The difference between clique graphs and iterated clique graphs

Pablo De Caria ${ }^{1}$
CONICET, Universidad Nacional de La Plata, Argentina

Abstract

Let \mathcal{G} be the class of all graphs and K the clique operator. The validity of the equality $K(\mathcal{G})=K^{2}(\mathcal{G})$ has been an open question for several years. A graph in $K(\mathcal{G})$ but not in $K^{2}(\mathcal{G})$ is exhibited here.

Keywords: Graph theory, clique operator, clique graph, octahedral graph.

1 Introduction

Dealing with clique graphs is not an easy task and most of the problems about them prove complicated. For example, determining whether a graph is a clique graph is a NP-complete problem [1].

Working on iterated clique graphs is even more difficult and not much is known about techniques to determine whether a graph is an iterated clique graph or not.

Let \mathcal{G} be the class of all graphs, K the clique operator and K^{2} the composition of K with itself. In view of the previous paragraph, it is not surprising to discover that it was unknown whether $K(\mathcal{G})=K^{2}(\mathcal{G})$. The main goal of

[^0]this paper is to show that the clique graph of the octahedral graph, O_{4}, is in $K(\mathcal{G})$ but not in $K^{2}(\mathcal{G})$, thus establishing the falseness of the equality.

For that purpose, after some definitions and properties are given in Section 2 , the set $K^{-1}\left(O_{4}\right)$ is characterized in Section 3 helped by the fact that the octahedron is an induced subgraph of any graph in $K^{-1}\left(O_{4}\right)$. A demonstration of the equality $K^{-1}\left(O_{4}\right) \cap K(\mathcal{G})=\emptyset$, using the terminology of Section 4, follows in Section 5, which concludes the proof.

2 Definitions, basics and goals

For a graph $G, V(G)$ is the set of its vertices and $E(G)$ the set of edges. The subgraph induced by $A \subseteq V(G), G[A]$, has A as vertex set and $v, w \in A$ are adjacent in $G[A]$ if and only if they are adjacent in G. The neighborhood of $v \in V(G), N[v]$, is the set composed of v and its adjacent vertices. If w is such that $N[v]=N[w]$, we say that v is a twin of w, symbolized by $v \sim w$.

Let \mathcal{F} be a family of nonempty sets. \mathcal{F} is Helly if the intersection of all the members of any subfamily of pairwise intersecting sets is not empty. The intersection graph of $\mathcal{F}, L(\mathcal{F})$, has the members of \mathcal{F} as vertices, two of them being adjacent if and only if they are not disjoint.

Let A be a set. $A \ll \mathcal{F}$ means that there exists $F \in \mathcal{F}$ such that $A \subseteq F$. If $A=\left\{v_{1} \ldots v_{n}\right\}$, the notation $v_{1} \ldots v_{n} \ll \mathcal{F}$ will be used too.

A complete of G is a set of pairwise adjacent vertices of G. A clique is a maximal complete and the family of all the cliques of G will be denoted by $\mathcal{C}(G)$. The clique graph of G is defined as the intersection graph of $\mathcal{C}(G)$. The function $K: \mathcal{G} \rightarrow \mathcal{G}$, where \mathcal{G} denotes the class of all the graphs, assigning to each graph its clique graph is called the clique operator. The most classical characterization of clique graphs is due to Roberts and Spencer:

Theorem 2.1 [3] Let G be a graph. Then G is a clique graph if and only if there exists a Helly family \mathcal{F} of completes of G that covers all the edges of G, i.e., for all $v w \in E(G)$, $v w \ll \mathcal{F}$.

Define the two section of a family $\mathcal{F}, S(\mathcal{F})$, as a graph whose vertices are the elements of \mathcal{F}, two of them being adjacent if and only if there exists a member of \mathcal{F} to which both belong. Then we can say that G is a clique graph if and only if there exists a Helly family \mathcal{F} such that $S(\mathcal{F})=G$.

The expression $K^{-1}(G)$ will be used instead of $K^{-1}(\{G\})$, that is, the set of all the graphs that have G as a clique graph. Call \mathcal{F} a separating family if, for any ordered pair (v, w) of elements, there exists $F \in \mathcal{F}$ such that $v \in F$ and $w \notin F$. The following characterization of $K^{-1}(G)$ can be given:

Theorem 2.2 [2] $K^{-1}(G)$ is composed of all the graphs of the form $L(\mathcal{F})$, being \mathcal{F} a Helly and separating family such that $S(\mathcal{F})=G$.
K^{n} will indicate the composition of K with itself n times, with K^{0} equal to the identity on \mathcal{G}. For $i \geq 0$, the i-th iterated clique graph of G is defined as $K^{i}(G)$. The goal of this paper is to determine whether the equality $K(\mathcal{G})=$ $K^{2}(\mathcal{G})$ is true or not. If it is true, then it follows that $K^{m}(\mathcal{G})=K^{n}(\mathcal{G})$ for all $m, n \geq 1$. However, it has long been suspected to be false.

