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a b s t r a c t

The aim of forming collaborative learning teams is that participating students acquire new knowledge
and skills through the interaction with their peers. To reach this aim, teachers usually utilize a grouping
criterion based on the students’ roles and on forming well-balanced teams according to the roles of their
members. However, the implementation of this criterion requires a considerable amount of time, effort
and knowledge on the part of the teachers. In this paper, we propose a deterministic crowding evolution-
ary algorithm with the aim of assisting teachers when forming well-balanced collaborative learning
teams. Considering a given number of students who must be divided into a given number of teams,
the algorithm both designs different alternatives to divide students into teams and evaluates each alter-
native as regards the grouping criterion previously mentioned. This evaluation is carried out on the basis
of knowledge of the students’ roles. To analyze the performance of the proposed algorithm, we present
the computational experiments developed on ten data sets with different levels of complexity. The
obtained results are really promising since the algorithm has reached optimal solutions for the first four
data sets and near-optimal solutions for the remaining six data sets.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In educational centers, teachers usually divide students into
learning teams to perform collaborative learning tasks. These tasks
require students to work together to solve problems, discover
information, and complete projects. Besides, the collaborative
learning tasks are meant for students to acquire new knowledge
and skills through the interaction with their peers. Thus, the objec-
tive of collaborative learning is to supplement and enrich individ-
ual learning (Barkley, Cross, & Howell Major, 2005; Michaelsen,
Knight, & Fink, 2004).

Within a collaborative learning environment, there are two
important aspects to take into account: the criterion to form learn-
ing teams (i.e., grouping criterion) and the way in which the group-
ing criterion is applied (i.e., either manually or automatically). The
grouping criterion is relevant since the way in which a team is
made up affects both the learning level and the social behavior of
the students belonging to the team (Beane & Lemke, 1971; Dalton,
ll rights reserved.
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Hannafin, & Hooper, 1989; Hooper & Hannafin, 1988; Michaelsen
et al., 2004; Webb, 1982).

Several grouping criteria have been proposed so far in order to
form collaborative learning teams. Generally, these criteria take
into account factors related to the learning state of the students,
their learning style, personality, and interpersonal relationships
(Alfonseca, Carro, Martín, Ortigosa, & Paredes, 2006; Lin, Huang,
& Cheng, 2010; Martin & Paredes, 2004; Meyer, 2009; Michaelsen
et al., 2004; Nielsen, Hvas, & Kjaergaard, 2009; Rutherfoord, 2001;
Saleh & Kim, 2009; Sánchez Hórreo & Carro, 2007; Speck, 2003;
Tang, Chan, Winoto, & Wu, 2001; Wilkinsona & Fung, 2002; Yang,
2006).

One of the grouping criteria most utilized by teachers in class-
rooms is based on taking into account the students’ roles and on
forming well-balanced teams according to the roles of their mem-
bers. A role is the way in which a person tends to behave, contrib-
ute and interrelate with others throughout a collaborative task.
Several team role models proposed in the literature recommend
this grouping criterion (Belbin, 1981, 1993; Davis, Millburn, Mur-
phy, & Woodhouse, 1992; Margerison & McCann, 1990; Parker,
1990; Spencer & Pruss, 1992; Woodcock, 1989). According to these
models, if a team is well-balanced with respect to the roles of its
members, then its members will interact and collaborate with each
other well. These models also indicate that there is a direct rela-
tionship between the performance of a team and the balance level
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among the roles of its members. Among the models developed so
far, the model proposed by Belbin (Belbin, 1981, 1993) is the most
widespread and accepted in the literature.

The Belbin’s model (Belbin, 1981, 1993) has been successfully
used in education as a tool for collaborative learning team forma-
tion (Jeffries, Grodzinsky, & Griffin, 2003, 2004; Johansen, 2003;
McFadzean, 2001; Ounnas, 2010; Stevens, 1998; Winter, 2004).
Different works that employed the Belbin’s model to study teams
of students tasking software engineering group projects showed
that considering the Belbin’s roles can impact positively on the
performance of the teams (Stevens, 1998; Winter, 2004), and can
provide a prediction of the performance of the teams based on
the composition of the roles within the teams (Johansen, 2003). Be-
sides, the Belbin’s model (Belbin, 1981, 1993) has been widely used
in training activities by many organizations, consulting firms and
executive education programs (Cameron, 2002; Park & Bang,
2002; Prichard & Stanton, 1999; Sommerville & Dalziel, 1998).

The formation of well-balanced collaborative learning teams
according to the roles of their members is a task requiring a consid-
erable amount of time, effort and knowledge of the roles of the stu-
dents. This task is not free from mistakes made by teachers due to
their human limitations. Some examples of such limitations are
lack of knowledge and wrong assumptions regarding the roles of
the students and the formation of well-balanced teams. Therefore,
it is valuable to assist teachers when forming collaborative learn-
ing teams. In this line of thought, the aim of automatically forming
learning teams is to build teams efficiently (i.e., the time required
by automation is shorter than the time required by teachers) and
effectively (i.e., wrong decisions are minimized when all the avail-
able knowledge of students’ roles and the formation of well-bal-
anced teams is considered). Through automation it is thus
possible to considerably reduce the work load of teachers and opti-
mize the formation of collaborative learning teams.

