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Abstract
The interaction between a solidification front of a semicrystalline polymer and a spherical parti-

cle is a topic of main interest because it addresses particle dispersion/distribution and materials

behavior associated with this issue. In this paper, this interaction is investigated from numerical

analyses by a computational fluid dynamics model that employs the shape of the interface to

calculate drag and repulsion forces. The results obtained in turn are used to determine the con-

ditions under which the particle is dragged by the solidification front. This is employed then to

predict critical solidification front velocities for pushing as a function of particle size. The results

shows that the numerical model developed here is able to accurately predict the conditions for

particle pushing in semicrystalline polymers. The required cooling conditions which lead to a

redistribution of the particles below 50 μm of radius during solidification in polymer composites

and blends can be determined with the proposed model.
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1 | INTRODUCTION

Polymeric blends and composites are attractive materials due to their

processability and wide applicability. Over the recent years consider-

able efforts have been devoted to obtain polymeric blends and com-

posites with improved performance with respect to pristine polymers.

They can be applied in different fields such as packaging, automotive

parts, pipes, technical profiles and electronic components. During con-

solidation and forming processes the material properties can be modi-

fied by the presence of dispersed second phase particles, leading to

either a positive or a negative effect.[1–6]

In the case of crystallizable composites and blends, the composi-

tion, molecular mass and crystallization conditions have a strong

influence on their morphology, crystallization and thermal

behavior.[1,2,7–11] One of the most commonly obtained morphology in

polymers crystallizing from the melt is the spherulitic morphology

which is formed by radially growing lamellar stacks.[12–15] Most of the

studies reported in the literature on these materials are mainly

focused on the crystallization kinetics of spherulites and on the effect

of the second noncrystallizable component on the overall crystalliza-

tion rate and polymer morphology.[7,16–21] Crystallization conditions

are particularly important in determining the size, shape and degree of

crystallinity and, for a given composition, could also affect second

phase dispersion.[3–7,22–27] During slow cooling rates in semicrystalline

polymers the dispersed second phase particles could be rejected from

crystal to amorphous regions during the crystallization process.

Hence, the material exhibits a nonhomogeneous distribution of parti-

cles, and therefore, it does not present a desirable final

performance.[2–6,12]

Similar effects are also highly relevant in the presence of many

antioxidants, u.v. stabilizers and other additives commonly incorpo-

rated into polymers. Several authors have reported the influence of
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growing crystals on the pattern of the impurities that are excluded

from the crystalline network. Moyer and Ochs demonstrated that

polypropylene spherulites presented marked differences in the distri-

bution of the tritiated additive, dilaurylthio-dipropionate.[28] In addi-

tion, Calvert and Ryan investigated the redistribution of antioxidants

and u.v. absorbers in polypropylene.[29] Moreover, Keith and Padden

showed that impurities were concentrated in the interlamellar amor-

phous regions and described how they affected the growth rate and

morphology in high polymers like polypropylene and polystyrene.[9]

Hence, the materials quality was found to be negatively affected. In

some cases, when the particle acts as a nucleating agent, there is no

rejection. Then, the study of the interaction between a solidification

front of a semicrystalline polymer and a spherical particle addresses

the conditions under which second-phase particles are pushed or

engulfed by a solidifying interface, impacting over particle distribu-

tion/dispersion which is a topic of main interest.

The phenomenon of pushing has been extensively treated by

Chernov et al.,[30] Bolling and Cisse,[31] Omenyi et al.[32] and later

reviewed by Stefanescu.[33] The physical problem and the type of

microstructure formed during crystallization depend on the thermo-

physico-chemical properties of the material, the presence of impuri-

ties and the chemical composition or concentration of the phases and

the external fields (gravity, thermal, and electromagnetic fields).[30–36]

This problem does not still have a complete solution but all the theo-

ries include at least two forces: the drag and the repulsion

forces.[30–37] The difference among these theories relies on how they

assume the repulsion force. In all cases, particle–interface interaction

strongly determines the distribution/dispersion of particles and conse-

quently, affects the expected material properties. Although rejection

or engulfing of the second component is a major factor in the crystalli-

zation of polymeric blends and composites, as stated before, the liter-

ature regarding this issue is still rather scarce.[4,5,12,38,39] Rejection of

particles ahead of slow growing rate spherulites has been observed by

several authors. [9,12,23,28,29,39–41] However, none of these studies was

focused on the conditions under which rejection or pushing takes

place in semicrystalline polymers. In these materials, melt viscosity,

particle size, and hydrodynamic force are also major influencing fac-

tors in the particle rejection by the growing spherulites.

