity” of the devices used to
implement them; although it has also been claimed that “inherent
stability” cannot be generalized [21,22]. This inconsistency arises from
the use of ambiguous definitions. Since their introduction in the 1970s
[7], many new semi-active devices have been proposed; e.g. variable-
damping dampers [7], variable-stiffness springs [23] and, recently,
variable-inertance inerters [24,25]. As a consequence, the definition of
SAC is often adapted in order to encompass the new devices, which
leads to an increasing risk of misunderstanding.

The purpose of this paper is to clarify the definitions of “semi-ac-
tive”, “stability”, and “inherent stability”, in order to formally address
the issue of the “inherent stability of semi-active control systems”
within a general framework. The approach proposed is based on the
passivity formalism [26], as suggested by Hrovat [27] for classifying
“active” and “passive” suspension systems. Among the many available
definitions of “stability” [28], this study considers bounded-input
bounded-output (BIBO), which can be deduced from the passivity the-
orem [29] and is appropriate for systems under forced excitation. Fi-
nally, this paper denotes the stability as “inherent” when it depends
exclusively on the mechanical subsystems (the green blocks in Fig. 1) of
the controller.

2. Definitions and nomenclature

2.1. Mathematical preliminaries

In order to establish the boundedness of vector-valued functions,
such as displacements, velocities, accelerations and forces, the L2 norm
of a vector function x is defined as:

= 〈 〉x x x|| || ,2 (1)

where 〈 〉·,· , the inner product of vector functions, is defined as:

∫〈 〉 = ′
∞

x y x yt t dt, ( ) ( )
0 (2)

where ′ is the transpose operator. Note that x|| ||2 is a scalar denoting the
norm of the vector-valued function x ; which must not be confused with

= ′x t x t x t|| ( )|| ( ) ( )2 .
Similarly, the truncated inner product of x and y over the interval

T[0, ], is defined as [30]:

∫〈 〉 = ′x y x yt t dt, ( ) ( )T
T

0 (3)

where T is a particular instant of time; and the truncated L2 norm of x
as follows [30]:

= 〈 〉x x x|| || , .T T2, (4)

Thus, a function x lies in the L2 space, i.e. ∈x L2, if < ∞x|| ||2 [28].
Correspondingly, a function x lies in the extended- L2 space, i.e.
∈x L e2 , if < ∞ ∀x T|| || T2, [28].
Below, some useful inequalities are summarized [26,31]:

′ ⩽ ′ ⩽ ′A x x x Ax A x xλ t t t t λ t t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).min max (5)

〈 〉 ⩽x y x y, || || || || .T T T2, 2, (6)

+ ⩽ +x y x y|| || || || || || .T T T2, 2, 2, (7)

where Aλ ( )min and Aλ ( )max are the smallest and largest eigenvalues of
A, Eq. (6) is the Cauchy–Bunyakovsky–Schwarz (CBS) inequality, and
Eq. (7) is the triangle inequality.

From the perspective of vibration control engineering, L2 norm
(||·||2) measures a response function in RMS sense, which is an evalua-
tion criteria commonly used in that field [32]. Other important cri-
terion is the measurement of responses in a peak sense. In this regard,
the ∞L norm and its truncated version are defined as:

=∞
∈ ∞

x x t|| || sup | ( )|
t [0, ) (8)

=∞
∈

x x t|| || sup | ( )|T
t T

,
[0, ] (9)

Thus, a function x lies in the ∞L space, i.e. ∈ ∞x L , if < ∞∞x|| || [28].
Correspondingly, a function x lies in the extended- ∞L space, i.e.
∈ ∞x L e, if < ∞ ∀∞x T|| || T, [28].

2.2. Definition of “stable”

A system is BIBO stable when the norm of the system output is finite
for any input with finite norm. Formally, a system whose input is u and
output is y is L2-stable if [28]:

∈ ⇒ ∈u yL L .2 2 (10)

Moreover, if there exists a finite constant >γ 0 such that:

∈ ⇒ ⩽u y uL γ|| || || || ,2 2 2 (11)

The system is said to be L2-stable with finite gain (γ) and zero bias.

Fig. 1. General semi-active control system.
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This latter is a condition more useful than Eq. (10) since it not only
guarantees boundedness but also provides the bound value to be
compared with others. For simplicity, systems satisfying either condi-
tion, EqS. (10), (11) or other similar relation, are referred to as BIBO
stable in the present paper.

2.3. Definition of “inherently stable”

In this paper, a control system is defined as the combination of: (1) a
system to be controlled (e.g. a structure) and (2) a controller (e.g. a semi-
active controller). This is illustrated in Fig. 1 for the particular case of a
SAC system. In turn, a controller consists of several subsystems, of which
some are mechanical.

Based on this layout, if the stability of the control system can be
shown by only considering the system to be controlled and the me-
chanical subsystems of the controller, then, that control system is defined
as inherently stable.

Such mechanical subsystems can be any combination of variable-
damping dampers [33,34], variable-stiffness springs [35,36], and
variable-inertance inerters [19]. Note that variable-inertia mass is the
particular case of a variable-inertance inerter with a fixed end [37–39].

2.4. Definitions of “passive”, “active” and “semi-active”

A system is passive if it cannot generate1 energy. Formally, a system
whose input is u and output is y, for which it is defined a lower
bounded (Lyapunov-like) storage function V , is said to be passive if it
satisfies the following equation:

= ′ −u yV t t t g ṫ ( ) ( ) ( ) ( ), (12)

with ⩾ ∀ ∈g t t T( ) 0 [0, ] [26].
By integrating Eq. (12) and recalling that ⩾V t( ) 0, it is obtained the

following equivalent condition for passivity: the system is passive if there
exists a constant = ⩾β V (0) 0 such that [30]:

〈 〉 ⩾ − ∀u y β T, ,T (13)

Also, the system is strictly-output passive if there is a constant >ε 0
such that:

〈 〉 ⩾ − ∀u y yε β T, || ||T T2,
2 (14)

From a physical point of view, V t( ) is the stored energy, ′u yt t( ) ( ) is
the external power input, g t( ) is the dissipated power, and 〈 〉u y, T is the
external energy supplied to the system.

When the term “semi-active control” is assessed from the perspec-
tive of this passivity formalism [26], the first cause of misunderstanding
can be identified. Namely, definitions of active and passive are mutually
exclusive, so the term “semi-active” involves some abuse of notation (as
warned in [40]). Further, a system is stated to be active or passive de-
pending on the definition of its inputs, outputs and state variables.

In light of this concept, the terms “active control” (AC), “passive
control” (PC) and “semi-active control” (SAC), which are broadly used
in vibration control literature, are precisely defined below based on the
notion of Control-Structure Interaction (CSI) [41] and under the formal
definitions of passive and active (passivity formalism).

AC: the controller is composed of active devices that are able to act
on the structure independently of the structure response; i.e., CSI is only
an accidental phenomenon that can be taken into account to improve
performance.

PC: the controller is composed of passive devices that act on the
structure exclusively from the interaction with the structure response.

SAC: (see Fig. 1) the controller is composed of (formerly) passive
devices that act on the structure exclusively from the interaction with

the structure response; but their characteristic parameters are modified
by auxiliary actuators (active subsystems). This latter, however, can
remove the (former) passivity of the devices, as shown in Section 4.2.

3. System description

From the scheme of Fig. 1, a general mathematical model is de-
veloped in this section for a SAC system. The mathematical model is
“general” in the sense that it is compatible to the vast majority of works
found in the SAC literature. The key for accomplishing this task consists
in modelling only the structure and the mechanical subsystems of the
SAC controller (the green blocks in Fig. 1).

