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Abstract

Let G be the class of all graphs and K the clique operator. The validity of the
equality K(G) = K2(G) has been an open question for several years. A graph in
K(G) but not in K2(G) is exhibited here.
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1 Introduction

Dealing with clique graphs is not an easy task and most of the problems about
them prove complicated. For example, determining whether a graph is a clique
graph is a NP-complete problem [1].

Working on iterated clique graphs is even more difficult and not much is
known about techniques to determine whether a graph is an iterated clique
graph or not.

Let G be the class of all graphs, K the clique operator and K2 the compo-
sition of K with itself. In view of the previous paragraph, it is not surprising
to discover that it was unknown whether K(G) = K2(G). The main goal of
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this paper is to show that the clique graph of the octahedral graph, O4, is in
K(G) but not in K2(G), thus establishing the falseness of the equality.

For that purpose, after some definitions and properties are given in Section
2, the set K−1(O4) is characterized in Section 3 helped by the fact that the
octahedron is an induced subgraph of any graph in K−1(O4). A demonstration
of the equality K−1(O4)∩K(G) = ∅, using the terminology of Section 4, follows
in Section 5, which concludes the proof.

2 Definitions, basics and goals

For a graph G, V (G) is the set of its vertices and E(G) the set of edges. The
subgraph induced by A ⊆ V (G), G[A], has A as vertex set and v, w ∈ A are
adjacent in G[A] if and only if they are adjacent in G. The neighborhood of
v ∈ V (G), N [v], is the set composed of v and its adjacent vertices. If w is
such that N [v] = N [w], we say that v is a twin of w, symbolized by v ∼ w.

Let F be a family of nonempty sets. F is Helly if the intersection of all
the members of any subfamily of pairwise intersecting sets is not empty. The
intersection graph of F , L(F), has the members of F as vertices, two of them
being adjacent if and only if they are not disjoint.

Let A be a set. A � F means that there exists F ∈ F such that A ⊆ F .
If A = {v1...vn}, the notation v1...vn � F will be used too.

A complete of G is a set of pairwise adjacent vertices of G. A clique is a
maximal complete and the family of all the cliques of G will be denoted by
C(G). The clique graph of G is defined as the intersection graph of C(G). The
function K : G → G, where G denotes the class of all the graphs, assigning to
each graph its clique graph is called the clique operator. The most classical
characterization of clique graphs is due to Roberts and Spencer:

Theorem 2.1 [3] Let G be a graph. Then G is a clique graph if and only if
there exists a Helly family F of completes of G that covers all the edges of G,
i.e., for all vw ∈ E(G), vw � F .

Define the two section of a family F , S(F), as a graph whose vertices are
the elements of F , two of them being adjacent if and only if there exists a
member of F to which both belong. Then we can say that G is a clique graph
if and only if there exists a Helly family F such that S(F) = G.

The expression K−1(G) will be used instead of K−1({G}), that is, the set
of all the graphs that have G as a clique graph. Call F a separating family if,
for any ordered pair (v, w) of elements, there exists F ∈ F such that v ∈ F
and w 	∈ F . The following characterization of K−1(G) can be given:
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Theorem 2.2 [2] K−1(G) is composed of all the graphs of the form L(F),
being F a Helly and separating family such that S(F) = G.

Kn will indicate the composition of K with itself n times, with K0 equal
to the identity on G. For i ≥ 0, the i-th iterated clique graph of G is defined as
Ki(G). The goal of this paper is to determine whether the equality K(G) =
K2(G) is true or not. If it is true, then it follows that Km(G) = Kn(G) for all
m,n ≥ 1. However, it has long been suspected to be false.

Define, for n ≥ 1, the n-dimensional octahedron On as a graph such that
V (On) = {1, 2, ..., 2n} and E(On) = {ij : i 	= j ∧ |i− j| 	= n}. If v ∈ V (On),
the definition implies that N [v] fails to contain only one vertex of the graph.
We name it the opposite of v, denoted by v′. As a consequence, it can be
inferred that On has a total of 2n cliques, each containing n vertices.