From experimental investigations on various organic and inor-

ganic systems it has been demonstrated that there is a critical velocity

of interface (Vc) at which the particle can no longer be pushed and is

trapped and engulfed by the interface, leading to a good distribution

of particles.[33]

Nevertheless, the critical velocity of pushing in a semicrystalline

polymer containing second phase particles has not been already inves-

tigated. The literature about this topic only report the presence

(or absence) of particle rejection by a growing spherulite.[9,12,28,29]

The aim of this work was to predict the critical velocity of pushing

which leads to a particles redistribution on a semicrystalline polymer.

The critical velocity is the only parameter experimentally measured

which may be compared with those predicted by the model.

The model studied here is only valid for dilute systems and the

particle size considered was up to 50 μm of radius. This assumptions

were made taking into account that for larger particle sizes, critical

velocities for pushing in polypropylene are extremely low and hence,

they are not likely to occur for the geometrical configuration studied.

This tendency has been reported before for other authors and other

materials.[31,37,40,41]

On the other hand, this work is based on an analytical and numer-

ical model previously developed for other materials which was also

successfully contrasted with experimental observations.[42–46]

From this model, it was found that cooling rate is one of the main

determining factors of particles distribution/dispersion in the material.

These simulations are very useful to understand the rejection process

and the effect of the solidification rate on particle distribution/disper-

sion and hence, to predict physical properties of polymeric parts and

components.

The previously developed model was used here to predict the

behavior of the filler (pushing) in a semicrystalline polymer for the first

time combining the properties of the particle, the flow field and the

solidification process.[42–46]

The development of a model able to estimate the critical condi-

tions for pushing, particularly the critical velocity, will allow optimizing

industrial processes to obtain a specific distribution/dispersion of

second-phase particles. Hence, a deep knowledge of these critical

conditions is essential to predict the material final performance.

2 | METHODS SECTION

2.1 | The pushing model

The model was applied to the solidification of a semicrystalline poly-

mer, that is, isotactic polypropylene (iPP), containing a spherical parti-

cle immersed in the melt and the solidifying interface moving toward

the particle. The aim of the model was to determine the critical condi-

tions for particle pushing ahead the interface.

The model used is schematically shown in Figure 1. The solidifica-

tion front was performed for the growth of a semicrystalline structure

or a spherulite as a solidifying interface. The particle was firstly

assumed to be spherical, but other particle shapes will be considered

in future models. The physics of the problem is governed by a

dynamic balance of forces.[30–47] Assuming a steady-state condition of

pushing and neglecting the gravitational acceleration, the governing

forces acting onto the particle were the drag and the repulsion forces.

2.1.1 | Drag forces

Drag forces results for a spherical particle and a flat interface were

previously calculated from the numerical analysis developed in a com-

putational fluid dynamics model and originally presented in another

report where was demonstrated that analytical expressions such as

Stokes equation lost accuracy at values of particle–interface distance

(h) smaller than R. This is the main reason to solve this problem by the

model presented in this report.[48] In addition, drag forces correspond-

ing to the configuration of a spherical particle and other two “convex

interface” curvatures were determined. The fluid flow was assumed to

be a viscous fluid polymer at zero shear viscosity. This condition was

based on the results of Xu et al.[5] who reported that fluid flow can

occur in an undercooled polymer melt during isothermal crystallization

of iPP in the presence of a second phase (carbon black).
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The model was simulated on an axi-symmetrical domain using

30 000 and 50 000 quadrilateral elements, with second order interpo-

lation functions for the velocity and first order for the pressure. The

boundary conditions were: (i) constant fluid velocity in the surface

taken as a sink, (ii) no-slip condition on the particle surface and

(iii) other boundaries: free. Newtonian fluid in a laminar flow regime,

(Re � 1). Several particle radii were simulated 0.001–50 μm.