3.1. Structure

An n-Degree-Of-Freedom (n-DOF) structure can be modelled by the
following linear equation of motion [42]:

+ + =q q q ft t t tM C K¨ ( ) ̇ ( ) ( ) ( ),s s s ss s s (15)

in which: Ms, Cs and Ks are the mass, damping and stiffness matrices, all
of them positive-definite; = … …q t q q q( ) [ ]s s si sn

T
1 is the displacement

vector; and = −f t f t f t( ) ( ) ( )s se sc is the vector of forces exerted on the
structure, where f t( )se contains external forces and f t( )sc the forces
exerted by the controller.

Eq. (15) can be recast as the following state-space representation of
a Linear Time-Invariant (LTI) system [6]:

= +x A x B ut t ṫ ( ) ( ) ( ),s s s s s (16)

= +y C x D ut t t( ) ( ) ( ),s s s s s (17)

where x t( )s is the vector of state variables, As is the state matrix, Bs is
the input matrix, Cs is the output matrix, Ds is the direct-transfer ma-
trix, y t( )s is the output vector, and u t( )s is the input vector. Considering
that the system output is composed of those structure responses that can
interact with the mechanical subsystems of the semi-active controller
(i.e. displacements, velocities and accelerations), the following vectors
and matrices are defined [6,43]:

�′ = ⎡
⎣

′ ′ ⎤
⎦
∈ ×x q qt t t( ) ( ) ̇ ( )

s s s n2 1
(18)

�′ = ⎡
⎣

′ ′ ′ ⎤
⎦
∈ ×y q q qt t t t( ) ( ) ̇ ( ) ¨ ( )

s s s s n3 1
(19)

�= − =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
∈

×

×

×

×

×

×

×u u u f f ft t t t t t( ) ( ) ( )
0

( )
0

0
( )

0

0
( )

0
s se sc s se sc

n

n

n

n

n

n

n
1

1

1

1

1

1

3 1

(20)

�= ⎡

⎣
⎢− −

⎤

⎦
⎥ ∈

× ×
− − ×A

I
M K M C
0

s
n n n n

n n
s s s s

1 1 2 2

(21)

�= ⎡

⎣
⎢

⎤

⎦
⎥ ∈

× × ×

×
−

×
×B M

0 0 0
0 0s

n n n n n n

n n n n
n n

s
1 2 3

(22)

�= ⎡
⎣⎢

⎤
⎦⎥
=

⎡

⎣

⎢
⎢
⎢− −

⎤

⎦

⎥
⎥
⎥
∈× ×

× ×

× ×
− −

×C
I

A

I
I

M K M C

0
0

0
s

s

n n n n
n n n n

n n n n n n

s s s s
1 1

3 2

(23)

�= ⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
∈

×
× × ×

× × ×

×
−

×

×D B
M

0
0 0 0
0 0 0
0 0

s s

n n
n n n n n n

n n n n n n

n n n n

n n

s

3

1
3 3

(24)

where I and 0 are the identity and zero matrices, respectively.
Thus the system input is defined in such a way that the operation

〈 〉u y,s s T is possible and has physical meaning: it equals the mechanical
energy supplied to the structure in the time interval T[0, ], since

1 “generated energy” actually refers to energy supplied to the mechanical subsystems
by the auxiliary actuators (see Fig. 1).
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′u yt t( ) ( )s s is the mechanical power supplied to the structure.

3.2. Semi-active controller

As can be inferred from Fig. 1, a semi-active controller can be
modelled by considering only its mechanical subsystems composed of
dampers, springs or inerters; since the other subsystems (red blocks) do
not act on the structure but merely modify parameters of the devices
that compose the mechanical subsystems.

In this study, no particular control law is considered; but, stiffness,
damping and inertance are arbitrary functions of time (as in [44]). So,
the controller can be modelled as a direct-transfer time-varying system
whose input is y t( )s and output is u t( )sc , i.e.:

̂ ̂=u B D B yt t t( ) ( ) ( ).sc sc c cs s (25)

In Eq. (25), matrix D t( )c arranges the time-varying parameters of
the devices (which can be up to p devices of each type) as follows:

�= ∈ ×D t t t tK C M( ) [ ( ) ( ) ( )]c
p pc c c 3

(26)

where tK ( )c , tC ( )c and tM ( )c are ×p p diagonal matrices containing
the variable stiffness k t( )ci , variable damping c t( )ci and variable in-
ertance m t( )ci parameters. Matrices ̂Bsc and ̂Bcs state the relation be-
tween the responses of the structure y t( )s and the relative-displace-
ments q t( )c , -velocities q ṫ ( )c and -accelerations q t¨ ( )c across the devices
as follows:

�̂ =
⎡

⎣

⎢
⎢
⎢

′
′

′

⎤

⎦

⎥
⎥
⎥
∈

× ×

× ×

× ×

×B

B
B

B

0 0
0 0
0 0

cs

sc

sc

sc

p n p n

p n p n

p n p n

p n3 3

(27)

�̂ =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
∈

×

×

×B B
0

0
sc sc

n p

n p

n p3

(28)

where �∈ ×Bsc
n p is a matrix containing pairs of (or singleton) direction

cosines such that the vector of relative displacements across the devices
is = ′q B qc sc s. Note that, the product ′B BtM ( )sc scc is a symmetric matrix
in the more general case of variable-inertance inerters and it is a di-
agonal matrix in the particular case of variable-inertia masses.

Although this model is algebraic, semi-active controllers having in-
ternal dynamics (e.g. Tuned Mass Dampers (TMD) [45], Semi-Active
Friction Tendons (SAFT) [11], or Magnetorheological (MR) dampers
modelled as proposed by Gamota and Filisko [46]) can be modelled by
considering their internal DOFs as part of the structure.

Furthermore, the developed model can be easily extended to en-
compass nonlinear devices (e.g. MR dampers [46] or large-angle pen-
dula [47]) by means of local linearization. In general, devices are
characterized by the following nonlinear functions: f q t( , )ki ci , for vari-
able-stiffness springs; f q q t( , ̇ , )ci ci ci , for variable-damping dampers; and

f q t q t( ¨ ( ), ̇ , )mi ci ci , for variable-inertance inerters. Hence, equivalent linear
parameters can be calculated simply as:

=
⎧

⎨
⎩

≠

=
k q t α t

q t

q t
( ( ), ( ))

, ( ) 0

0, ( ) 0
ci ci ki

f q t t
q t ci

ci

( ( ), )
( )

ki ci

ci

(29)

=
⎧

⎨
⎩

≠

=
c q t q t α t

q t

q t
( ( ), ̇ ( ), ( ))

, ̇ ( ) 0

0, ̇ ( ) 0
ci ci ci ci

f q t q t t
q t ci

ci

( ( ), ̇ ( ), )
̇ ( )

ci ci ci

ci

(30)

=
⎧

⎨
⎩

≠

=
m q t α t

q t

q t
( ̇ ( ), ( ))

, ¨ ( ) 0

0, ¨ ( ) 0
ci ci mi

f q t q t t
q t ci

ci

( ¨ ( ), ̇ ( ), )
¨ ( )

mi ci ci

ci

(31)

where α t( )ki , α t( )ci and α t( )mi are control parameters which, in normal
conditions, depend on the control law. Without loss of generality, these
control parameters are assumed to be related with the corresponding
equivalent parameters as:

∂
∂

⩾ ∂
∂

⩾ ∂
∂

⩾k
α

c
α

m
α

0, 0, 0.ci

ki

ci

ci

ci

mi (32)

In the most general case, parameters can vary subjected to the fol-
lowing design constraints:

⩽ ⩽k k t k( ) ,ci ci cimin max (33)

⩽ ⩽k α t k̇ ( ) ,ri ki rimin max (34)

⩽ ⩽c c t c( ) ,ci ci cimin max (35)

⩽ ⩽c c t ċ ( ) ,ri ci rimin max (36)

⩽ ⩽m m t m( ) ,ci ci cimin max (37)

⩽ ⩽m α t ṁ ( ) ,ri mi rimin max (38)

where kcimin, kcimax , ccimin, ccimax , mcimin, and mcimax are referred to as
range characteristic parameters; and krimin, krimax, crimin, crimax, mrimin, and
mrimax as rate characteristic parameters. The suitability of the definitions
given by Eqs. (34) and (38) becomes apparent in Section 4.2.

