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Abstract
The extracellular Ca2+-sensing receptor (CaSR) is an allosteric protein that responds to changes in 
the extracellular concentration of Ca2+ ([Ca2+]e) and aromatic amino acids with the production of 
different patterns of oscillations in intracellular Ca2+ concentration ([Ca2+]i). An increase in 
[Ca2+]e stimulates sinusoidal oscillations in [Ca2+]i whereas aromatic amino acid-induced CaR 
activation in the presence of a threshold [Ca2+]e promotes transient oscillations in [Ca2+]i. Here, 
we examined spontaneous and ligand-evoked [Ca2+]i oscillations in single HEK-293 cells 
transfected with the wild type CaSR or with a mutant CaSR in which Ser170 was converted to Thr 
(CaSRS170T). Our analysis demonstrates that cells expressing CaSRS170T display [Ca2+]i 
oscillations in the presence of low concentrations of extracellular Ca2+ and respond to L-Phe with 
robust transient [Ca2+]i oscillations. Our results indicate that the S170T mutation induces a 
marked increase in CaSR sensitivity to [Ca2+]e and imply that the allosteric regulation of the 
CaSR by aromatic amino acids is not only mediated by an heterotropic positive effect on Ca2+ 

binding cooperativity but, as biased agonists, aromatic amino acids stabilize a CaSR conformation 
that couples to a different signaling pathway leading to transient [Ca2+]i oscillations.
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1. Introduction
The extracellular Ca2+-sensing receptor (CaSR), a member of the C family of heptahelical G 
protein-coupled receptors (GPCRs), is an allosteric protein that plays a major physiological 
role in correcting small changes in extracellular concentration of Ca2+ ([Ca2+]e) by 
inhibiting parathyroid hormone secretion and renal Ca2+ absorption [1]. Interestingly, 
subsequent studies demonstrated that the CaSR recognizes other ligands and is expressed in 
many other tissues and organs, including the gastrointestinal tract, brain, pituitary, thyroid, 
skin, breast, pancreas, lung, bone, and heart [2], suggesting that this receptor plays 
additional, yet less well defined, physiological roles in the regulation of normal and 
abnormal cell function [3,4,5,6]. Indeed, recent evidence indicates that the CaSR is 
implicated in the negative control of colon cell proliferation [7] and cancer [8], nutrient 
sensing [4], epithelial transport [9], inflammation [10], bone turnover [11] and stem cell 
differentiation [6]. Thus, the signaling mechanisms triggered via CaSR activation are 
attracting intense attention.

A number of studies of CaSR activation in individual living cells have shown that 
intracellular Ca2+ concentration ([Ca2+]i) oscillates upon stimulation of CaSR by an 
elevation in [Ca2+]e within a physiological range [12,13,14,15,16,17,18]. Oscillatory 
changes in [Ca2+]i in response to receptor stimulation is a fundamental mechanism of cell 
signaling implicated in the regulation of Ca2+- and calmodulin-dependent protein kinase II 
[19], conventional protein kinase C (PKC) isoforms [15,20], mitochondrial function [21,22], 
and nuclear transcriptional activity leading to differential gene expression [23,24]. We 
proposed that [Ca2+]i oscillations induced by activation of the CaSR in response to an 
increase in extracellular Ca2+ results from negative feedback involving PKC-mediated 
phosphorylation of the CaSR at the inhibitory residue Thr888 [14,25]. In addition to its role 
as sensor of [Ca2+]e, the CaSR is also stimulated by aromatic amino acids [26] which, like 
[Ca2+]e, induce striking and lasting CaSR-mediated [Ca2+]i oscillations [13,15,16]. 
However, the patterns of [Ca2+]i oscillations induced by these agonists are different. 
Aromatic amino acid stimulation of the CaSR in the presence of a threshold [Ca2+]e induces 
repetitive, low frequency [Ca2+]i spikes that return to the base-line level, a pattern known as 
transient oscillations [13,15,16]. The amplitude, frequency, and duration of [Ca2+]i 
oscillations are increasingly recognized to encode important information for a variety of 
biological processes, including metabolism and gene expression.

The most striking structural feature of the family C GPCR is its large extracellular domain, 
which consists of ~600 amino acid residues arranged in two predicted lobes referred as the 
Venus Flytrap Domain (VFTD), the site of numerous disease-causing mutations in this 
receptor [27,28]. The VFTD contains multiple binding sites for extracellular Ca2+ [29] and 
the allosteric binding site for amino acids. The residues Ser-147, Ser-170, Asp-190, Tyr-218 
and Glu-297 of the VFTD comprise the first Ca2+ binding site which is considered the most 
important and operational under physiological conditions [27,30]. A number of studies 
identified Ser-170 as playing a critical role in Ca2+ binding and signal generation since 
mutation of Ser-170 to Ala completely abolished the response of the mutant CaSR to even 
very high [Ca2+]e [31] without affecting its membrane expression [30,31]. In contrast, a 
conservative mutation of Ser-170 to Thr (S170T) appeared to have very little effect on CaSR 
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responsiveness to an increase in [Ca2+]e but impaired L-phenylalanine (L-Phe) sensing 
[29,31] though the ability of this CaSR mutant to mediate transient oscillations in single 
cells was not examined. The detailed study of the impact of mutations in the N-terminal 
VFTD is of importance to advance understanding of the molecular mechanisms of CaSR 
regulation.