Fig. 1. O3 and its clique graph O4. The cliques of O3 are also labeled.

It is straightforward that K(O3) = O4. Thus, O4 ∈ K(G). The inequality
K(G) 	= K2(G) will be proved by showing that O4 	∈ K2(G). We can infer
from the definitions and basic set theory that a graph G is in K2(G) if and
only if K−1(G) ∩ K(G) 	= ∅. Consequently, the following theorem will suffice:

Theorem 2.3 K−1(O4) ∩ K(G) = ∅.

3 Finding K−1(O4)

In order to describe K−1(O4), it will be necessary to prove that any graph in
it has O3 as an induced subgraph. In view of Theorem 2.2, it will be sufficient
to verify that, for every Helly family F such that S(F) = O4, O3 is an induced
subgraph of L(F). We will consider first those F that are minimal in the sense
that no proper subfamily of F has O4 as its two section. From Lemma 3.1 to
Lemma 3.3, the families considered will be assumed to satisfy this condition.
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Lemma 3.1 |F | = 4 for all F ∈ F .

Lemma 3.2 Let F and F ′ be two members of F . Then |F ∩ F ′| is even.

Lemma 3.3 Let {a, b, c, d} be a member of F . Then {a′, b′, c′, d′} ∈ F .

Proof. Suppose on the contrary that {a′, b′, c′, d′} 	∈ F . Since a′b′ � F ,
a′c′ � F and a′d′ � F , the previous lemma implies that {a′, b′, c, d}, {a′, c′, b, d},
{a′, d′, b, c} ∈ F . These three sets and {a, b, c, d} form an intersecting subfam-
ily of F but they have no common element, contradicting that F is Helly.
Therefore, {a′, b′, c′, d′} ∈ F . �

Theorem 3.4 Let G ∈ K−1(O4). Then O3 is an induced subgraph of G.

Sketch of proof. Let F be a Helly family such that L(F) = G and S(F) =
O4. Among all the subfamilies of F with two section equal to O4, take F ′

minimal with respect to inclusion. Use the previous lemmas to find three
members F1, F2, F3 of F ′ that are pairwise intersecting. By Lemma 3.3, the
sets F ′1, F

′
2, F

′
3 composed of the opposites of the vertices in F1, F2, F3, respec-

tively, are also members of F ′. Then F1, F2, F3, F ′1, F ′2 and F ′3 induce O3 in
L(F). Therefore, O3 is an induced subgraph of G. �

Let G be any graph such that K(G) = O4. If G 	= O3, then G has an
induced subgraph with fewer vertices, namely O3, whose clique graph also
equals O4. This fact gives several special characteristics to the graphs in
K−1(O4):

Proposition 3.5 Let G be a graph with K(G) = O4, V ′ ⊆ V (G) such that
G[V ′] = O3 and v, w two vertices of G. Then:

(a) N [v] ∩ V ′ 	= ∅.
(b) If N [v] ∩ V ′ ⊆ N [w] ∩ V ′ then N [v] ⊆ N [w].

(c) If N [v] ∩ V ′ = N [w] ∩ V ′ then v ∼ w.

(d) N [v] ∩ V ′ 	= V ′.

4 Classifying sets of cliques of O3

The information obtained from Section 3 leaves us in a good position to give
a proof that O4 	∈ K2(G). Here we define structures of O3 that are necessary
for that purpose. A castle is defined as a subset A of C(O3) such that |A| = 3
and |C ∩C ′| = 1 for any pair C, C ′ of distinct elements of A. Castles can also
be characterized as in the next proposition:
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Proposition 4.1 Let A be a castle of O3. Then there exists C ′ ∈ C(O3) such
that A = {C ∈ C(O3) : |C ∩ C ′| = 2}.

A will be said to be castled if it contains a castle. We have the following
result regarding castled sets:

Proposition 4.2 Let A ⊆ C(O3) such that |A| ≥ 5. Then A is castled.