3.3. Semi-active control system

As shown comprehensively in Fig. 1 and summarized in Fig. 2, the
SAC system is a feedback combination (closed-loop) between the struc-
ture and the semi-active controller.

4. Passivity properties and stability results

The passivity theorem [29] allows showing the stability of a closed-
loop control system based on the passivity of the systems belonging to
the corresponding loop (e.g. a system to be controlled and a controller).

Fig. 2. Simplified scheme of the semi-active control system.
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Although more general versions of this theorem are available, a parti-
cular case that is suitable for the system of Fig. 2 is addressed below.
This is done in three steps: (1) study of the passivity of the structure, (2)
study of the passivity of the semi-active controller and (3) application of
the passivity theorem to the SAC system as a whole for studying its sta-
bility.

4.1. Passivity and stability properties of the structure

In this subsection, it is shown that the structure is passive, and,
furthermore, strictly-velocity passive (i.e. strictly-output passive if output
is considered to be composed of velocities only).

By considering the following storage function (mechanical energy):

= ⎡
⎣

′ ′ ⎤
⎦
⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥q q

q
qV t t t

t
t

K
M( ) 1

2
( ) ̇ ( ) 0

0
( )

¨ ( )s s
s

s
s

s

s
(39)

its first derivative results in:

= ′ − ′q f q qV t t t t tĊ ( ) ̇ ( ) ( ) ̇ ( ) ̇ ( ),s s s ss s (40)

where q t¨ ( )s has been substituted by − −−M f t C q t K q t( ( ) ̇ ( ) ( ))s s s s s s
1 (solved

from Eq. (15)).
On the other hand, the external power input is:

′ = ′u y f qt t t t( ) ( ) ( ) ̇ ( ).s s s s (41)

Replacing Eqs. (40) and (41) into Eq. (12), the following expression
for dissipated power is obtained:

= ′q qg t t tC( ) ̇ ( ) ̇ ( ).s ss s (42)

Now, replacing Eqs. (41) and (42) into Eq. (12) and integrating in
the interval T[0, ],

∫− = 〈 〉 − ′f q q qV T V t t dtC( ) (0) , ̇ ̇ ( ) ̇ ( ) .s s s ss s T
T

s0 (43)

Finally, assuming =V (0) 0s , recalling ⩾ ∀V T T( ) 0s , and appealing
to Eq. (5), it is concluded that:

〈 〉 = 〈 〉 ⩾ ⩾u y f q qε, , ̇ || ̇ || 0s s s s sT T s T2,
2 (44)

Since Cs is a positive-definite matrix, = >ε λ C( ) 0s smin ; therefore,
the structure is passive (compare Eqs. (44) and (13)). Moreover, the
structure is strictly-velocity passive (compare Eqs. (44) and (14)). This
passivity property of the structure is used bellow to show that it is also
BIBO stable.

Invoking the CBS inequality in Eq. (44) yields:

⩾f q qε|| || || ̇ || || ̇ ||s s sT T s T2, 2, 2,
2 (45)

from which q|| ̇ ||s T2, can be solved to obtain:

⩽q fγ|| ̇ || || ||s sT s T2, 2, (46)

where = −γ εs s
1. Additionally, if → ∞T (lemma 6.1.24 in [28]):

⩽q fγ|| ̇ || || || ,s ss2 2 (47)

i.e., the structure is bounded-input bounded-velocity stable with finite gain
γs (see Eq. (11)).

Regarding displacements, their boundedness is shown below in a
peak sense using Eq. (46). Note that recalling ⩾g t( ) 0s , =V (0) 0s , and
CBS inequality enables rewriting Eq. (43) as follows:

⩽ 〈 〉 ⩽f q f qV T( ) , ̇ || || || ̇ || ,s s s ss T T T2, 2, (48)

where Eqs. (39), (5) and (46) can be introduced to yield:

′ + ′ ⩽q q q q fλ T T λ T T γK M1
2

( ) ( ) ( ) 1
2

( ) ̇ ( ) ̇ ( ) || || .s s s s ss Ts smin min 2,
2

(49)

From this expression, since all the terms in the left-hand side are
non-negative, the following results are derived:

⩽ = …fq T
γ

λ
i n

K
| ( )|

2
( )

|| || 1, ,ssi
s

T
smin

2,
(50)

⩽ = …fq T
γ

λ
i n

M
| ̇ ( )|

2
( )

|| || 1, ,ssi
s

T
smin

2,
(51)

These are upper bounds for peak velocities and displacements at the
time instant T . As with f|| ||s T2, , these bounds are monotonically in-
creasing with T ; so they are valid for every ∈t T[0, ]. Therefore:

⩽∞q f
γ

λ K
|| ||

2
( )

|| || ,s sT
s

T
s

,
min

2,
(52)

⩽∞q f
γ

λ M
|| ̇ ||

2
( )

|| || .s sT
s

T
s

,
min

2,
(53)

This means that peak displacements and peak velocities of the
structure are bounded and the corresponding upper bounds are directly
related to the RMS force acting on the structure. This result, while
evident, will be useful when compared to the case of the whole SAC
system.

In terms of BIBO stability, Eqs. (52) and (53) imply that:
∈ ⇒ ∈ ∞f L q q L, ̇s s s2 ; by lemma 6.1.24 in [28].

4.2. Passivity properties of the semi-active controller

In this subsection, it is shown that a semi-active controller is passive
in certain cases and is active in others.

First, consider a storage function that is equal to the potential en-
ergy Ep plus the kinetic energy Ek stored in the semi-active controller:

∫ ∫= ′ + ′q q α q q q α qV t t d t dK M( ) ( , ( )) ̇ ( ̇ , ( )) ̇ ,
q

c c k c
q

c c m cc
t t

c c0

( )

0

̇ ( )c c

(54)

which is lower bounded ( ⩾V 0c ) if only the cases in which ⩾k 0cimin and
⩾m 0cimin are considered. Note that both, Kc and Mc, have double

dependence: on the one hand, they vary due to intrinsic nonlinearities
of the devices; and, on the other hand, it can vary because of control
parameters. Below, it is shown that only the latter has influence on
passivity.