In this paper, we address the problem of forming collaborative
learning teams automatically. As part of the problem, we consider
that teams must be made up in such a way that the balance among
the roles of their members is maximized. This grouping criterion is
defined on the basis of the model proposed by Belbin (Belbin, 1981,
1993) and the balance conditions established by this author. The
reason for this is that different works have showed that the collab-
orative learning team formation based on the model proposed by
Belbin impact positively on the learning level and the social behav-
ior of the students belonging to the teams and on the performance
of the teams (Jeffries et al., 2003; Jeffries, Grodzinsky, & Griffin,
2004; Johansen, 2003; McFadzean, 2001; Ounnas, 2010; Stevens,
1998; Winter, 2004).

In order to solve the problem, we propose a deterministic
crowding evolutionary algorithm. Taking into account a given
number of students who must be divided into a given number of
teams, the algorithm both designs different alternatives to divide
students into learning teams and evaluates each alternative as re-
gards the grouping criterion considered as part of the problem.
That evaluation is carried out on the basis of knowledge of the stu-
dents’ roles.

We have decided to propose an evolutionary algorithm because
the problem addressed in this paper is an NP-Hard optimization
problem, and in this sense, evolutionary algorithms have been
proved to be effective and efficient when resolving a wide variety
of NP-Hard optimization problems (Eiben & Smith, 2007; Goldberg,
2007).

The rest of the paper is organized as follows. Section 2 presents
a description of the problem addressed. Section 3 describes the
evolutionary algorithm designed to solve the problem. Section 4
presents the computational experiments carried out to evaluate
the evolutionary algorithm and an analysis of the results obtained.
Finally, Section 5 presents the conclusions of this work.
2. Problem description

In this section, the problem addressed is formally described.
This problem consists in forming teams of students to perform col-
laborative learning tasks. As part of the problem, we consider that
teams must be made up in such a way that the balance among the
roles of their members is maximized.

A class S is made up of n students, S = {s1,s2, . . . ,sn}. The teacher
must divide the n students into g teams, G = {G1,G2, . . . ,Gg}. Each Gi

team is made up of a zi number of member students, and each stu-
dent can only belong to one team. As regards team size, students
must be divided in such a way that the g teams have a similar num-
ber of students each. Specifically, the difference between the size of
a team and the size of the other teams must not exceed one. The
values of the terms S, n, and g are known.

As regards the students, they naturally assume or play different
roles when taking part in a collaborative task. A role is the way in
which a person tends to behave, contribute and interrelate with
others throughout a collaborative task. In relation to the roles that
can be played by the students, the nine roles defined in Belbin’s
model (Belbin, 1981, 1993) are taken into account in this work. Ta-
ble 1 shows the nine roles and a brief description of the features of
each. Belbin (Belbin, 1981, 1993) considers that each person has a
preference level for each role, and in this sense, defines four pref-
erence levels: low, average, high and very high. The preference le-
vel indicates how naturally a person can play a given role. Then,
Belbin (Belbin, 1981, 1993) considers that if a person has a high
or very high preference level for a given role, that person is capable
of playing that role naturally. Furthermore, Belbin (Belbin, 1981,
1993) points out that a person can play one or several roles
naturally.

According to Belbin’s model (Belbin, 1981, 1993), each student
naturally plays one or several of the nine roles described in Table 1.
In this respect, the roles naturally played by each student are
known data. These roles are obtained through the Belbin Team-
Role Self-Perception Inventory (BTRSPI) developed by Belbin (Bel-
bin, 1981, 1993). The BTRSPI determines the preferred team roles
of the persons by giving them self-evaluation tests (Belbin, 1981,
1993).

As previously mentioned, teams must be made up in such a way
that the balance among the roles of their members is maximized.
This grouping criterion requires analyzing the balance level in
the formed teams. In order to analyze the balance level, the balance
conditions established by Belbin are considered (Belbin, 1981,
1993). These conditions are presented below.

Belbin (Belbin, 1981, 1993) states that a team is balanced if each
role specified in his model is played naturally by at least one team
member. In other words, in a balanced team, all team roles are nat-
urally played. Further, Belbin states that each role should be natu-
rally played by only one team member (Belbin, 1981). Belbin states
that a team is unbalanced if some roles are not played naturally or
if several of its members play the same role naturally (i.e., dupli-
cate role) (Belbin, 1981, 1993).

Formulas (1) and (2) have been designed in order to formally
express the balance conditions established by Belbin (Belbin,
1981, 1993). Formula (1) analyzes the way in which a given r
role is played within a given Gi team and gives a score accord-
ingly. If r is naturally played by only one member of Gi team,
then 1 point is awarded to Gi. Conversely, if r is not naturally
played by any member of Gi, or otherwise r is naturally played
by several members of Gi, then 2 points and p points are taken
off respectively.

Formula (2) sets the balance level in a given Gi team. This bal-
ance level is established based on the scores obtained by Gi,
through Formula (1), in relation to the nine roles. In this way, the
greater the number of non-duplicate roles (i.e., roles played



Table 1
Belbin’s role characteristics.