Equations of conservation of mass and momentum were included

in the numerical solutions of the problem. The resulting system of

equations were solved by the Picard method.[49]

Full Navier Stokes equations were numerically solved from the

velocity field by a finite element method in order to calculate drag

forces onto the particle.

As it was shown, the drag force (Fd) strongly depends on the

velocity and shape of the interface, and also on the distance between

particle and interface.

The repulsive force model is based on the theory of Chernov

et al.[30] and was calculated using the Lifshitz Van der Waals force

equation taking into account the interface shape.

These two fields were coupled to analyze the conditions under

which the particle could be pushed by the growing front and to pre-

dict critical velocities for pushing as a function of particle size.

The equilibrium point for steady state of pushing is obtained

when both forces, Fd and Fr, are equal.[33] The corresponding distance

and velocity are: the equilibrium separation distance heq and the equi-

librium velocity Veq, respectively for steady state of pushing. The trap-

ping condition applies when the separation distance between particle

and interface reaches a minimum value of hmin = 1 × 10−8 m, which is

assumed to be the minimum thickness for a film to be considered as

fluid.[30,50,51] The above method of calculation has been already

applied for other materials, and it was adjusted and tailored in this

work for a viscous material as iPP.[42–46] From these results the equi-

librium velocity and particle–interface distance for steady state of

pushing were calculated.

2.1.2 | Repulsive forces

Repulsive forces were calculated from the Van der Waals force

expression. Their influence in the pushing process may be strong

enough to determine the pushing and capture process. The Casimir–

Lifsitz–Van der Waals force (Equation 1) acts in many processes as in

chemical flocculation, coagulation or agglomeration of particles and

also between small particles interacting with themselves as in the

solid–liquid interface. [27,52–59]

Fr =2πB3

ðR

0

rdr
h3ðrÞ ð1Þ

The Van der Waals force employed in the present calculations

was proposed by Lifshitz et al.[58–61] This equation must be integrated

for each geometrical configuration and in the case of a spherical parti-

cle and a flat interface can be written as it is shown in Equation 2.[37]

Fr =2πB3
R

h20
ð2Þ

Where B3 is a Casimir–Lifshitz–Van der Waals constant, h(r) is the

separation distance between particle and interface, h0 is the shortest

interface–particle distance and R is the particle radius as it is shown in

Figure 1.

Equation 2 is applied to a system in which the film is not metallic

and the sign of the parameter B3 is negative in order to have pushing.

The value of B3 of 6 × 10−20 J was selected from the values reported

in the literature for similar systems.[30,57–59]

3 | RESULTS AND DISCUSSION

Drag forces depend on the particle radius, distance h between particle

and interface and interface velocity. Particle radii studied here were

1, 10, and 50 μm and interface velocity was from 1 × 10−18 to

1 × 10−9 m s−1. Previous drag forces results were coupled with repul-

sive forces results (Equation 1) to calculate the equilibrium condition

of pushing and the critical velocity at each particle radius.[48]

FIGURE 1 (A) Scheme of the pushing model used where Fd is the

drag force, Fr the repulsive force, R the radius of the particle, h(r) the
interface-particle distance, and V the velocity of the growing front,
(B) Schematic representation of a particle being pushed by spherulitic
growth front

AGALIOTIS ET AL. 3 of 7



Repulsive forces results mainly depend on the distance between the

particle and the interface h and on the shape of the interface at each

distance. In the case of a convex interface, two curvatures were added

taking into account two radii for the spherulitic interface shape,

R1=10R, R2=2R. Typical flow field results for these two curvatures are

shown in Figure 2. The fluid flow was continuous around the particle

with no separation lines and showed an increase of velocity in the

narrow gap.

