

Available online at www.sciencedirect.com



Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 37 (2011) 39-44

www.elsevier.com/locate/endm

# The difference between clique graphs and iterated clique graphs

Pablo De Caria <sup>1</sup>

CONICET, Universidad Nacional de La Plata, Argentina

#### Abstract

Let  $\mathcal{G}$  be the class of all graphs and K the clique operator. The validity of the equality  $K(\mathcal{G}) = K^2(\mathcal{G})$  has been an open question for several years. A graph in  $K(\mathcal{G})$  but not in  $K^2(\mathcal{G})$  is exhibited here.

Keywords: Graph theory, clique operator, clique graph, octahedral graph.

## 1 Introduction

Dealing with clique graphs is not an easy task and most of the problems about them prove complicated. For example, determining whether a graph is a clique graph is a NP-complete problem [1].

Working on iterated clique graphs is even more difficult and not much is known about techniques to determine whether a graph is an iterated clique graph or not.

Let  $\mathcal{G}$  be the class of all graphs, K the clique operator and  $K^2$  the composition of K with itself. In view of the previous paragraph, it is not surprising to discover that it was unknown whether  $K(\mathcal{G}) = K^2(\mathcal{G})$ . The main goal of

1571-0653/\$ – see front matter 0 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.endm.2011.05.008

<sup>&</sup>lt;sup>1</sup> Email: pdecaria@mate.unlp.edu.ar

this paper is to show that the clique graph of the octahedral graph,  $O_4$ , is in  $K(\mathcal{G})$  but not in  $K^2(\mathcal{G})$ , thus establishing the falseness of the equality.

For that purpose, after some definitions and properties are given in Section 2, the set  $K^{-1}(O_4)$  is characterized in Section 3 helped by the fact that the octahedron is an induced subgraph of any graph in  $K^{-1}(O_4)$ . A demonstration of the equality  $K^{-1}(O_4) \cap K(\mathcal{G}) = \emptyset$ , using the terminology of Section 4, follows in Section 5, which concludes the proof.

### 2 Definitions, basics and goals

For a graph G, V(G) is the set of its vertices and E(G) the set of edges. The subgraph *induced* by  $A \subseteq V(G)$ , G[A], has A as vertex set and  $v, w \in A$  are adjacent in G[A] if and only if they are adjacent in G. The *neighborhood* of  $v \in V(G)$ , N[v], is the set composed of v and its adjacent vertices. If w is such that N[v] = N[w], we say that v is a *twin* of w, symbolized by  $v \sim w$ .

Let  $\mathcal{F}$  be a family of nonempty sets.  $\mathcal{F}$  is *Helly* if the intersection of all the members of any subfamily of pairwise intersecting sets is not empty. The *intersection graph* of  $\mathcal{F}$ ,  $L(\mathcal{F})$ , has the members of  $\mathcal{F}$  as vertices, two of them being adjacent if and only if they are not disjoint.

Let A be a set.  $A \ll \mathcal{F}$  means that there exists  $F \in \mathcal{F}$  such that  $A \subseteq F$ . If  $A = \{v_1...v_n\}$ , the notation  $v_1...v_n \ll \mathcal{F}$  will be used too.

A complete of G is a set of pairwise adjacent vertices of G. A clique is a maximal complete and the family of all the cliques of G will be denoted by  $\mathcal{C}(G)$ . The clique graph of G is defined as the intersection graph of  $\mathcal{C}(G)$ . The function  $K : \mathcal{G} \to \mathcal{G}$ , where  $\mathcal{G}$  denotes the class of all the graphs, assigning to each graph its clique graph is called the *clique operator*. The most classical characterization of clique graphs is due to Roberts and Spencer:

**Theorem 2.1** [3] Let G be a graph. Then G is a clique graph if and only if there exists a Helly family  $\mathcal{F}$  of completes of G that covers all the edges of G, *i.e.*, for all  $vw \in E(G)$ ,  $vw \ll \mathcal{F}$ .

Define the *two section* of a family  $\mathcal{F}$ ,  $S(\mathcal{F})$ , as a graph whose vertices are the elements of  $\mathcal{F}$ , two of them being adjacent if and only if there exists a member of  $\mathcal{F}$  to which both belong. Then we can say that G is a clique graph if and only if there exists a Helly family  $\mathcal{F}$  such that  $S(\mathcal{F}) = G$ .