Role Characteristics

Implementer (IM) Concerned with the practical translation and application of concepts and plans developed by the team. This entails a down-to-earth outlook,
coupled with perseverance in the face of difficulties

Co-ordinator (CO) Organises, co-ordinates and controls the activities of the team. This involves the clarification of team objectives and problems, assigning tasks
and responsibilities, and encouraging team members to get involved in achieving objectives and goals

Shaper (SH) Challenges, argues and disagrees. Is achievement-motivated, extrovert, impatient, and has a low frustration threshold. Keen on winning the
game. Has good insight, especially if loses. A non-chair leader

Plant (PL) Concerned with putting forward ideas and strategies for achieving the objectives adopted by the team. Performance of this role requires
creativity, imagination and innovation

Resource Investigator
(RI)

Explores the environment outside the team, by identifying ideas, information and resources. Performance of this role involves developing
contacts, co-ordination and negotiation with other teams and individuals

Monitor Evaluator
(ME)

Analyses ideas and proposals being considered by the team, to evaluate their feasibility and value for achieving the team’s objectives. Points out
in a constructive manner the weaknesses of proposals being considered

Team Worker (TW) Creates and maintains a team spirit. This involves improving communication by providing personal support and warmth to team members and
by overcoming tension and conflict

Completer/Finisher
(CF)

Ensures that the team’s efforts achieve appropriate standards, and that mistakes of both commissions and omissions are avoided. It also
involves searching for detailed mistakes and maintaining a sense of urgency within the team

Specialist (SP) Provides knowledge and skills in key areas. Single-minded, self-starting, dedicated
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naturally by only one member of Gi), the greater the balance level
assigned to Gi. Conversely, the fewer the number of roles played
naturally, or the more duplicate roles, the lower the balance level
assigned to Gi. The balance conditions established by Belbin (Bel-
bin, 1981, 1993) can be seen in Formula (2). Using this formula, a
perfectly balanced team will obtain a level equal to 9.

nrðGi; rÞ ¼
1 if r is naturally played by only one member of Gi

�2 if r is not naturally played in Gi

�p if r is naturally played by p members of Gi

8><
>:

ð1Þ

nbðGiÞ ¼
X9

r¼1

nrðGi; rÞ ð2Þ

Formula (3) has been designed in order to formally express the
grouping criterion considered as part of the problem. This formula
maximizes the average balance level of g teams defined from the
n students in the class. In other words, the objective of this formula
is to find a solution (i.e., set of g teams) that maximizes the average
balance level of g teams. This is the optimal solution to the problem
addressed. In Formula (3), set C contains all the sets of g teams that
may be defined from the n students in the class. The term G repre-
sents a set of g teams belonging to C. The term b (G) represents the
average balance level of the g teams belonging to set G. Then, For-
mula (3) uses Formula (2) to establish the balance level of each Gi

team belonging to the G set.

max
8G2C

bðGÞ ¼
Pg

i¼1nbðGiÞ
g

� �
ð3Þ
3. Deterministic crowding evolutionary algorithm

To solve the problem addressed in this paper, we propose a
deterministic crowding evolutionary algorithm. Evolutionary algo-
rithms are heuristic methods of search and optimization inspired
by Darwin’s theory of evolution (Eiben & Smith, 2007; Goldberg,
2007). According to these algorithms, an initial population of can-
didate solutions to a problem evolves towards the optimal solu-
tions based on the principles of natural selection, crossover, and
mutation.

The general behavior of the algorithm proposed here is as fol-
lows. Considering a class of n students who shall be divided into
g teams, the algorithm starts the evolution from an initial popula-
tion of feasible solutions. Each of these solutions codifies a feasible
set of g teams which may be defined when the n students are di-
vided. Then, each solution of the population is decoded (i.e., the
set of g teams inherent to the solution is built) and evaluated by
a fitness function. This function evaluates each solution in relation
to the optimization objective of the problem. As explained earlier,
the objective here is to maximize the balance level of the g teams
formed from n students. Therefore, taking into consideration a gi-
ven solution, the function evaluates the balance level of the g
teams represented by the solution. In order to perform that evalu-
ation, the function is based on knowledge of the students’ roles.

Once the solutions are evaluated, a selection process is applied
to the current population. Some solutions of the population are se-
lected and then paired. In general, the solutions with the greatest
fitness values have more chances of being selected. Then a cross-
over process is applied to each pair of solutions to generate new
feasible ones. A mutation process is later applied to the generated
solutions by the crossover. This mutation process is aimed at intro-
ducing genetic diversity in solutions. Finally, a strategy known as
deterministic crowding (Eiben & Smith, 2007; Goldberg, 2007) is
used to create a new population from the solutions in the current
population and the new generated solutions.

This process is repeated until some stopping criterion is
reached. In this case, the stopping criterion consists in reaching a
predetermined number of repetitions or iterations.

Details about each of the different components of the proposed
algorithm are presented in the next subsections. The main compo-
nents of the algorithm are the representation of solutions, the gen-
eration of the initial population, the fitness function, and the
selection, crossover, and mutation processes.

3.1. Representation of the solutions

Each solution in the evolutionary algorithm population repre-
sents or encodes a G set of g teams which may be built when the
n students in the class are divided. The solutions must be encoded
in such a way that the application of different crossover and muta-
tion operators generates new feasible solutions. Therefore, we de-
fine an appropriate encoding for the solutions below.