Define, for $n \geq 1$, the n-dimensional octahedron O_{n} as a graph such that $V\left(O_{n}\right)=\{1,2, \ldots, 2 n\}$ and $E\left(O_{n}\right)=\{i j: i \neq j \wedge|i-j| \neq n\}$. If $v \in V\left(O_{n}\right)$, the definition implies that $N[v]$ fails to contain only one vertex of the graph. We name it the opposite of v, denoted by v^{\prime}. As a consequence, it can be inferred that O_{n} has a total of 2^{n} cliques, each containing n vertices.

Fig. 1. O_{3} and its clique graph O_{4}. The cliques of O_{3} are also labeled.
It is straightforward that $K\left(O_{3}\right)=O_{4}$. Thus, $O_{4} \in K(\mathcal{G})$. The inequality $K(\mathcal{G}) \neq K^{2}(\mathcal{G})$ will be proved by showing that $O_{4} \notin K^{2}(\mathcal{G})$. We can infer from the definitions and basic set theory that a graph G is in $K^{2}(\mathcal{G})$ if and only if $K^{-1}(G) \cap K(\mathcal{G}) \neq \emptyset$. Consequently, the following theorem will suffice:

Theorem $2.3 K^{-1}\left(O_{4}\right) \cap K(\mathcal{G})=\emptyset$.

3 Finding $K^{-1}\left(O_{4}\right)$

In order to describe $K^{-1}\left(O_{4}\right)$, it will be necessary to prove that any graph in it has O_{3} as an induced subgraph. In view of Theorem 2.2, it will be sufficient to verify that, for every Helly family \mathcal{F} such that $S(\mathcal{F})=O_{4}, O_{3}$ is an induced subgraph of $L(\mathcal{F})$. We will consider first those \mathcal{F} that are minimal in the sense that no proper subfamily of \mathcal{F} has O_{4} as its two section. From Lemma 3.1 to Lemma 3.3, the families considered will be assumed to satisfy this condition.

Lemma $3.1|F|=4$ for all $F \in \mathcal{F}$.
Lemma 3.2 Let F and F^{\prime} be two members of \mathcal{F}. Then $\left|F \cap F^{\prime}\right|$ is even.
Lemma 3.3 Let $\{a, b, c, d\}$ be a member of \mathcal{F}. Then $\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right\} \in \mathcal{F}$.
Proof. Suppose on the contrary that $\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right\} \notin \mathcal{F}$. Since $a^{\prime} b^{\prime} \ll \mathcal{F}$, $a^{\prime} c^{\prime} \ll \mathcal{F}$ and $a^{\prime} d^{\prime} \ll \mathcal{F}$, the previous lemma implies that $\left\{a^{\prime}, b^{\prime}, c, d\right\},\left\{a^{\prime}, c^{\prime}, b, d\right\}$, $\left\{a^{\prime}, d^{\prime}, b, c\right\} \in \mathcal{F}$. These three sets and $\{a, b, c, d\}$ form an intersecting subfamily of \mathcal{F} but they have no common element, contradicting that \mathcal{F} is Helly. Therefore, $\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right\} \in \mathcal{F}$.

Theorem 3.4 Let $G \in K^{-1}\left(O_{4}\right)$. Then O_{3} is an induced subgraph of G.
Sketch of proof. Let \mathcal{F} be a Helly family such that $L(\mathcal{F})=G$ and $S(\mathcal{F})=$ O_{4}. Among all the subfamilies of \mathcal{F} with two section equal to O_{4}, take \mathcal{F}^{\prime} minimal with respect to inclusion. Use the previous lemmas to find three members F_{1}, F_{2}, F_{3} of \mathcal{F}^{\prime} that are pairwise intersecting. By Lemma 3.3, the sets $F_{1}^{\prime}, F_{2}^{\prime}, F_{3}^{\prime}$ composed of the opposites of the vertices in F_{1}, F_{2}, F_{3}, respectively, are also members of \mathcal{F}^{\prime}. Then $F_{1}, F_{2}, F_{3}, F_{1}^{\prime}, F_{2}^{\prime}$ and F_{3}^{\prime} induce O_{3} in $L(\mathcal{F})$. Therefore, O_{3} is an induced subgraph of G.