By inspecting integrals in Eq. (54), it is found thatVc is a memoryless
function depending only on current state (displacements and velocities)
and current values of control parameters, i.e.:

= +q α q αV t E t t E t t( ) ( ( ), ( )) ( ̇ ( ), ( )).c k cc p k m (55)

Therefore, its first time derivative can be calculated as follows2:

=
∂

∂
+

∂
∂

+
∂

∂

+
∂

∂

q α
q

q
q α
α

α
q α
q

q

q α
α

α

V t
E

t
E

t
E

t

E

̇ ( )
( , )

̇ ( )
( , )

̇ ( )
( ̇ , )

̇
¨ ( )

( ̇ , )
̇

c k

c
c

c k

k
k

c m

c
c

c m

m
m

c
p p k

k

(56)

which, due to Eq. (54), results in:

= ′ + ′ + ′

+ ′

q q e q α α q q

e q α α

V t t t t t t t t t t

t t

K Ṁ ( ) ( ) ( ) ̇ ( ) ( ( ), ( )) ̇ ( ) ̇ ( ) ( ) ¨ ( )

( ̇ ( ), ( )) ̇
c c kα c k k c c

mα c m m

c c c

(57)

where the row vectors of coefficients ′e q α( , )kα c k and ′e q α( ̇ , )mα c m , which
are time-independent and characterize the control devices, can be cal-
culated as follows:

∫∑

∫

′ = ∂
∂

= ⎡
⎣⎢
… …⎤

⎦⎥

=

∂
∂

e q α
α

q k q α dq

q dq

( , ) ( , )kα c k
k i

p
q

ci ci ci ki ci

q
ci

k q α
α ci

1
0

0
( , )

ci

ci ci ci ki

ki (58)

2 assuming numerator layout convention.
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∫∑

∫

′ = ∂
∂

= ⎡
⎣⎢
… …⎤

⎦⎥

=

∂
∂

e q α
α

q m q α dq

q dq

( ̇ , ) ̇ ( ̇ , ) ̇

̇ ̇

mα c m
m i

p
q

ci ci ci mi ci

q
ci

m q α
α ci

1
0

̇

0
̇ ( ̇ , )

ci

ci ci ci mi

mi (59)

Therefore, recalling Eq. (32), the following assumptions can be
made:

′ ⎧
⎨
⎩

= =
⩾ ≠e

q
q

0 if 0
0 if 0kα

c

c (60)

′ ⎧
⎨
⎩

= =
⩾ ≠e

q
q

0 if ̇ 0
0 if ̇ 0mα

c

c (61)

On the other hand, the external power input is (see Eqs. (25)–(28)):

′ = ′ + +y u q q q qt t t t t t t t tK C M( ) ( ) ̇ ( )( ( ) ( ) ( ) ̇ ( ) ( ) ¨ ( ))s sc c c c cc c c (62)

Replacing Eqs. (57) and (62) into Eq. (12), the dissipated power can
be solved as follows:

= ′ − ′ − ′q q e q α α e q α αg t t t t t tC( ) ̇ ( ) ( ) ̇ ( ) ( , ) ̇ ( ) ( ̇ , ) ̇ ( ),c c kα c k k mα c m mc c (63)

which can be of either sign depending on the design constraints defined
in Eqs. (33)–(38), and the relative-displacements and -velocities across
the control devices.

Under assumptions (60)–(61), Eq. (63) is very important since it
shows the three mechanisms by which energy can be dissipated (or
generated 1). This is due to the existence of: (1) relative velocities across
dampers with positive (or negative) damping, (2) relative displacements
across springs whose stiffness is decreasing (or increasing) due to its
control parameter, and (3) relative velocities across inerters whose in-
ertance is decreasing (or increasing) due to its control parameter. The
suitability of definitions stated in Eqs. (34) and (38) for rate char-
acteristic parameters is evident.

In the particular cases of time-varying linear-springs and -inerters,
i.e. = αt tK ( ) diag( ( ))kc and = αt tM ( ) diag( ( ))mc , Eqs. (63), (58) and
(59) reduce to:

∑ ∑ ∑= − −
= = =

g t q t c t q t k t q t m t( ) ̇ ( ) ( ) 1
2

( ) ̇ ( ) 1
2

̇ ( ) ̇ ( ),c
i

p

ci ci
i

p

ci ci
i

p

ci ci
1

2

1

2

1

2

(64)

which can be used for the particular case of linear devices or for con-
ceptual purposes.

From the definition of passivity based on Eq. (12), it can be stated
that the semi-active controller is passive if ⩾ ∀ ∈g t t T( ) 0 [0, ]c , other-
wise it is active. Formally:

⩾ ∀ ∈ ⇒ 〈 〉 = 〈 〉 ⩾y u q fg t t T( ) 0 [0, ] , ̇ , 0s sc s scc T T (65)

which can be shown by integration as in the case of the structure.
Therefore, a semi-active controller can be passive or active depending on
its design parameters (Eqs. (33)–(38)).

A relevant aspect of semi-active controllers is that their passivity can
be guaranteed, irrespective of their non-mechanical subsystems, simply
by appropriately choosing their design parameters (e.g.

= = = = ∀ = …k k m m i p0 1, ,rimin rimax rimin rimax and ⩾ ∀c 0imin
= …i p1, , ). In such cases, i.e. when ⩾ ∀ ∈g t t T( ) 0 [0, ]c , a semi-active

controller is defined, in this paper, as inherently passive.

4.3. Stability results for the semi-active control system

In this subsection, a particular case of the passivity theorem [29] is
applied to show that when the semi-active controller is inherently passive,
the SAC system (as a whole) presents a BIBO stability.

For this special case of SAC systems, three useful equations are re-
called:

= −f f ft t t( ) ( ) ( ),s se sc (66)

〈 〉 ⩾f q q b, ̇ || ̇ ||s s sT s T2,
2 (67)

〈 〉 ⩾q ḟ , 0.s sc T (68)

which mean: the structure and the semi-active controller constitute a
negative-feedback loop, the structure is strictly-velocity passive, and the
semi-active controller is passive, respectively.

The substitution of Eq. (66) into (67) leads to the following in-
equality:

〈 − 〉 = 〈 〉 −〈 〉 ⩾f f q f q f q q( ), ̇ , ̇ , ̇ || ̇ ||se sc s se s sc s sT T T s T2,
2 (69)

in which Eq. (68) can be applied to obtain:

〈 〉 = 〈 〉 ⩾ ⩾u y f q q, , ̇ || ̇ || 0se s se s sT T s T2,
2 (70)

Eq. (70) means that, not only the structure, but also the whole SAC
system is strictly-velocity passive (see Eq. (14)) when the semi-active
controller is passive.

Then, the CBS inequality can be used to transform the inner product
of Eq. (70) into a product of norms as follows:

⩾f q q|| || || ̇ || || ̇ ||se s sT T s T2, 2, 2,
2 (71)

Again, by solving for q|| ̇ ||s T2, , it is concluded that:

⩽q fγ|| ̇ || || || ,s seT sa T2, 2, (72)

where = −γ εsa s
1. Finally, letting → ∞T , it can be stated that the SAC

system is inherently BIBO stable, in particular it is inherently bounded-
input bounded-velocity stable with finite gain γsa if its semi-active con-
troller is inherently passive (compare to Eq. (11)). Moreover, since

= = =− −γ γ ε λ C( )sa s s s
1

min
1 , it is shown that both, the structure and the

whole SAC control system, are bounded-input bounded-velocity stable with
the same finite gain.