Each solution is encoded as a list with a length equal to n (i.e., a
list with as many positions as students in the class). Specifically,
each position j (j = 1, . . . ,n) on this list contains a different student
(i.e., repeated students are not admitted). Besides, each student sk

(k = 1, . . . ,n) may be in any position on the list. In short, the list is a
permutation of the n students.
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3.1.1. Decoding of the Solutions
We propose here a decoding process through which g teams of

students may be built from the above-mentioned representation
(i.e., list of the n students or permutation of the n students). In this
process, the g teams are built taking into account the two restric-
tions considered as part of the problem. The first restriction is that
each student may belong to only one team. While the second
restriction holds that the difference between the size of a team
and the size of the rest of the teams must not exceed one. The
decoding process is as follows.

Firstly, in this process the size of the teams is considered to de-
pend on the relationship between the values n and g. Therefore, the
process starts by calculating the value of the term z = (n/g). If z is an
integer, then g teams having the same size are built. Each team Gi

(i = 1, . . . ,g) is assigned a size zi = z. Then, the process defines how
each team is made up. The composition of a Gi team is defined
based on its zi size, its i index and the above-mentioned list of
the n students. Specifically, a set of z students is assigned to each
Gi team. The set assigned to each Gi is made up of the students in
positions [((i � 1) � z + 1), . . . , (i � z)] on the list.

In case z is not an integer, g teams having the same size cannot
possibly be built. Furthermore, the process must consider that the
difference between the sizes of any two teams must not exceed
one. Thus, the process builds g teams which do not have the same
size, but which respect the restriction mentioned above. The way
in which the g teams are built is described below.

Firstly, considering that z is not an integer (i.e., z is a real num-
ber) and that the above-mentioned restriction should be taken into
account, some of the g teams will have a size z1 = ((integer part of
z) + 1) and the rest of the teams will have a size z2 = (integer part of
z). Then the process defines which teams will have size z1 and
which teams will have size z2. Specifically, the process assigns each
team Gl (l = 1, . . . ,g1) a size zl = z1 considering g1 = (n – ((integer part
of z) � g)). Then the process assigns each team Gt (t = (g1 + 1), . . . ,g)
a size zt = z2. Lastly, the composition of the g teams is determined
based on points (a), (b) and (c) below.

(a) The process assigns each team Gl (l = 1, . . . ,g1) a set of z1 stu-
dents. The set of students assigned to each Gl is made up of
the students in positions [((l � 1) � z1 + 1), . . . , (l � z1)] on the
list of the n students.

(b) The process assigns team Gr (r = g1+1) a set of z2 students.
The set assigned to Gr is made up of the students in positions
[(g1 � z1) + 1, . . . , (g1 � z1) + z2] on the list of the n students.

(c) The process assigns each team Gf (f = g1+2, . . . ,g) a set of z2 stu-
dents. The set assigned to each Gf is made up of the students in
positions [((g1 � z1) + z2) + ((f � (g1 + 2)) � z2 + 1), . . . , ((g1 �
z1) + z2) + ((f � (g1 + 1)) � z2)] on the list.

Fig. 1 shows a feasible encoded solution to an example of the
problem addressed in this paper. In this example, 7 students have
to be divided into 3 teams. The encoded solution is a list of the 7
students or a permutation of the 7 students. This figure also shows
the 3 teams obtained through the application of the decoding
process.
s1 s2 s4

G1

Encoded solution

Teams obtained by the

decoding process

Fig. 1. Feasible encoded solution to an example of the addressed problem,
3.2. Initial population

The initial population contains a specific number of feasible en-
coded solutions to the problem. Each encoded solution consists of a
permutation of the n students in the class (Subsection 3.1). A ran-
dom method has been designed so as to generate each of the solu-
tions of this population. This kind of methods guarantees a good
level of genetic diversity in the initial population, and therefore,
helps prevent the premature convergence of the algorithm (Eiben
& Smith, 2007; Goldberg, 2007).

The method begins as follows: an empty list of length n is built.
Then, n iterations are developed so as to define the content of the
positions on the list. In each iteration m (m = 1, . . . ,n), a student
from the Lm set is randomly selected and positioned at m on the
list. The Lm set is made up of those students in the class who, up
to the m iteration, have not been included on the list. A permuta-
tion of the n students in the class is therefore generated.

3.3. Fitness function

It evaluates the fitness level of a given solution in relation to the
optimization objective considered as part of the problem. As ex-
plained earlier, the objective here is to maximize the balance level
of the g teams formed from the n students in the class.

Considering a given encoded solution, the function decodes the
G set of g teams represented by the solution. The decoding is car-
ried out by applying the process described in Subsection 3.1.1.
Then, the function calculates the value of the term b (G) (Formulas
(3), (2) and (1)). This value represents the average balance level of
the g teams composing the G set, and thus, determines the fitness
level of the encoded solution. In the case of a G set of perfectly bal-
anced g teams, the value of the term b (G) shall be 9, considering 9
as the maximal possible fitness level.