It was demonstrated that drag forces results from simulations in

the case of a spherical particle and a flat interface could be calculated

by an analytical equation only if particle size was lower than 100 μm

and interface–particle distance was lower than 2R. Owing to that, the

repulsive Fr and drag Fd forces are computed by simple expressions

when the interface is flat by applying the Modified Stokes and the

Casimir Lifshitz Van der Waals force (Equation 2).[48] Therefore, by

equating these two analytical expressions, the equilibrium velocity

(Veq) and the equilibrium position distance (heq) at this velocity for

steady state pushing can be easily computed as follows:
Veq =

B3

6μheqR
ð3Þ

Repulsive forces results for flat and convex interfaces and a parti-

cle of 50 μm were calculated by using Equation 2 and 1, respectively

(Figure 3).These results showed that the higher the interface curva-

ture, the smaller the repulsive force (Fr). On the other hand, the equi-

librium velocity Veq was determined by the intersection points of Fr

and Fd curves as it is shown in Figure 4 for a value of h = 1 × 10−8

and two cases: a flat interface and a convex interface (spherulite of

R = 500 μm), as an example.

This procedure was used to determine the equilibrium velocity

Veq and the equilibrium distance heq for each configuration and condi-

tion. These results were extrapolated to obtain the critical velocity Vc

and correspond to the velocity Veq at which the equilibrium distance

is hmin=1 × 10−8 m (the minimum thickness for a film to be considered

as fluid).[30,50,51] If the velocity of the interface is higher than the criti-

cal velocity, there is no more pushing and the particle will be trapped

by the solid. In our case, if the spherulitic growth rate is higher than

that velocity, the particle will be engulfed by the solidifying front.

A good agreement between analytical (Equation 3) and FEM

models was obtained for values of h/2R less than 0.1 for a flat inter-

face. On the other hand, a convex interface displayed higher values of

FIGURE 2 Flow fluid results for a convex interface at h = 1 × 10−8

m, R = 50 μm and V = 2.1 × 10−12 m s−1 for two different radii of
spherulite interface shape, (A) R1=10R, (B) R2=2R

FIGURE 3 Repulsive forces (Fr) as a function of the separation

distance h for a flat and convex (R = 500, R = 100 and isotherm
shape) interface onto a particle 50 μm in radius

FIGURE 4 Repulsive (Fr) and drag (Fd) forces as a function of the

solidification velocity for a flat and convex interface at the interface–
particle distance h of 1 × 10−8m. The intersection gives the
equilibrium velocity (Veq) for steady state particle pushing
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equilibrium velocity. These results showed that the higher the inter-

face curvature, the higher is the difference with flat interface results.

Therefore, critical velocities results also reflected this difference.

Besides, for a given solidification velocity, the equilibrium distance

increased as the particle radius decreased indicating that the critical

growth velocity increased accordingly.

In addition, the values of critical velocities for a flat interface at

each particle radius are shown in Table 1. As it is shown in this

Table 1 and in Figure 5, the lower the particle radius, the higher the

critical velocity value. Therefore, the odd of pushing these particles

improves. Critical velocities results for a convex interface were calcu-

lated for particle radii of 50 μm and are shown also in Figure 6 and

Table 2. In the case of convex interfaces, all critical velocities were

smaller than for a flat interface pointing out that the higher the curva-

ture, the higher is the probability for the particle of being pushed.

Significantly low values of critical velocities were obtained in this

work, in agreement with experimental data for thin films of iPP unidi-

rectionally solidified at a constant temperature gradient of 5.5 K

mm−1 (from 0.019 to 1.9 μm s−1).[3,19,60,61] It has been reported in the

literature that crystal growth rate (critical velocity) could be related to

cooling conditions. For nonisothermal crystallization of PP with low

cooling rates between 0.5 and 1 K/min, the spherulite growth rate

was experimentally found to be below 20 μm/min.[62,63] In addition,

for isothermal crystallization the range of spherulite growth rate

experimentally measured was between 0.1 and 20 μm/min.[62–64] In

the particular case of PP under isothermal conditions at 138 �C, Xu

et al. also reported a similar range of spherulite growth rate

(2–13 μm/min).[5]