The boundedness of displacements is shown below from Eq. (72). As
shown in [26], storage functions are additive in feedback systems as
that of Fig. 2. Therefore, the total energy in the whole SAC system is
simply = +V t V t V t( ) ( ) ( )s c ; and, due to Eq. (12), its first time derivative
results in:

= + = ′ − + ′ −f q q fV t V t V t t t g t t t ġ ( ) ̇ ( ) ̇ ( ) ( ) ̇ ( ) ( ) ̇ ( ) ( )s s s scs c s c (73)

which, after inserting Eq. (66), and integrating it in the interval T[0, ],
yields the total energy:

∫= 〈 〉 − + ⩽ 〈 〉q f q fV T g t g t dt( ) ̇ , ( ) ( ) ̇ , .s se s seT
T

s c T0 (74)

Being ⩽V t V t( ) ( )s , and appealing to Eq. (39) along with CBS in-
equality and Eq. (5), Eq. (74) leads to:

′ + ′ ⩽q q q q f qλ T T λ T TK M1
2

( ) ( ) ( ) 1
2

( ) ̇ ( ) ̇ ( ) || || || ̇ || .s s s s se sT Ts smin min 2, 2,

(75)

Similar to the case of the structure, Eq. (72) is substituted into Eq.
(75), leading to the following two important results:

⩽∞q f
γ

λ K
|| ||

2
( )

|| || ,s seT
sa

T
s

,
min

2,
(76)

⩽∞q f
γ

λ M
|| ̇ ||

2
( )

|| || ,s seT
sa

T
s

,
min

2,
(77)

When comparing Eqs. (76) and (77) to (52)–(53), it is interesting to
note that = = =− −γ γ ε λ C( )sa s s min s

1 1 . In terms of vibration control en-
gineering, this means that peak displacements and peak velocities of a
structure with an inherently passive semi-active controller can never be
greater than the largest ones of the same structure without that semi-
active controller (assuming external input forces with the same RMS
intensity). This remains to be true even in the worst scenarios, such as
failure in non-mechanical subsystems of the semi-active controller or
absence of stability analysis. It is worth remembering that, in general,
this is false for AC systems and SAC systems in which ≱ ∀g t t( ) 0c (see
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for example [48]).
In terms of BIBO stability, Eqs. (76) and (77) imply that (by lemma

6.1.24 in [28]): ∈ ⇒ ∈ ∞f q qL L, ̇se s s2 . Summarizing, if a semi-active
controller is inherently passive, the corresponding SAC system is in-
herently stable.

5. Classification of semi-active controllers

To characterize SAC systems according to their inherent stability,
from the definition of inherently passive, a rational classification of semi-
active controllers is developed below. This classification is used then to
review the published literature Vc.

5.1. Classes

From Eq. (64)3, three dissipation mechanisms are possible, therefore
three classes of semi-active controllers are defined in Table 1: (1) “vari-
able-damping”; (2) “variable-stiffness”; and (3) “variable-inertance”.

Note that dampers with negative range characteristic parameters (i.e.
<c 0cimin ) are considered in this work, although they are usually

emulated by means not purely mechanical (e.g. electromechanically
[49–51]). On the other hand, springs and inerters with negative range
characteristic parameters (i.e. <k 0cimin and <m 0cimin ) are not con-
sidered because they violate the lower-boundedness condition of the
storage function.

By examining conditions given in Table 1 under Eq. (64), it is found
that, in general, none of these three classes of semi-active controller is
inherently passive. Notably, the inherent passivity of “variable-damping”
semi-active controllers depends only on their range characteristic para-
meter ccimin. On the contrary, the inherent passivity of “variable-stiffness”
and “variable-inertance” semi-active controllers depends also on their
rate characteristic parameters krimax and mrimax.

Two special inherently-passive cases are the following: a “variable-
stiffness” semi-active controller with ⩽k 0rimax and a “variable-in-
ertance” semi-active controller with ⩽m 0rimax . However, although the
corresponding SAC systems are inherently stable, they are impractical for
most vibration control applications. On the other hand, “variable-
stiffness” with < <k k0ri rimin max and “variable-inertance” with

< <m m0ri rimin max semi-active controllers that are inherently passive
(i.e., ⩾ ∀g t t( ) 0c ) can be built by using resettable devices.

Based on these aspects, the following three sub-classifications are
developed.

5.2. Sub-classes

5.2.1. Non-negative and possibly-negative variable-damping
As inferred from Eq. (64), “variable-damping” semi-active con-

trollers can be sub-classified from the sign in their range characteristic
parameter ccimin, irrespective of rate characteristic parameters crimin and
crimax. In this regard, Table 2 summarizes the two cases along with their
passivity and stability results.

“Non-negative variable-damping” is, evidently, the oldest and most
common sub-class of semi-active controller. The first example was
proposed in 1974 by Karnopp et al. [7], and it can be implemented as,
for instance: variable-orifice valve hydraulic-dampers [7,52]; MR
dampers [33,53], ER dampers [54,55], variable friction dampers
[56–58], SAFTs [11,59], magnetically controllable particle-based
dampers [60], and resistively shunted electromechanical machines as
synchronous motors [61], DC motors [62], piezoceramic elements
[4,63,64] and voice-coil transducers [4,65].

On the other hand, semi-active controllers capable of providing
negative damping can also be found in recent literature [49]. Certainly,
these controllers potentially have a better performance because they
can deliver forces in the four quadrants of the force-velocity diagram.
However they are not inherently passive and, therefore, the corre-
sponding SAC systems are not inherently stable (Section 4.3). A simple
implementation of such devices consists in electromechanical machines
shunted through possibly-negative resistance resistors; which are ob-
viously active electrical devices. Such implementation allows parasitic
resistances to be compensated (e.g. copper resistance in DC motors) at
the expense of possible instability.

5.2.2. Resettable-stiffness and independently-variable-stiffness
As summarized in Table 3, “variable-stiffness” semi-active con-

trollers can be sub-classified into: “resettable-stiffness”, which are in-
herently passive; and “independently-variable-stiffness” which are not.

By inspecting Eq. (64), it can be inferred that “variable-stiffness”
semi-active controllers in which kci can increase only at instants of time
t such that =q t( ) 0ci and can decrease at any instant of time t are in-
herently passive and usually denominated “resettable-stiffness” springs.
A detailed passivity analysis of resettable-stiffness springs is addressed
in Appendix A. Devices with these properties were proposed in 1993 by
Kobori et al. [66], though previously suggested by Klein and Healey
[67]. Since then, several implementations have been studied
[19,36,68–70].

In general, these devices are modelled by a constant-stiffness spring
connected in series with a resetting device functioning as an on–off
switch. The spring and resetting device can be implemented by using
pressurized gas and valves [19]. From an energetic point of view, a
resettable-stiffness spring is composed of a spring that can suddenly be
disconnected from the structure and released to eliminate its potential
energy by nullifying its displacement.

On the other hand, “variable-stiffness” semi-active devices that are

Table 1
Classes of semi-active controllers.

Damping parameters Stiffness parameters Inertance parameters

Class Range Rate Range Rate Range Rate

Variable-damping
<c 0cimin
>c 0cimax

<c 0rimin
>c 0rimax

0 0 0 0

Variable-stiffness
0 0 ⩾k 0cimin >k 0rimax

<k 0rimin

0 0

Variable-inertance
0 0 0 0 ⩾m 0cimin >m 0rimax

<m 0rimin

∀ = …i p1, , .

3 Note Eq. (64) is used instead of Eq. (63), for simplicity, without loss of generality. The
only consideration is that the term “variable” (stiffness or inertance) refers to variation as
a consequence of control parameters, not to variation due intrinsic nonlinearity of the
mechanical devices.

H. Garrido et al. Engineering Structures 159 (2018) 286–298

292



not inherently passive (i.e. ≱ ∀g t t( ) 0c ) can also be found in the litera-
ture [71]. These devices, formerly proposed by Nagarajaiah in 2000
[72], are usually referred to as “independently-variable-stiffness”
springs. They can be implemented by means of an arrangement of
springs whose geometry is adjustable [72], helicoidal springs whose
number of coils can be modified through a moving collar [6], trans-
versally-forced tense cables with variable tension force [23], pre-
stressable leaf-springs [73], variable-pressure granular structures [74],
variable-length pendula [47], capacitively shunted piezoceramic ele-
ments [71,75], and other smart materials [71].