In order to calculate the value of the term b (G), the function
needs to know the roles inherent to each of the n students in the
class. In this sense, each class of n students has an associated
knowledge base, and this contains the roles inherent to each stu-
dent of the class. Then, the fitness function queries the base to ob-
tain the roles of each student.

As was mentioned in Section 2, the roles of the students are ob-
tained through the Belbin Team-Role Self-Perception Inventory
(BTRSPI) developed by Belbin (Belbin, 1981, 1993). The BTRSPI
determines the preferred team roles of the persons by giving them
self-evaluation tests (Belbin, 1981, 1993).

3.4. Selection of parents

This process selects the best solutions from among the current
population to conform pairs of solutions (parent solutions), which
will be used to generate new solutions (offspring solutions) by the
crossover and mutation processes.

When selecting a solution, this process considers the fitness val-
ues of the solutions in the population and is usually biased by a
random factor. Thus, the solutions with the highest fitness values
will have more chances of being selected.
s3 s5 s7 s6

G2 G3

and teams obtained through the application of the decoding process.
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In order to develop the parent selection process, we have
decided to use a method known as tournament selection (Eiben
& Smith, 2007; Goldberg, 2007). This is, in fact, one of the most ap-
plied and widespread in the literature. This method is described
below.

Two solutions are randomly selected from the current popula-
tion. Then, the fitness values of those solutions are compared.
The better one (i.e., the solution with the best fitness value) is
selected and becomes the first member of the pair which is being
designed. The other solution is returned to the population.
This operation is repeated so as to obtain the second member of
the pair. A pair of solutions is thus built out of the current
population.

The method described in the previous paragraph is applied M/2
times to the current population to obtain M/2 pairs, considering M
as the size of the population.
3.5. Crossover

The selection process determines a number of pairs of solutions
that should be recombined, and each pair undergoes the crossover
operator with probability Pc. The crossover developed in a pair of
solutions (parent solutions) generates two new solutions (offspring
solutions).

The crossover operator is one of the most important genetic
operators because it preserves and combines the best characteris-
tics of the parent solutions so that new, better solutions can be de-
fined (Eiben & Smith, 2007; Goldberg, 2007).

The crossover operator is directly applied to pairs of encoded
solutions. Thus, the crossover must be designed on the basis of
the representation defined for the solutions. In this case, each solu-
tion consists of a permutation of n elements and, therefore, it is
necessary to use a feasible operator for permutations of n ele-
ments. We have decided to use an operator known as order cross-
over (Eiben & Smith, 2007). This is, in fact, one of the most applied
and widespread in the literature. This operator is described below.

The operator is applied to the parent 1 and parent 2 solutions,
which generates two new solutions, offspring 1 and offspring 2.
The operator defines two random crossover points k1 and k2, con-
sidering 1 6 k1 < k2 < n, and n is equal to the longitude of the par-
ent solutions. Then, to define offspring 1, the operation is as
follows. Firstly, the elements in the positions [k1,k2] of parent 1
are copied, in the same order, in the positions [k1,k2] of offspring
1. Then, the operator copies the elements not included in offspring
Parent 1

Parent 2

Crossover point k1
Crossover point k2

s1 s2 s4 s3 s5 s7 s6

s6 s5 s7 s3 s4 s1 s2

Parent 1

Parent 2

s1 s2 s4 s3 s5 s7 s6

s6 s5 s7 s3 s4 s1 s2

(a)

(b)

Fig. 2. Example of the crossover operat
1 in the empty positions of this solution. The elements not included
in offspring 1 are copied taking into account the order in which
they appear in parent 2. Specifically, starting from the second
crossover point in parent 2, the operator copies the elements not
included in the order in which they appear in parent 2. When
the operator reaches the last element on parent 2 list, the process
continues from the first position on that list.

The generation of offspring 2 is similar to the generation of off-
spring 1. However, the roles of the parents are inverted to generate
offspring 2.

Fig. 2 shows an example of the crossover operation described. In
this example, the operation is applied to two parent solutions with
longitude 7, and two offspring solutions are generated. The cross-
over points k1 and k2 are equal to 2 and 5 respectively. Fig. 2. (a)
shows that the segment [k1,k2] of parent 1 is copied in offspring
1, and the segment [k1,k2] of parent 2 is copied in offspring 2.
Fig. 2. (b) shows that the elements not included in offspring 1
are copied in this solution in the order in which they appear in par-
ent 2. Meanwhile, the elements not included in offspring 2 are cop-
ied in this solution in the order in which they appear in parent 1.
3.6. Mutation

The mutation operator aims at introducing genetic diversity in
the population (Eiben & Smith, 2007; Goldberg, 2007). In order
to do so, this operator randomly alters one or more characteristics
of some solutions obtained after the crossover process. The muta-
tion operator is applied to each solution obtained by the crossover
process with a probability Pm.

The mutation operator is directly applied to an encoded solu-
tion. Therefore, in this case, it is necessary to apply a feasible oper-
ator for permutations of n elements. We have decided to use an
operator known as swap mutation (Eiben & Smith, 2007; Goldberg,
2007). This operator is described below.