The expression  $K^{-1}(G)$  will be used instead of  $K^{-1}(\{G\})$ , that is, the set of all the graphs that have G as a clique graph. Call  $\mathcal{F}$  a *separating* family if, for any ordered pair (v, w) of elements, there exists  $F \in \mathcal{F}$  such that  $v \in F$ and  $w \notin F$ . The following characterization of  $K^{-1}(G)$  can be given: **Theorem 2.2** [2]  $K^{-1}(G)$  is composed of all the graphs of the form  $L(\mathcal{F})$ , being  $\mathcal{F}$  a Helly and separating family such that  $S(\mathcal{F}) = G$ .

 $K^n$  will indicate the composition of K with itself n times, with  $K^0$  equal to the identity on  $\mathcal{G}$ . For  $i \geq 0$ , the *i*-th iterated clique graph of G is defined as  $K^i(G)$ . The goal of this paper is to determine whether the equality  $K(\mathcal{G}) =$  $K^2(\mathcal{G})$  is true or not. If it is true, then it follows that  $K^m(\mathcal{G}) = K^n(\mathcal{G})$  for all  $m, n \geq 1$ . However, it has long been suspected to be false.

Define, for  $n \ge 1$ , the *n*-dimensional octahedron  $O_n$  as a graph such that  $V(O_n) = \{1, 2, ..., 2n\}$  and  $E(O_n) = \{ij : i \ne j \land |i-j| \ne n\}$ . If  $v \in V(O_n)$ , the definition implies that N[v] fails to contain only one vertex of the graph. We name it the *opposite* of v, denoted by v'. As a consequence, it can be inferred that  $O_n$  has a total of  $2^n$  cliques, each containing n vertices.



Fig. 1.  $O_3$  and its clique graph  $O_4$ . The cliques of  $O_3$  are also labeled.

It is straightforward that  $K(O_3) = O_4$ . Thus,  $O_4 \in K(\mathcal{G})$ . The inequality  $K(\mathcal{G}) \neq K^2(\mathcal{G})$  will be proved by showing that  $O_4 \notin K^2(\mathcal{G})$ . We can infer from the definitions and basic set theory that a graph G is in  $K^2(\mathcal{G})$  if and only if  $K^{-1}(G) \cap K(\mathcal{G}) \neq \emptyset$ . Consequently, the following theorem will suffice:

Theorem 2.3  $K^{-1}(O_4) \cap K(\mathcal{G}) = \emptyset$ .

# **3** Finding $K^{-1}(O_4)$

In order to describe  $K^{-1}(O_4)$ , it will be necessary to prove that any graph in it has  $O_3$  as an induced subgraph. In view of Theorem 2.2, it will be sufficient to verify that, for every Helly family  $\mathcal{F}$  such that  $S(\mathcal{F}) = O_4, O_3$  is an induced subgraph of  $L(\mathcal{F})$ . We will consider first those  $\mathcal{F}$  that are minimal in the sense that no proper subfamily of  $\mathcal{F}$  has  $O_4$  as its two section. From Lemma 3.1 to Lemma 3.3, the families considered will be assumed to satisfy this condition. Lemma 3.1 |F| = 4 for all  $F \in \mathcal{F}$ .

**Lemma 3.2** Let F and F' be two members of  $\mathcal{F}$ . Then  $|F \cap F'|$  is even.

**Lemma 3.3** Let  $\{a, b, c, d\}$  be a member of  $\mathcal{F}$ . Then  $\{a', b', c', d'\} \in \mathcal{F}$ .

**Proof.** Suppose on the contrary that  $\{a', b', c', d'\} \notin \mathcal{F}$ . Since  $a'b' \ll \mathcal{F}$ ,  $a'c' \ll \mathcal{F}$  and  $a'd' \ll \mathcal{F}$ , the previous lemma implies that  $\{a', b', c, d\}, \{a', c', b, d\}, \{a', d', b, c\} \in \mathcal{F}$ . These three sets and  $\{a, b, c, d\}$  form an intersecting subfamily of  $\mathcal{F}$  but they have no common element, contradicting that  $\mathcal{F}$  is Helly. Therefore,  $\{a', b', c', d'\} \in \mathcal{F}$ .