Let G be any graph such that $K(G)=O_{4}$. If $G \neq O_{3}$, then G has an induced subgraph with fewer vertices, namely O_{3}, whose clique graph also equals O_{4}. This fact gives several special characteristics to the graphs in $K^{-1}\left(O_{4}\right)$:
Proposition 3.5 Let G be a graph with $K(G)=O_{4}, V^{\prime} \subseteq V(G)$ such that $G\left[V^{\prime}\right]=O_{3}$ and v, w two vertices of G. Then:
(a) $N[v] \cap V^{\prime} \neq \emptyset$.
(b) If $N[v] \cap V^{\prime} \subseteq N[w] \cap V^{\prime}$ then $N[v] \subseteq N[w]$.
(c) If $N[v] \cap V^{\prime}=N[w] \cap V^{\prime}$ then $v \sim w$.
(d) $N[v] \cap V^{\prime} \neq V^{\prime}$.

4 Classifying sets of cliques of O_{3}

The information obtained from Section 3 leaves us in a good position to give a proof that $O_{4} \notin K^{2}(G)$. Here we define structures of O_{3} that are necessary for that purpose. A castle is defined as a subset A of $\mathcal{C}\left(O_{3}\right)$ such that $|A|=3$ and $\left|C \cap C^{\prime}\right|=1$ for any pair C, C^{\prime} of distinct elements of A. Castles can also be characterized as in the next proposition:

Proposition 4.1 Let A be a castle of O_{3}. Then there exists $C^{\prime} \in \mathcal{C}\left(O_{3}\right)$ such that $A=\left\{C \in \mathcal{C}\left(O_{3}\right):\left|C \cap C^{\prime}\right|=2\right\}$.
A will be said to be castled if it contains a castle. We have the following result regarding castled sets:

Proposition 4.2 Let $A \subseteq \mathcal{C}\left(O_{3}\right)$ such that $|A| \geq 5$. Then A is castled.
Proposition 4.2 is equivalent to stating that any nonempty non-castled subset of $\mathcal{C}\left(O_{3}\right)$ has at most four elements. The following classification for non-castled sets is proposed:
A is a triangle if $|A|=1$. In case that $|A|=2, A=\left\{C, C^{\prime}\right\}, A$ is a rhombus if $\left|C \cap C^{\prime}\right|=2$, is a bow if $\left|C \cap C^{\prime}\right|=1$ or is an opposite pair if $C \cap C^{\prime}=\emptyset$. In case that $|A|=3, A$ is an umbrella if it contains an opposite pair or is a fan if the intersection of all its elements is nonempty. In case that $|A|=4$, A is a round if the intersection of all its elements is nonempty; A is a worm if its elements can be listed in such a way that two of them are consecutive if and only if they share two vertices; and A is a rhombic circle if it contains two distinct opposite pairs.

Fig. 2. Graphical representation of the sets defined in this section.