The operator is applied to a solution that must be mutated, thus
generating a new solution. This operator starts by randomly select-
ing two positions k1 and k2, considering 1 6 k1 < k2 6 n, and n
equal to the longitude of the solution. Then, the operator removes
the elements positioned at k1 and k2 from the solution. Later, the
element removed from the position k1 is copied in the position k2,
and the element removed from the position k2 is copied in the po-
sition k1. In short, the mutation operator swaps the elements in
positions k1 and k2. Thus, a new permutation of n elements is
generated.
Offspring 1

Offspring 2

s4 s3 s5

s7 s3 s4

Offspring 1

Offspring 2

s6 s7 s4 s3 s5 s1 s2

s2 s5 s7 s3 s4 s6 s1

or. (a) First step. (b) Second step.



Solution

Mutated

solution

Position k1

s1 s2 s4 s3 s5 s7 s6

s1 s5 s4 s3 s2 s7 s6

Position k2

Fig. 3. Example of the mutation operator.
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Fig. 3 shows an example of the mutation operation described. In
this example, the operation is applied to a solution with longitude
7, and a new solution is generated. The positions k1 and k2 are
equal to 2 and 5 respectively.

4. Computational experiments

This section describes the computational experiments devel-
oped to evaluate the effectiveness and efficiency of the evolution-
ary algorithm. Subsection 4.1 describes the data sets that were
utilized. Subsection 4.2 presents the selected values for setting
the algorithm parameters. Subsection 4.3 presents and analyzes
the results obtained by the algorithm on the different data sets.
Subsection 4.4 compares the performance of the evolutionary algo-
rithm with those of two competing algorithms.

4.1. Data sets

In order to develop the experiments, we designed 10 data sets.
The main characteristics of each data set are shown in Table 2. Each
data set contains a list of n students. For each data set, we estab-
lished a g number of teams to be built from n students. It should
be noted that the size of the g teams is equal to 6 members. In
the literature, this size is considered one of the optimal sizes for
collaborative learning teams (Barkley et al., 2005; Michaelsen
et al., 2004).

Besides, the evolutionary algorithm needs to know the roles
played by the n students from which the g teams are to be built.
Thus, specific roles have been specified for each student of each
of the 10 data sets. These roles belong to the Belbin’s model (Bel-
bin, 1981, 1993) containing 9 roles (i.e., IM, CO, SH, PL, RI, ME,
TW, CF y SP) as described in Table 1. What follows is a description
of the procedure employed for assigning roles to the students of
each of the 10 data sets shown in Table 2.
Table 2
Description of each data set.

Data set Number of participating students (n) Number of teams (g)

1 18 3
2 24 4
3 60 10
4 120 20
5 360 60
6 600 100
7 1200 200
8 1800 300
9 2400 400

10 3000 500
Considering a data set containing a list of n = g � 6 students
from which g teams of 6 members are to be built, the procedure
for role assignment performs the following 6 steps.

1. The procedure considers students in positions [1, . . . ,g] on the
list and assigns each of them role IM.

2. The procedure considers students in positions [g + 1, . . . ,2 � g]
on the list and assigns each of them roles CO and SH.

3. The procedure considers students in positions [(2 � g) +
1, . . . ,3 � g] on the list and assigns each of them roles PL and RI.

4. The procedure considers students in positions [(3 � g) +
1, . . . ,4 � g] on the list and assigns each of them roles ME and
TW.

5. The procedure considers students in positions [(4 � g) +
1, . . . ,5 � g] on the list and assigns each of them role CF.

6. The procedure considers students in positions [(5 � g) +
1, . . . ,6 � g] on the list and assigns each of them role SP.

By means of the described procedure, each of the 9 roles is rep-
resented by g students of the data set, and each student of the data
set represents one or two roles. In this way, from the n students of
the data set, it is possible to build at least a set of perfectly bal-
anced g teams. In other words, it is possible to build at least a set
of g teams in which each of the nine roles is represented by only
one team member. According to the fitness function defined in
Subsection 3.3, a set of perfectly balanced g teams has a fitness le-
vel (i.e., the average balance level of the g teams) that is equal to 9.
This fitness level is the maximal possible fitness level.

Taking into account the points mentioned in the preceding par-
agraph and considering that the described assignment procedure
has been applied to the 10 data sets, it may be stated that there
is at least one solution with a maximal fitness level for each of
these data sets. Then, considering that a solution with a maximal
fitness level outperforms all other possible solutions, this solution
may be considered an optimal solution. Thus, it is possible to state
that for each of the 10 designed data sets, there is at least one opti-
mal solution with a fitness level equal to 9.

4.2. Evolutionary algorithm parameters

The evolutionary algorithm has four main parameters (i.e., size
of initial population, crossover probability Pc, mutation probability
Pm, and number of iterations). The effectiveness and efficiency of
the algorithm greatly depend on the values assigned to these
parameters. For this reason, preliminary experiments were con-
ducted to determine what combination of values allows the algo-
rithm to achieve the best results on the 10 data sets. These
preliminary experiments are described below.
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First, different values were defined for each parameter. Specifi-
cally, three values were considered for the initial population size
(i.e., 50, 100 and 200). Then, different values were considered for
Pc (i.e., values in the range [0.5,0.9]) and different values were con-
sidered for Pm (i.e., values in the range [0.01,0.1]). Finally, different
values for the number of iterations were considered (i.e., 400, 600,
and 1000). The combination of all these values yielded different
possible settings for the evolutionary algorithm parameters.