Typically, “independently-variable-stiffness” springs are used as a
means to conveniently tune/detune oscillatory systems. For example,
performance of TMDs can be significantly improved by pursuing re-
sonance [35,47,76,77]; whereas performance of isolation systems can
be enhanced by avoiding it [20,78]. It is worth noting that none of these
investigations formally addresses the stability issue, although Eq. (64)
shows that stability is not guaranteed and actual cases of instability have
been shown [48]. In practice, instability is avoided by choosing a suf-
ficiently low value for krimax which is suitable for vibration control
based on tuning/detuning.

5.2.3. Resettable-inertance and independently-variable-inertance
Similarly to the case of “variable-stiffness”, when the case of

“variable-inertance” is considered in Eq. (64), two possibilities are de-
vised: (1) “independently-variable-inertance”, i.e. m t( )ci can increase or
decrease at any instant of time, leading to a non-inherently passive semi-
active controller because ≱ ∀g t t( ) 0c ; and (2) “resettable-inertance”,
i.e. m t( )ci can increase only at instants with zero relative velocities (i.e.,

=q ṫ ( ) 0ci ) otherwise decrease, leading to an inherently passive semi-ac-
tive controller ( ⩾ ∀g t t( ) 0c ). These two cases are summarized in
Table 4.

The concept of adjustable inertia was first mentioned in 2001 by
Jalili et al. [79]. On the other hand, implementations of “in-
dependently-variable-inertance” inerters have been proposed very re-
cently. Brzeski et al. patented a device in 2014 consisting of a gear rack
linked to a flywheel through a continuously variable transmission [25].
In 2014, Chen et al. [24] numerically studied the benefits of variable
inertance interters applied to semi-active car suspension systems. No-
tably, none of these works address BIBO stability in detail.

So far, there is no mention of “resettable inertance” in the current
literature.

Authors of the present paper propose using the principle of duality
for devising an implementation of resettable-inertance inerters from re-
settable-stiffness springs. Thus, a resettable-inertance inerter should be
composed of a flywheel-pinion-rack system that can suddenly be dis-
connected from the structure and blocked to eliminate its kinetic energy
by nullifying its velocity. A detailed passivity analysis of these resettable-
inertance inerters is addressed in Appendix B.

5.3. Hybrid combinations

In this subsection, two possible hybrid combinations that appear in
current literature and are interesting from the perspective of inherent
stability are assessed: (1) non-negative variable damping dampers in
parallel with independently-variable inertance inerters, and (2) non-
negative variable damping dampers in parallel with independently-
variable stiffness springs. The aim of these combinations is to transform
an active device into an inherent passive device by the addition of other
device that is already inherently passive.

When inspecting the first and last term of Eq. (64), it is evident that
negative inertance rate plays the same role as positive damping coef-
ficient (a similar result is obtain in [44]). Moreover, it is easy to show
that the hybrid combination of “non-negative variable damping”
dampers in parallel with “independently-variable inertance” inerters,
such that ⩽∂

∂ m c2m
α ri cimax min

ci
mi

, is inherently passive since ⩾g t( ) 0c . In-
terestingly, this hybrid combination is considered in [24] when an in-
erter is added to a car suspension system; although stability issues are
not mentioned.

Finally, the combination of “non-negative variable damping dam-
pers” in parallel with “independently-variable stiffness springs” does
not lead to the rigorous form of inherent stability (Eq. (10)), since one
device is velocity-driven while the other is displacement-driven. How-
ever, under the approximate assumption that ≈q q|| || || ̇ ||si ω si2

1
2 (where ω

is the fundamental natural frequency of the system), a design that meets
⩽∂

∂ k ωc2k
α ri cimax min

ci
ki

allows dissipating, in the damper, approximately
the same energy that is supplied by the spring and therefore could be
considered as inherently stable. A formal study of this case should rely
on the dissipativity approach rather than in the passivity formalism,
and therefore is out of the scope of the present paper.

Table 2
Sub-classes of “variable-damping” semi-active controllers.

Sub-class Characteristic parameters Dissipated power Passivity of the Semi-active
controller

Stability of the SAC system

Non-negative variable-
damping

⩾ ∀ = …c i p0 1, ,cimin ⩾ ∀g t t( ) 0c Inherently passive 〈 〉 ⩾y u, 0s sc T Inherently stable ∃ > ⩽ ⩽∞ ∞q f q fγ γ γ γ, 0: || || || || || ̇ || || ||s se s sed v d v2 2

Possibly-negative
variable-damping

<c i0forsomecimin ≱ ∀g t t( ) 0c Active ∄ ⩾ 〈 〉 ⩾ −y uβ β0: ,s sc T Non-inherently stable
∄ > ⩽ ⩽∞ ∞q f q fγ γ γ γ, 0: || || || || || ̇ || || ||s se s sed v d v2 2

Table 3
Sub-classes of “variable-stiffness” semi-active controllers.

Sub-class Characteristic
parameters

Dissipated power Passivity of the Semi-active
controller

Stability of the SAC system

Resettable-stiffness ⎧
⎨⎩

⩽ ≠
> =k

c q
q
0, 0

0, 0ri
ci

ci
max

<k 0rimin ifor some

⩾ ∀g t t( ) 0c Inherently passive
〈 〉 ⩾y u, 0s sc T

Inherently stable
∃ > ⩽ ⩽∞ ∞q f q fγ γ γ γ, 0: || || || || || ̇ || || ||s se s sed v d v2 2

Independently-variable-stiffness >k 0rimax
<k 0rimin ifor some

≱ ∀g t t( ) 0c Active
∄ ⩾ 〈 〉 ⩾ −y uβ β0: ,s sc T

Non inherently stable
∄ > ⩽ ⩽∞ ∞q f q fγ γ γ γ, 0: || || || || || ̇ || || ||s se s sed v d v2 2
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6. Use of the presented framework in a practical example

In this section, a novel control device which enables changes of
inertance, as an alternative to other recently studied devices [25,80], is
first depicted and modelled. Then, the framework developed in the
present paper is used to classify it (TableS 1 and 4) and assess whether a
semi-active control system based on it is inherently stable. Finally, main
results are demonstrated through numerical simulations of a frame
structure provided with the control device. Instability caused by vari-
able stiffness is not illustrated in the present paper since examples can
be found in the literature [48].

6.1. Model of the novel semi-active control device

Fig. 3 shows the control device, which consists of: a pinion-rack
mechanism (with constant radius r) that links the rotational and
translational degrees of freedom θ t( ) and q t( )c , two arms with constant
masses M

2
at their ends, and actuators exerting variable forces f t( )a

capable of changing the length r t( )M of the arms. For simplicity of
modelling, one of the device ends is considered grounded.

Through inspection of Fig. 3, it can be seen that the inertance ex-
perienced when varying q t( )c is =m t( )c

Mr t
r

( )M 2

2 , where r t( )M corre-
sponds to the control parameter α t( )m (see Eq. (31)) of the semi-active
control device. However, detailed modelling shows that

≠f t m t q t( ) ( ) ¨ ( )c c c when α t( )m changes in real-time, as expected in ac-
tual implementations of semi-active control systems.