5 Extract of the proof of Theorem 2.3

Suppose that there exists a graph G in $K(\mathcal{G}) \cap K^{-1}\left(O_{4}\right)$. Let \mathcal{F} be a Helly family such that $S(\mathcal{F})=G$. For any set $V^{\prime}=\left\{a, a^{\prime}, b, b^{\prime}, c, c^{\prime}\right\}$ such that $G\left[V^{\prime}\right]=O_{3}$ define $C\left(\mathcal{F}, V^{\prime}\right):=\left\{C \in \mathcal{C}\left(G\left[V^{\prime}\right]\right): C \ll \mathcal{F}\right\}$. We also choose, for every clique $\{x, y, z\}$ of $G\left[V^{\prime}\right]$, a vertex $v_{x y z}$ which is in each member of \mathcal{F} that contains $\{x, y\},\{x, z\}$ or $\{y, z\}$. Note that two of these vertices are adjacent (or equal) if their subscripts share two vertices. Now we study what kind of set $C\left(\mathcal{F}, V^{\prime}\right)$ is.
$\underline{C\left(\mathcal{F}, V^{\prime}\right) \text { is not castled: }}$
Suppose that C_{1}, C_{2}, C_{3} are elements of $C\left(\mathcal{F}, V^{\prime}\right)$ forming a castle, and let F_{1}, F_{2}, F_{3} be members of \mathcal{F} such that $C_{i} \subseteq F_{i}, 1 \leq i \leq 3$. Then F_{1}, F_{2}, F_{3} are pairwise intersecting and we can take $v \in V(G)$ such that $v \in F_{1} \cap F_{2} \cap F_{3}$. We can deduce from Proposition 4.1 that $V^{\prime} \subseteq N[v]$, contradicting part (d) of Proposition 3.5. Therefore, $C\left(\mathcal{F}, V^{\prime}\right)$ is not castled.
$C\left(\mathcal{F}, V^{\prime}\right)$ does not contain an umbrella:
Suppose that $C\left(\mathcal{F}, V^{\prime}\right)$ contains an umbrella with elements $\{a, b, c\},\left\{a^{\prime}, b^{\prime}, c\right\}$, $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$. Then $\left\{a, a^{\prime}, b, b^{\prime}, c\right\} \subseteq N\left[v_{a b^{\prime} c}\right]$ and we deduce from part (c) of Proposition 3.5 that $v_{a b^{\prime} c} \sim c$. Furthermore, $\left\{a, a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq N\left[v_{a b^{\prime} c^{\prime}}\right]$ and $v_{a b^{\prime} c^{\prime}} \in N\left[v_{a b^{\prime} c}\right]$. Thus $v_{a b^{\prime} c^{\prime}} \sim b^{\prime}$. Similarly, $v_{a^{\prime} b c} \sim c,\left\{a^{\prime}, b, b^{\prime}, c^{\prime}\right\} \subseteq N\left[v_{a^{\prime} b c^{\prime}}\right]$, $v_{a^{\prime} b c} \in N\left[v_{a^{\prime} b c^{\prime}}\right]$ and $v_{a^{\prime} b c^{\prime}} \sim a^{\prime}$. Note that $\left\{a, b, v_{a b^{\prime} c^{\prime}}, c, c^{\prime}\right\} \subseteq N\left[v_{a b c^{\prime}}\right]$, so $v_{a b c^{\prime}} \sim a$. This contradicts that $v_{a^{\prime} b c^{\prime}} \in N\left[v_{a b c^{\prime}}\right]$. Therefore, $C\left(\mathcal{F}, V^{\prime}\right)$ does not contain an umbrella.
$C\left(\mathcal{F}, V^{\prime}\right)$ is not a round:
Suppose that $C\left(\mathcal{F}, V^{\prime}\right)$ is a round and that $\{a, b, c\},\left\{a, b, c^{\prime}\right\},\left\{a, b^{\prime}, c\right\}$, $\left\{a, b^{\prime}, c^{\prime}\right\}$ are its elements. Then $\left\{a, a^{\prime}, b^{\prime}, c\right\} \subseteq N\left[v_{a^{\prime} b^{\prime} c}\right]$ and $\left\{a, a^{\prime}, b, c\right\} \subseteq$ $N\left[v_{a^{\prime} b c}\right]$. Let $C \in \mathcal{C}(G)$ such that $\left\{v_{a^{\prime} b c}, v_{a^{\prime} b^{\prime} c}\right\} \subseteq C$. Since $b \in C$ or $b^{\prime} \in C$, $v_{a^{\prime} b^{\prime} c} \sim c$ or $v_{a^{\prime} b c} \sim c$. If $v_{a^{\prime} b^{\prime} c} \sim c$, let $V^{\prime \prime}=\left\{a, a^{\prime}, b, b^{\prime}, v_{a^{\prime} b^{\prime} c}, c^{\prime}\right\}$. Then $G\left[V^{\prime \prime}\right]=$ O_{3} and use the definition of $v_{a^{\prime} b^{\prime} c}$ to conclude that $\left\{a, b, c^{\prime}\right\},\left\{a, b^{\prime}, c^{\prime}\right\}$ and $\left\{a^{\prime}, b^{\prime}, v_{a^{\prime} b^{\prime} c}\right\}$ are elements of $C\left(\mathcal{F}, V^{\prime \prime}\right)$. Thus, $C\left(\mathcal{F}, V^{\prime \prime}\right)$ contains an umbrella, which is a contradiction. If $v_{a^{\prime} b c} \sim c$ we proceed similarly, also getting a contradiction. Therefore, $C\left(\mathcal{F}, V^{\prime}\right)$ is not a round.

The reasonings displayed so far have to continue being applied to prove that there is not a set that $C\left(\mathcal{F}, V^{\prime}\right)$ can equal. Each possibility can be discarded by following a decreasing order of $\left|C\left(\mathcal{F}, V^{\prime}\right)\right|$. This is the contradiction that allows to conclude that $K(\mathcal{G}) \cap K^{-1}\left(O_{4}\right)=\emptyset$.

References

[1] Alcón L., L. Faria, C.M.H. de Figueiredo and M. Gutierrez, The complexity of clique graph recognition, Theor. Comput. Sci., 410 (2009), 2072-2083.
[2] Gutierrez M. and J. Meidanis, On the clique operator, Proceedings of the 3rd Latin American Conference on Theoretical Informatics, Lecture Notes in Computer Science, 1380 (1998), 261-272.
[3] Roberts F. and J. Spencer, A characterization of clique graphs, J. Combin. Theory B, 10 (1971), 102-108.

[^0]: ${ }^{1}$ Email: pdecaria@mate.unlp.edu.ar