The obtained settings were evaluated on the 10 data sets by
means of the following procedure. Each setting was run 20 times
on each of the 10 data sets. Then, in order to determine the effec-
tiveness and efficiency of a given setting with respect to a given
data set, we calculated the average fitness level of the 20 solutions
obtained by means of the 20 runs, and we also calculated the aver-
age computation time of the 20 runs.

The procedure described above was utilized because the evolu-
tionary algorithm is a stochastic method. In such methods, differ-
ent runs of a given setting on a given data set may achieve
different solutions. Therefore, a single run of a given setting on a
given data set is not sufficient to establish the effectiveness and
efficiency of this setting with respect to the data set. In this sense,
it is necessary to perform several runs, and subsequently, to calcu-
late the average fitness level of the solutions obtained by means of
the runs. This average fitness value is considered a representative
value of the effectiveness of the setting on the data set. Analo-
gously, it is necessary to calculate the average computation time
of the performed runs so as to obtain a representative value of
the efficiency of the setting on the data set.

Table 3 presents the parameters’ setting through which the evo-
lutionary algorithm obtained the best results on the 10 data sets.
This setting is considered in the following subsections.
4.3. Main results

The evolutionary algorithm was run 20 times on each of the 10
data sets. Then for each data set, the average fitness value of the
obtained solutions and the average computation time of the runs
were calculated. To perform these runs, the algorithm parameters
were set with the values shown in Table 3.

Table 4 presents the results obtained by the algorithm on each
data set. The first column provides the name of each data set; the
second columns indicates the average fitness value of the achieved
Table 3
Best setting for the parameters of the evolutionary
algorithm.

Parameter Value

Crossover probability Pc 0.8
Mutation probability Pm 0.05
Population size 100
Number of generations 400

Table 4
Results obtained by the evolutionary algorithm.

Data set Fitness value Time (seconds)

1 9 0.5537
2 9 1.3741
3 9 11.0669
4 9 17.5976
5 8.8 40.8722
6 8.76 55.7548
7 8.7 196.9964
8 8.64 362.0328
9 8.61 574.6589

10 8.592 771.6553
solutions for each data set; and the third column shows the aver-
age computation time of the runs performed on each data set.

In order to analyze the results presented in Table 4, it should be
considered that, as mentioned in Subsection 4.1, each of the 10
data sets has at least one optimal solution with a fitness level equal
to 9. Then, this fitness level is considered a reference level to eval-
uate the effectiveness of the evolutionary algorithm on each data
set.

The results presented in Table 4 indicate that, for each of the
first four data sets, the algorithm has achieved an optimal solution
in each of the runs. Besides, for each of the six remaining data sets,
the algorithm has achieved an average fitness value that is higher
than 8.5. This means that, for the last six data sets, the algorithm
has achieved solutions that are very near the optimal solutions.
The composition of the obtained solutions for the last six data sets
has been analyzed. On the basis of this analysis, it is possible to say
that each of these solutions contains a high percentage of perfectly
balanced teams.

Regarding the average computation time required by the algo-
rithm, the following points may be mentioned. For each of the first
six data sets, the average time required by the algorithm was lower
than 60 s. Then, for each of the four remaining data sets, the aver-
age time required by algorithm was higher than 100 s and lower
than 800 s. Taking into consideration the complexity of the ad-
dressed problems, particularly the complexity of the problems
inherent in the last four data sets, the average computation times
required by the algorithm on the 10 data sets are considered
acceptable.

On the basis of these results, it may be said that for each of the
10 data sets, the algorithm has achieved high-quality solutions in
an acceptable period of time.
4.4. Comparison with two competing methods

In this subsection, the performance of the evolutionary algo-
rithm is compared with those of two competing algorithms, the
exhaustive and random methods.
4.4.1. Comparison with the exhaustive method
In this subsection, the performance of the evolutionary algo-

rithm is compared with that of another search method known as
exhaustive method. In this comparison, the achieved performances
are considered in terms of the average fitness value and the aver-
age computation time on each of the 10 data sets.

Unlike the evolutionary algorithm, the exhaustive method
exhaustively enumerates all possible solutions to a given problem,
which guarantees that the optimal solution will be found in each
run. Therefore, the exhaustive method was run only once on each
of the 10 data sets.

Table 5 shows the results obtained by the exhaustive method
and those obtained by the evolutionary algorithm on the 10 data
sets with respect to the average fitness value and the average com-
putation time.

The results show that the exhaustive method was only able to
solve the problems inherent in the first three data sets in a reason-
able period of time. The reason for this is that the team-formation
problem is an NP-Hard problem, so the computation time required
by the exhaustive method increases exponentially as the problem
size increases. Unlike the exhaustive method, the evolutionary
algorithm has found optimal solutions for the first four data sets
and near-optimal solutions for the remaining six data sets. The
solutions for all 10 data sets have been found in an acceptable per-
iod of time. Furthermore, even though the computation time of the
evolutionary algorithm also increased as the problem size in-
creased, this increase is smaller than the one in the exhaustive



Table 5
Results obtained by the exhaustive method and results obtained by the evolutionary
algorithm.