First, note that the Lagrangian of the system is simply:

⎜ ⎟= = + = ⎛
⎝

+ ⎞
⎠

L T r t x t M r t x t M r t r t
q t

r
( ̇ ( ), ̇ ( ))

2
( ̇ ( ) ̇ ( ) )

2
̇ ( ) ( )

̇ ( )
M t M t M M

c2 2 2 2
2

2

(78)

where q t( )c and r t( )M are chosen generalized coordinates, and f t( )c and
f t( )a are their corresponding generalized forces. Hence, by using the
Lagrange equations of the second kind [81], for the first generalized
coordinate, it is found that:

= +f t Mr t
r

q t Mr t r t
r

q( ) ( ) ¨ ( ) 2 ( ) ̇ ( ) ̇c
M

c
M M

c

2

2 2 (79)

6.2. Classification of the control device and inherent stability assessment

To classify the control device of Fig. 3, in the sense of the inherent-
stability criterion developed in Sections 3–5, it is noted in Eq. (79) that:

= =m t Mr t
r

c t Mr t r t
r

( ) ( ) , ( ) 2 ( ) ̇ ( ) .c
M

c
M M

2

2 2 (80)

Eqs. (79) and (80) evidence that the control device must be classified as
an hybrid combination of an independently-variable-inertance inerter,
since it is not necessary that =q ṫ ( ) 0c to increase r t( )M (see Section
5.2.3), in parallel with a possibly-negative variable-damping damper, since
r ṫ ( )M can be negative (see Section 5.2.1).

This classification is enough to question the inherent passivity of the
device. However, as demonstrated in Section 5.3, hybrid combinations
of individually non-inherently-passive devices can be inherently pas-
sive. In this particular case, c t( )c and m t( )c are related by r t( )M , so
mechanisms that supply and dissipate energy could exactly oppose.

This question can be easily answered by substituting m t( )c and c t( )c

into Eq. (63) (or into Eq. (64) since m t( )c is independent of q ṫ ( )c ).
Hence, the following dissipation function is found:

= − =g t q t Mr t r t
r

M r t r t
r

q t m t( ) ̇ ( )( 2 ( ) ̇ ( ) 1
2

2 ( ) ̇ ( ) ) ̇ ( ) ̇ ( ),c c
M M M M

c c
2

2 2
2

(81)

from which it can be concluded that a semi-active control system using
this device is not inherently stable since ≱ ∀g t t( ) 0c , i.e. the device is
not inherently passive. Evidently, the net added energy is due to the
work of the actuator force; which opposes to the centrifugal force.

It is worthy of note that, in this particular hybrid combination, the
critical design parameter for stability is mrmin; unlike the case of an
independently-variable inertance inerter alone, in which it is mrmax . This
interesting aspect is demonstrated through numerical simulations in
Section 6.3.3.

6.3. Numerical simulations

In order to show the capability of the control device to reduce vi-
brations, in contrast to its risk of instability and a possible counter-
measure, numerical simulations were performed using a 5th-order
Runge-Kutta variable-step explicit solver with a 4th-order estimate of
the error. Relative tolerance was set to 0.1% for states whereas energy-

Table 4
Sub-classes of “variable-inertance” semi-active controllers.

Sub-class Characteristic
parameters

Dissipated power Passivity of the Semi-active
controller

Stability of theSAC system

Resettable-inertance ⎧
⎨⎩

⩽ ≠
> =m

c q
q
0, ̇ 0

0, ̇ 0ri
ci

ci
max

<m 0rimin ifor some

⩾ ∀g t t( ) 0c Inherently passive
〈 〉 ⩾y u, 0s sc T

Inherently stable
∃ > ⩽ ⩽∞ ∞q f q fγ γ γ γ, 0: || || || || || ̇ || || ||s se s sed v d v2 2

Independently-variable-inertance >m 0rimax
<m 0rimin ifor some

≱ ∀g t t( ) 0c Active
∄ ⩾ 〈 〉 ⩾ −y uβ β0: ,s sc T

Non inherently stable
∄ > ⩽ ⩽∞ ∞q f q fγ γ γ γ, 0: || || || || || ̇ || || ||s se s sed v d v2 2

Fig. 3. Inerter which enables changes of inertance.
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balance was checked to have less than 4% error. Thus, it is assured that
found instability is not numerical.

6.3.1. Control law
Variable inertance inerters, as variable stiffness springs, are often

used to tune dynamic vibration absorbers. However, they can be used as
primary dissipating devices too and, moreover, their control law can be
developed from the dissipation function obtained in Section 4.2 of this
paper.

By inspection of Eq. (81), it can be seen that dissipation function
g t( )c is positive when m t( )c increases. On the other hand, when velocity
q ṫ ( )c is small, m t( )c can be decreased without large energy supply. On
this basis, the following control law is proposed: increase m t( )c when

=q t( ) 0c ; decrease m t( )c when =q ṫ ( ) 0c ; keep m t( )c constant otherwise.
Some experiences have shown that this kind of control laws have much
less chattering than those such as ground-hook or sky-hook, especially
when control forces are proportional to relative accelerations.

6.3.2. Structure model and external excitation
The structure to be controlled and the placement of the semi-active

control device were taken from the work of Jansen and Dyke [53]. It is
a 6-story steel plane frame structure with a fundamental period of
0.72 s and 0.5% of critical damping. The magnetorheological dampers
of that work were replaced with the control device of Fig. 3, installed on
a diagonal brace in the first story. The maximal inertance mcmax was set
to 5 times the floor mass, which can be achieved with a rotating mass M
(at the ground) equal to the 5% of the floor mass and = 10r

r
M . The

minimal inertance mcmin was set to a fourth of mcmax, i.e. = 5r
r
M . The

rate parameters mrmax and mrmin were set to allow a complete sweep of
inertance range in 0.025 s. The excitation was defined as a resonant
harmonic base acceleration with amplitude of 0.01 g and 5 s long.

6.3.3. Definition scenarios and discussion of results
Four scenarios, consisting of three cases each, were simulated. The

three cases are: (1) a non-controlled case (baseline); (2) the case of
using an ideal controller (without delay); and (3) an accidental delay of
0.2 s in the controller (to assess the risk of instability). These are re-
ferred to as ‘without controller’, ‘in-phase controller’, and ‘delayed

controller’, respectively, in Fig. 4 which shows the top displacement of
the frame structure.

In the first scenario (Fig. 4a), it can be seen that, with the para-
meters defined above, the in-phase controller improves the perfor-
mance of the structure without controller, but the accidental delay
leads to instability as warned in Section 6.2. In the second scenario
(Fig. 4b), the critical parameter mrmin has been reduced to a half of the
value used in the first scenario. This countermeasure reduces the in-
stability of the delayed controller, without losing much performance in
the case of the in-phase controller, though the response is still worse
than that of the structure without controller. In the third scenario
(Fig. 4c), the parameter mrmax has been reduced to a half of the value
used in the first scenario. These results clearly show that, for the pro-
posed device, mrmax is not a critical parameter for stability; which is in
agreement with the inference made at the end of Section 6.2.

Finally, in the fourth scenario (Fig. 4d), mcmin has been set equal to
mcmax to show that a passive inerter, with the same mechanical char-
acteristics, would only produce a small detuning of the structure
without significantly reducing its response.

7. Conclusions

This paper formally addresses the issue of the assumed inherent
stability of semi-active control systems. Thus, this investigation represents
a guiding framework for stability assessment and for the classification
of existing and novel semi-active control systems. In addition it acts as a
reference for the practising engineer that is both: rigorous and easy to
use. The application of the developed framework is demonstrated with
a practical example where it is useful in the task of proposing control-
laws and instability-countermeasures.

A direct relationship between the inherent passivity of the semi-active
controller and the inherent stability of the semi-active control system is
found by means of the passivity theorem. Both properties, passivity and
stability, are considered inherent in the sense that they only rely on the
mechanical subsystems.