Proposition 4.2 is equivalent to stating that any nonempty non-castled
subset of C(O3) has at most four elements. The following classification for
non-castled sets is proposed:

A is a triangle if |A| = 1. In case that |A| = 2, A = {C,C ′}, A is a rhombus
if |C ∩ C ′| = 2, is a bow if |C ∩ C ′| = 1 or is an opposite pair if C ∩ C ′ = ∅.
In case that |A| = 3, A is an umbrella if it contains an opposite pair or is a
fan if the intersection of all its elements is nonempty. In case that |A| = 4,
A is a round if the intersection of all its elements is nonempty; A is a worm
if its elements can be listed in such a way that two of them are consecutive
if and only if they share two vertices; and A is a rhombic circle if it contains
two distinct opposite pairs.

Fig. 2. Graphical representation of the sets defined in this section.

5 Extract of the proof of Theorem 2.3

Suppose that there exists a graph G in K(G) ∩ K−1(O4). Let F be a Helly
family such that S(F) = G. For any set V ′ = {a, a′, b, b′, c, c′} such that
G[V ′] = O3 define C(F , V ′) := {C ∈ C(G[V ′]) : C � F}. We also choose,
for every clique {x, y, z} of G[V ′], a vertex vxyz which is in each member of
F that contains {x, y}, {x, z} or {y, z}. Note that two of these vertices are
adjacent (or equal) if their subscripts share two vertices. Now we study what
kind of set C(F , V ′) is.
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C(F , V ′) is not castled:

Suppose that C1, C2, C3 are elements of C(F , V ′) forming a castle, and let
F1, F2, F3 be members of F such that Ci ⊆ Fi, 1 ≤ i ≤ 3. Then F1, F2, F3 are
pairwise intersecting and we can take v ∈ V (G) such that v ∈ F1 ∩ F2 ∩ F3.
We can deduce from Proposition 4.1 that V ′ ⊆ N [v], contradicting part (d)
of Proposition 3.5. Therefore, C(F , V ′) is not castled.

C(F , V ′) does not contain an umbrella:

Suppose that C(F , V ′) contains an umbrella with elements {a, b, c}, {a′, b′, c},
{a′, b′, c′}. Then {a, a′, b, b′, c} ⊆ N [vab′c] and we deduce from part (c) of
Proposition 3.5 that vab′c ∼ c. Furthermore, {a, a′, b′, c′} ⊆ N [vab′c′ ] and
vab′c′ ∈ N [vab′c]. Thus vab′c′ ∼ b′. Similarly, va′bc ∼ c, {a′, b, b′, c′} ⊆ N [va′bc′ ],
va′bc ∈ N [va′bc′ ] and va′bc′ ∼ a′. Note that {a, b, vab′c′ , c, c

′} ⊆ N [vabc′ ], so
vabc′ ∼ a. This contradicts that va′bc′ ∈ N [vabc′ ]. Therefore, C(F , V ′) does not
contain an umbrella.

C(F , V ′) is not a round:

Suppose that C(F , V ′) is a round and that {a, b, c}, {a, b, c′}, {a, b′, c},
{a, b′, c′} are its elements. Then {a, a′, b′, c} ⊆ N [va′b′c] and {a, a′, b, c} ⊆
N [va′bc]. Let C ∈ C(G) such that {va′bc, va′b′c} ⊆ C. Since b ∈ C or b′ ∈ C,
va′b′c ∼ c or va′bc ∼ c. If va′b′c ∼ c, let V ′′ = {a, a′, b, b′, va′b′c, c

′}. Then G[V ′′] =
O3 and use the definition of va′b′c to conclude that {a, b, c′}, {a, b′, c′} and
{a′, b′, va′b′c} are elements of C(F , V ′′). Thus, C(F , V ′′) contains an umbrella,
which is a contradiction. If va′bc ∼ c we proceed similarly, also getting a
contradiction. Therefore, C(F , V ′) is not a round.

The reasonings displayed so far have to continue being applied to prove that
there is not a set that C(F , V ′) can equal. Each possibility can be discarded
by following a decreasing order of |C(F , V ′)|. This is the contradiction that
allows to conclude that K(G) ∩ K−1(O4) = ∅.
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