Data set Exhaustive method Evolutionary algorithm

Fitness value Time (seconds) Fitness value Time (seconds)

1 9 59.4552 9 0.5537
2 9 189.27 9 1.3741
3 9 1072.587 9 11.0669
4 N/A N/A 9 17.5976
5 N/A N/A 8.8 40.8722
6 N/A N/A 8.76 55.7548
7 N/A N/A 8.7 196.9964
8 N/A N/A 8.64 362.0328
9 N/A N/A 8.61 574.6589

10 N/A N/A 8.592 771.6553
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method. Therefore, the evolutionary algorithm may be considered
to obtain high-quality solutions efficiently.
4.4.2. Comparison with the random method
In this subsection, the performance of the evolutionary algo-

rithm is compared with that of an algorithm known as random
method. In this comparison, the achieved performances are consid-
ered in terms of the average fitness value and the average compu-
tation time on each of the 10 data sets.

The random method has been considered because it imple-
ments one of the grouping strategies that teachers most widely
employ in their classes. This strategy is called random assignment
strategy, and by means of its application, each of the n students in a
class is randomly assigned to one of the g teams. The random
method is a stochastic method. As a result, like the evolutionary
algorithm, the random method was run 20 times on each of the
10 data sets. Then, the average fitness value of the obtained solu-
tions and the average computation time of the runs were calcu-
lated for each data set.

Table 6 shows the results obtained by the random method and
those obtained by the evolutionary algorithm on the 10 data sets
with respect to the average fitness value and the average computa-
tion time.

The results indicate that the computation times required by the
random method are much shorter than those required by the evo-
lutionary algorithm. In addition, it may be seen that the time re-
quired by the random method was not significantly affected by
the complexity of the addressed problems. Conversely, the time re-
quired by the evolutionary algorithm increased as the problem
complexity increased. Although the evolutionary algorithm re-
quired a longer computation time than the random method, when
one observes the average fitness values achieved by the two algo-
rithms, it is possible to state that the quality of the solutions found
by the evolutionary algorithm is much greater than the quality of
Table 6
Results obtained by the random method and results obtained by the evolutionary
algorithm.

Data set Random method Evolutionary algorithm

Fitness value Time (seconds) Fitness value Time (seconds)

1 1.5 0.0001 9 0.5537
2 1.3 0.0002 9 1.3741
3 �1.2 0.0014 9 11.0669
4 �1.8 0.0022 9 17.5976
5 �3.1 0.0051 8.8 40.8722
6 �3.9 0.0069 8.76 55.7548
7 �4.5 0.0246 8.7 196.9964
8 �5.2 0.0452 8.64 362.0328
9 �6.1 0.0718 8.61 574.6589

10 �7.3 0.0964 8.592 771.6553
the solutions found by the random method. Specifically, the aver-
age fitness values obtained by the evolutionary algorithm are high-
er than 8.5, whereas those obtained by the random method are
lower than 2. Furthermore, even though the average fitness values
obtained by the evolutionary algorithm decrease as the problem
complexity increases, such decrease is very small compared with
the decrease in the random method. Therefore, the evolutionary
algorithm may be considered to obtain higher-quality solutions
than the random method.
5. Conclusions

This paper has addressed the problem of forming collaborative
learning teams from a students’ class. As part of the problem, we
considered a grouping criterion that is widely used by teachers
in their classrooms. This criterion is based on taking into account
the students’ roles and on forming well-balanced teams according
to the roles of their members. This criterion has been implemented
following the team role model proposed by Belbin (Belbin, 1981,
1993) and the balance conditions established by this author.

To solve the addressed problem, we propose a deterministic
crowding evolutionary algorithm. Taking into account a given stu-
dents’ class that must be divided into a given number of teams, the
algorithm designs different alternatives to divide the students into
learning teams and evaluates each alternative with respect to the
grouping criterion considered as part of the problem. This evalua-
tion is conducted based on knowledge of the students’ roles.

Different computational experiments were developed for evalu-
ating the evolutionary algorithm’s performance. These experi-
ments involved solving team formation problems inherent in ten
data sets with different levels of complexity. Then, the perfor-
mance of the algorithm on each data set was determined by calcu-
lating the average fitness value of the obtained solutions as well as
the average computation time of the runs. Additionally, the perfor-
mance of the evolutionary algorithm on the ten data sets was com-
pared with the performances of the exhaustive and random
methods on the same data sets.

On the basis of the results obtained by the evolutionary algo-
rithm on the ten data sets, it may be stated that this algorithm
has been able to achieve high-quality solutions in an acceptable
computation time for each of the data sets employed. Furthermore,
as a result of the comparative analysis conducted, it may be said
that the evolutionary algorithm has been shown to have advanta-
ges over the exhaustive and random methods. Firstly, the evolu-
tionary algorithm has been able to effectively solve all those
problems for which the exhaustive method has not found a solu-
tion in an acceptable period of time. Secondly, the evolutionary
algorithm has been shown to be more effective than the random
method on each of the ten data sets. Considering all the observa-
tions hereby mentioned, we conclude that the results achieved
by the evolutionary algorithm are really promising.
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