**Theorem 3.4** Let  $G \in K^{-1}(O_4)$ . Then  $O_3$  is an induced subgraph of G.

**Sketch of proof.** Let  $\mathcal{F}$  be a Helly family such that  $L(\mathcal{F}) = G$  and  $S(\mathcal{F}) = O_4$ . Among all the subfamilies of  $\mathcal{F}$  with two section equal to  $O_4$ , take  $\mathcal{F}'$  minimal with respect to inclusion. Use the previous lemmas to find three members  $F_1, F_2, F_3$  of  $\mathcal{F}'$  that are pairwise intersecting. By Lemma 3.3, the sets  $F'_1, F'_2, F'_3$  composed of the opposites of the vertices in  $F_1, F_2, F_3$ , respectively, are also members of  $\mathcal{F}'$ . Then  $F_1, F_2, F_3, F'_1, F'_2$  and  $F'_3$  induce  $O_3$  in  $L(\mathcal{F})$ . Therefore,  $O_3$  is an induced subgraph of G.

Let G be any graph such that  $K(G) = O_4$ . If  $G \neq O_3$ , then G has an induced subgraph with fewer vertices, namely  $O_3$ , whose clique graph also equals  $O_4$ . This fact gives several special characteristics to the graphs in  $K^{-1}(O_4)$ :

**Proposition 3.5** Let G be a graph with  $K(G) = O_4$ ,  $V' \subseteq V(G)$  such that  $G[V'] = O_3$  and v, w two vertices of G. Then:

(a) N[v] ∩ V' ≠ Ø.
(b) If N[v] ∩ V' ⊆ N[w] ∩ V' then N[v] ⊆ N[w].
(c) If N[v] ∩ V' = N[w] ∩ V' then v ~ w.
(d) N[v] ∩ V' ≠ V'.

### 4 Classifying sets of cliques of O<sub>3</sub>

The information obtained from Section 3 leaves us in a good position to give a proof that  $O_4 \notin K^2(G)$ . Here we define structures of  $O_3$  that are necessary for that purpose. A *castle* is defined as a subset A of  $\mathcal{C}(O_3)$  such that |A| = 3and  $|C \cap C'| = 1$  for any pair C, C' of distinct elements of A. Castles can also be characterized as in the next proposition: **Proposition 4.1** Let A be a castle of  $O_3$ . Then there exists  $C' \in \mathcal{C}(O_3)$  such that  $A = \{C \in \mathcal{C}(O_3) : |C \cap C'| = 2\}.$ 

A will be said to be *castled* if it contains a castle. We have the following result regarding castled sets:

#### **Proposition 4.2** Let $A \subseteq \mathcal{C}(O_3)$ such that $|A| \ge 5$ . Then A is castled.

Proposition 4.2 is equivalent to stating that any nonempty non-castled subset of  $\mathcal{C}(O_3)$  has at most four elements. The following classification for non-castled sets is proposed:

A is a triangle if |A| = 1. In case that |A| = 2,  $A = \{C, C'\}$ , A is a rhombus if  $|C \cap C'| = 2$ , is a bow if  $|C \cap C'| = 1$  or is an opposite pair if  $C \cap C' = \emptyset$ . In case that |A| = 3, A is an umbrella if it contains an opposite pair or is a fan if the intersection of all its elements is nonempty. In case that |A| = 4, A is a round if the intersection of all its elements is nonempty; A is a worm if its elements can be listed in such a way that two of them are consecutive if and only if they share two vertices; and A is a rhombic circle if it contains two distinct opposite pairs.



Fig. 2. Graphical representation of the sets defined in this section.

### 5 Extract of the proof of Theorem 2.3

Suppose that there exists a graph G in  $K(\mathcal{G}) \cap K^{-1}(O_4)$ . Let  $\mathcal{F}$  be a Helly family such that  $S(\mathcal{F}) = G$ . For any set  $V' = \{a, a', b, b', c, c'\}$  such that  $G[V'] = O_3$  define  $C(\mathcal{F}, V') := \{C \in \mathcal{C}(G[V']) : C \ll \mathcal{F}\}$ . We also choose, for every clique  $\{x, y, z\}$  of G[V'], a vertex  $v_{xyz}$  which is in each member of  $\mathcal{F}$  that contains  $\{x, y\}, \{x, z\}$  or  $\{y, z\}$ . Note that two of these vertices are adjacent (or equal) if their subscripts share two vertices. Now we study what kind of set  $C(\mathcal{F}, V')$  is.  $C(\mathcal{F}, V')$  is not castled:

Suppose that  $C_1, C_2, C_3$  are elements of  $C(\mathcal{F}, V')$  forming a castle, and let  $F_1, F_2, F_3$  be members of  $\mathcal{F}$  such that  $C_i \subseteq F_i, 1 \leq i \leq 3$ . Then  $F_1, F_2, F_3$  are pairwise intersecting and we can take  $v \in V(G)$  such that  $v \in F_1 \cap F_2 \cap F_3$ . We can deduce from Proposition 4.1 that  $V' \subseteq N[v]$ , contradicting part (d) of Proposition 3.5. Therefore,  $C(\mathcal{F}, V')$  is not castled.

 $C(\mathcal{F}, V')$  does not contain an umbrella:

Suppose that  $C(\mathcal{F}, V')$  contains an umbrella with elements  $\{a, b, c\}, \{a', b', c\}, \{a', b', c\}$ . Then  $\{a, a', b, b', c\} \subseteq N[v_{ab'c}]$  and we deduce from part (c) of Proposition 3.5 that  $v_{ab'c} \sim c$ . Furthermore,  $\{a, a', b', c'\} \subseteq N[v_{ab'c'}]$  and  $v_{ab'c'} \in N[v_{ab'c}]$ . Thus  $v_{ab'c'} \sim b'$ . Similarly,  $v_{a'bc} \sim c, \{a', b, b', c'\} \subseteq N[v_{a'bc'}], v_{a'bc} \in N[v_{a'bc'}]$  and  $v_{a'bc'} \sim a'$ . Note that  $\{a, b, v_{ab'c'}, c, c'\} \subseteq N[v_{abc'}]$ , so  $v_{abc'} \sim a$ . This contradicts that  $v_{a'bc'} \in N[v_{abc'}]$ . Therefore,  $C(\mathcal{F}, V')$  does not contain an umbrella.

 $C(\mathcal{F}, V')$  is not a round:

Suppose that  $C(\mathcal{F}, V')$  is a round and that  $\{a, b, c\}, \{a, b, c'\}, \{a, b', c\}, \{a, b', c'\}$  are its elements. Then  $\{a, a', b', c\} \subseteq N[v_{a'b'c}]$  and  $\{a, a', b, c\} \subseteq N[v_{a'bc}]$ . Let  $C \in \mathcal{C}(G)$  such that  $\{v_{a'bc}, v_{a'b'c}\} \subseteq C$ . Since  $b \in C$  or  $b' \in C$ ,  $v_{a'b'c} \sim c$  or  $v_{a'bc} \sim c$ . If  $v_{a'b'c} \sim c$ , let  $V'' = \{a, a', b, b', v_{a'b'c}, c'\}$ . Then  $G[V''] = O_3$  and use the definition of  $v_{a'b'c}$  to conclude that  $\{a, b, c'\}, \{a, b', c'\}$  and  $\{a', b', v_{a'b'c}\}$  are elements of  $C(\mathcal{F}, V'')$ . Thus,  $C(\mathcal{F}, V'')$  contains an umbrella, which is a contradiction. If  $v_{a'bc} \sim c$  we proceed similarly, also getting a contradiction. Therefore,  $C(\mathcal{F}, V')$  is not a round.

The reasonings displayed so far have to continue being applied to prove that there is not a set that  $C(\mathcal{F}, V')$  can equal. Each possibility can be discarded by following a decreasing order of  $|C(\mathcal{F}, V')|$ . This is the contradiction that allows to conclude that  $K(\mathcal{G}) \cap K^{-1}(O_4) = \emptyset$ .

### References

- Alcón L., L. Faria, C.M.H. de Figueiredo and M. Gutierrez, *The complexity of clique graph recognition*, Theor. Comput. Sci., 410 (2009), 2072-2083.
- [2] Gutierrez M. and J. Meidanis, On the clique operator, Proceedings of the 3rd Latin American Conference on Theoretical Informatics, Lecture Notes in Computer Science, 1380 (1998), 261-272.
- [3] Roberts F. and J. Spencer, A characterization of clique graphs, J. Combin. Theory B, 10 (1971), 102-108.