In particular, it is misguided to assume that any semi-active control
system is inherently stable. However, when these are classified into (1)
variable damping, (2) variable stiffness and (3) variable inertance; and,

Fig. 4. Simulations results: (a) initial parameters; (b) reducing mrmin to a fifth; (c) reducing mrmax to a fifth; (d) passive case as reference ( =m mcmin cmax).
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furthermore,
variable damping is sub-classified into

(1.1) non-negative variable damping and
(1.1) possibly-negative variable damping;

variable stiffness into

(2.1) independently-variable-stiffness and
(2.2) resettable-stiffness;

and variable inertance into

(3.1) independently-variable-inertance and
(3.2) resettable-inertance:

it is found that sub-classes (1.1), (2.2) and (3.2) are the only ones
inherently stable.

Interestingly, sub-class (3.2) is absent in the current literature. In

addition, the hybrid combination of (1.1) and (3.1) can be designed to
be inherently stable.

The generality of the developed framework was demonstrated
through the systematic classification of a large number of literature
examples.

The stability results found in the present work are of practical sig-
nificance since they not only guarantee output boundedness but also
show that the output bounds are the same with and without the con-
troller.

The authors hope that the present paper serves as a rigorous and
clear link between two disciplines: Vibration-Control Design and
Nonlinear-Systems Analysis.
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Appendix A. Resettable stiffness springs with offset

This appendix addresses the general case of resettable-stiffness springs, shown in Fig. 5, whose stiffness k t( )ci can suddenly decrease from a
constant value k i0 to 0 at any instant of time t ; but can increase only at instants of time t such that =q t( ) 0ci , although the displacement across the
corresponding DOFs of the structure is not necessarily 0.

The matrix containing the direction cosines that links the control devices to the structure is defined as = … …B b b b[ ]sc sc sci scp1 ; so the displacement
across the i-th resettable-stiffness spring is ′b q t( )sci s , as labelled in Fig. 5. When the resetting device of Fig. 5 turns to position R (Reset), both stiffness
k t( )ci and deformation q t( )ci drop suddenly to zero. On the other hand, assuming =q t( ) 0ci , when the resetting device turns to position S (Set),
stiffness k t( )ci increases from zero to k i0 ; however, a constant displacement tΔ ( )ci (offset) can appear between the spring and the structure, i.e.:

′ = +B q t q t t( ) ( ) Δ ( ),sc s c c (A. 1)

where = … … ′t t t tΔ ( ) [Δ ( ) Δ ( ) Δ ( )]c c ci cp1 . Note that tΔ ( )ci is constant when the corresponding stiffness is set (position S in Fig. 5) and changes when
stiffness is reset (position R in Fig. 5). Nevertheless, in general, velocities follow the form:

′ = +B q t q t ṫ ( ) ̇ ( ) Δ̇ ( ).sc s c c (A. 2)

For its part, the forces that the resettable-stiffness springs exert on the structure are:

=f t B K t q t( ) ( ) ( ).sc sc c c (A. 3)

Considering the linear case, without loss of generality, the stored energy in the semi-active controller is computed as:

= ′V t q t K t q t( ) 1
2

( ) ( ) ( )c c c c (A. 4)

so = ′ + ′V t q t K t q t q t K t q ṫ ( ) ( ) ̇ ( ) ( ) ̇ ( ) ( ) ( )c c c c c c c
1
2 , by the product rule. Besides, Eq. (12) allows stating that the dissipated power is = ′ −g t q t f V t( ) ̇ ( ) ̇ ( )c s sc c .

Then, combining these two expressions with Eq. (A. 3) yields the following expression of the dissipated power:

= − ′ − ′g t q t B K t q t q t K t q t q t K t q t( ) ̇ ( ) ( ) ( ) 1
2

( ) ̇ ( ) ( ) ̇ ( ) ( ) ( )c s
T

sc c c c c c c c c (A. 5)

in which Eq. (A. 2) is inserted transposed to obtain:

= ′ − ′g t t K t q t q t K t q t( ) Δ̇ ( ) ( ) ( ) 1
2

( ) ̇ ( ) ( ).c c c c c c c (A. 6)

Noteworthy is that the first term of Eq. (A. 6) is always equal to zero since the offset tΔ ( )ci only changes when =q t( ) 0ci (position R in Fig. 5).
Besides, >k ṫ ( ) 0ci only when =q t( ) 0ci . Therefore ⩾ ∀g t t( ) 0c , i.e. resettable-stiffness semi-active controllers are inherently passive.

From a thermodynamically point of view, the action of the resetting device cannot be instantaneous. Instead, it occurs in a fraction of time in which, it
can be shown, the combination of signs of factors in the first term of Eq. (A. 6) gives always a positive product. Indeed the actual dissipation occurs in such a
fraction of time. Nevertheless, energy can be considered to “instantaneously disappear” in the resetting action for the purposes of the present discussion.

Fig. 5. Resettable-stiffness spring with offset.
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Appendix B. Resettable-inertance inerters with offset

This appendix addresses the general case of resettable-inertance inerters, as that shown in Fig. 6, whose inertance m t( )ci can suddenly drop from a
constant value m i0 to 0 at any instant of time t; but can increase only at instants of time t such that =q ṫ ( ) 0ci , although the velocity across the
corresponding DOFs of the structure is not necessarily 0.

When the resetting device of Fig. 6 turns to position R (Reset), both inertance m t( )ci and velocity q ṫ ( )ci drop suddenly to zero. On the other hand,
assuming =q ṫ ( ) 0ci , when the resetting device turns to position S (Set), inertance m t( )ci increases up to m i0 . However, a constant displacement tΔ ( )ci

(offset) can appear between the inerter and the structure; i.e. Eqs. (A. 1) and (A. 2) are also valid for this case. Note that =tΔ̇ ( ) 0ci when the
corresponding inertance is set (position S in Fig. 6), while =q ṫ ( ) 0ci when inertance is reset (position R in Fig. 6).

The forces that the resettable-inertance inerters exert on the structure are:

=f t B M t q( ) ( ) ¨sc sc c c (B. 1)

Considering the linear case, without loss of generality, the stored energy in the controller can be computed as:

= ′V t q t M t q t( ) 1
2

̇ ( ) ( ) ̇ ( )c c c c (B. 2)

so = ′ + ′V t q t M t q t q t M t q ṫ ( ) ̇ ( ) ̇ ( ) ̇ ( ) ̇ ( ) ( ) ¨ ( )c c c c c c c
1
2 , by the product rule. Besides, Eq. (12) allows stating that the dissipated power is = ′ −g t q t f V t( ) ̇ ( ) ̇ ( )c s sc c .

Then, combining these two expressions with Eq. (B. 1) yields the following expression for the dissipated power:

= ′ − ′ − ′g t q t B M t q t q t M t q t q t M t q( ) ̇ ( ) ( ) ¨ ( ) 1
2

̇ ( ) ̇ ( ) ̇ ( ) ̇ ( ) ( ) ¨c s sc c c c c c c c c (B. 3)

in which Eq. (A. 2) is substituted transposed, thus obtaining:

= ′ − ′g t t M t q t q t M t q( ) Δ̇ ( ) ( ) ¨ ( ) 1
2

̇ ( ) ̇ ( ) ̇c c c c c c c (B. 4)

Noteworthy is that the first term of Eq. (B. 4) is always equal to zero since the offset tΔ ( )ci only changes when =q ṫ ( ) 0ci (position R in Fig. 6),
which implies that =q t¨ ( ) 0ci . Besides, >m ṫ ( ) 0ci only when =q ṫ ( ) 0ci . Therefore ⩾ ∀g t t( ) 0c i.e. resettable-inertance semi-active controllers are
inherently passive. Similar thermodynamic considerations to those of the case of resettable-stiffness also apply to this case.
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