Finally Vc values were also calculated for very small particle sizes

(Figure 6) and compared with the experimental results reported by Xu

et al.[5] for iPP filled with carbon black (CB). For an isothermal crystalli-

zation temperature of 138 �C, they observed that the size of the

spherulites reached about 30–40 μm and the fastest recorded dis-

placement rates of the CB particles were between 2.9 and 13 μm

min−1, being these particles rejected by the spherulites. The radius of

the CB particles was smaller than 10 μm and the spherulite size was

at least 10 times higher this radius. Taking all these into account, Xu

et al. results could be approached to a flat interface. The recorded par-

ticles velocities are a little higher than those predicted in our model

for zero shear viscosity of 1 × 10+3Pa s, probably due to changes in

the shear rate. It is well known that viscosity decreases with an

increase of the shear rate viscosity. A decrease of the viscosity values

increases the critical velocity for steady state particle pushing. In order

to evaluate this, two viscosities (1 × 10+4 and 1 × 10+2 Pa s) were

simulated and critical velocity values were calculated. As it is shown in

Figure 6, the results of our model are in agreement with those of Xu

et al. for particles with radii smaller than 0.5 μm. The lowest size value

for particles assumed here was 0.001 μm because at such very low

particle sizes, the effect of Brownian motion will dominate the particle

movement; and as a result it was expected that particles are engulfed

rather than pushed. In addition, this effect becomes more relevant as

particle size decreases. On the other hand, experimental validation of

results will be almost impossible for these small particle

sizes.[31,34,37,65]

TABLE 1 Critical velocity of pushing at different particle radii for a

zero shear viscosity of 1 × 10+3 Pa s

Particle radius (μm) Critical velocity (μm min−1)

0.001 5.8

0.01 3

0.05 1

0.1 0.64

1 0.061

10 0.0064

50 0.00129

FIGURE 5 Equilibrium separation distance for steady state of pushing

as a function of the solidification velocity for a flat interface

FIGURE 6 Simulations results of critical velocity of pushing as a

function of particle radii for a flat interface and three zero shear
viscosities (1 × 10+2, 1 × 10+3, and 1 × 10+4 Pa s); for convex
interfaces (for a zero shear viscosity of 1 × 10+3 Pa s) and
experimental results reported by Xu et al.[5] for three particles tracked

TABLE 2 Critical velocity of pushing for different interface shapes

and R = 50 μm for a zero shear viscosity of 1 × 10+3 Pa s

Shape Interface – R = 50 (μm) Critical velocity (μm min−1)

Flat 0.00129

Cvx 500 0.00131

Cvx 100 0.00146

CvxIsot 0.00433
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At the time of writing and to the author's knowledge, critical

velocity values for particle pushing in semicrystalline polymers have

not been previously reported. The current model was certainly used

for spherical particles as it is the simplest approximation to predict the

critical velocities for particle pushing in a solidifying semicrystalline

polymer. However, the development of this approximation is still time

consuming.

Predictions obtained here will be considered for further models

development in the case of other particle geometries by taking into

account these results as reference data

4 | CONCLUSIONS

The interaction between a solidification front of a semicrystalline

polymer and a spherical particle was numerically simulated. From the

results obtained in this investigation, the following conclusions can be

drawn.

Critical velocity for steady state particle pushing was accurately

predicted and calculated for a flat interface and a spherical particle

from 0.001 to 50 μm of radii in a polymeric matrix. Good agreement

between analytical and numerical models was obtained for values of

h/2R less than 0.1, where h is the distance between interface and par-

ticle and R is the radius of the particle.

Critical velocity (Vc) values decreased with the increase of particle

size. In addition, Vc values for a convex interface were smaller than for

a flat interface pointing out that the higher the curvature, the higher is

the probability for the particle of being pushed.

From the results obtained here, it was confirmed that the pro-

posed model is able to accurately predict critical velocity values for

particle pushing and hence, the cooling conditions which lead to a

redistribution of the particles in a dilute system during solidification

and consequently modify the material final performance. A deep

knowledge of this phenomenon has very important implications to

optimize industrial processes of semicrystalline polymers in order to

obtain the desired material.
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