Here, we examined spontaneous and ligand-evoked [Ca2+]i oscillations in single HEK-293 
cells transfected with the wild type CaSR or with CaSR in which Ser170 was mutated to Thr 
(CaSRS170T). Our analysis demonstrates that cells expressing CaSRS170T display [Ca2+]i 
oscillations in the presence of low concentrations of extracellular Ca2+ and respond to L-Phe 
with robust transient [Ca2+]i oscillations. We propose that the S170T mutation increases 
CaSR sensitivity to [Ca2+]e and separates the positive heterotropic effect that enhances the 
apparent affinity of the CaSR for extracellular Ca2+ from the stabilization of a receptor 
conformation that promotes transient oscillations in the presence of a threshold [Ca2+]e.

2. Materials and Methods
2.1 Materials

Fura 2-AM, Dulbecco’s Modified Eagle’s Medium (DMEM), and Hanks Balanced Salt 
Solution (HBSS) were obtained from Invitrogen (Carlsbad, CA).

2.2 Cell culture and transfection
Human Embryonic Kidney (HEK-293) cells were maintained in DMEM supplemented with 
10% fetal bovine serum (FBS) in a humidified incubator under 10% CO2 and 90% air at 
37°C, as described previously [13,25,32]. For experimental purposes, cells were plated onto 
18-mm diameter glass coverslips inside 35-mm plastic dishes, where they could be dually 
transiently transfected with a plasmid encoding the human CaSR or a mutant CaSR receptor 
(CaSRS170T). Site-directed mutagenesis to convert Ser170 of the CaSR into Thr was 
performed as previously described [33]. Identification of cells transiently transfected with 
pCR3.1-CaSRwt (0.5 µg/dish) or pCR3.1-CaSRS170T (0.5 µg/ dish) was achieved by co-
transfection with pDsRed-Express (BD Biosciences) (0.5 µg/dish), a vector that encodes a 
red fluorescent protein. After 16 h, the cultures were loaded with the Ca2+ indicator Fura-2 
as described below.

2.3 Measurement of [Ca2+]i
[Ca2+]i was measured in single cells loaded with the calcium indicator fura-2 as previously 
described [13]. Briefly, cells were incubated in saline solution containing 138 mM NaCl, 4 
mM NaHCO3, 0.3 mM Na2HPO4, 5 mM KCl, 0.3 mM KH2PO4, 1.5 mM CaCl2, 0.5 mM 
MgCl2, 0.4 mM MgSO4, 5.6 mM D-glucose, 20 mM HEPES, pH: 7.4 which was 
supplemented with 5 µM fura-2 AM for 45–60 min at 37°C before [Ca2+]i imaging. The 
cells were then washed and placed in an experimental chamber that was perfused with saline 
solution at 1.5 ml/min at 37°C. The chamber in turn was placed on the stage of an inverted 
microscope connected to a digital imaging system. Ratios of images (340 nm excitation/ 380 
nm excitation, emission filter 520 nm) were obtained at 1.5 sec intervals. A region of 
interest covering 15 µm × 15 µm was defined over each cell, and the average ratio intensity 
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over the region was converted to [Ca2+]i using an standard curve constructed with a series of 
calibrated buffered calcium solutions (Calcium Calibration Buffer Kit #2, Invitrogen Corp).

2.4 Western blots and indirect immunofluorescence
HEK-293 cells were transfected with vectors encoding wild type human CaSR or 
CaSRS170T at 0.5 µg/ dish and analyzed by Western blot 16 h post-transfection using a 
murine monoclonal antibody against the CaSR (Affinity BioReagents). The images were 
captured using a luminescent image analyzer LAS-4000 mini (Fujifilm Life Sciences). For 
indirect immunofluorescence, the transfected cells were fixed 16 h post-transfection in 4% 
paraformaldehyde in phosphate-buffered saline (PBS) for 7 min at 24°C to only reveal 
surface expression of the receptor. The fixed cells were first incubated during 2 h at 24°C in 
blocking buffer (PBS-1% gelatin) and then 4 h with an anti-CaSR murine monoclonal 
antibody (Affinity BioReagents) diluted in blocking buffer. The cells were then washed with 
PBS at 25°C and incubated during 2 h at 24°C with Alexa 488-conjugated rabbit-anti mouse 
(Invitrogen) diluted in blocking buffer. After extensive washes at 24°C with PBS, the 
samples mounted with a gelvatol-glycerol solution containing 2.5% 1,4-diazobicyclo-
[2.2.2]octane. The samples were examined with a epifluorescence microscope (Zeiss 
Axioskop) as previously described [33]. The selected cells displayed in the appropriate 
figures were representative of 80% of the population of positive cells.

4. Results
In order to examine the impact of mutations in the 1st Ca2+ binding site of the VFTD, we 
analyzed the pattern of [Ca2+]i response in individual HEK-293 cells transiently co-
transfected with a plasmid encoding the human wild type CaSR or with a CaSR containing a 
highly conservative substitution in Ser-170 to Thr (CaSRS170T) and a plasmid encoding a 
red fluorescent protein (pDsRed-Express) to facilitate the identification of the transfected 
cells. After 16 h, the cells were loaded with the fluorescent Ca2+ indicator fura 2-AM and 
incubated in the presence of medium containing 1.5 mM [Ca2+]e. Single cell imaging of 
fura-2 loaded HEK-293 cells expressing the CaSR or CaSRS170T revealed that a rise in the 
[Ca2+]e from 1.5 mM to 5 mM produced a rapid elevation in [Ca2+]i followed by a sustained 
plateau in cells transfected with either the wild type CaSR (Fig. 1 A) or mutant CaSRS170T 
(Fig. 1 B, C). The maximal response of CaSRS170T to the increase in [Ca2+]e was similar to 
that of the wild type receptor (Fig. 1 A, B). Most transfected cells with CaSR or CaSRS170T 
responded to the increase in [Ca2+]e (Fig. 1 D). Accordingly, equivalent levels of CaSR and 
CaSRS170T were expressed on the cell membrane of HEK-293 cells, as judged by indirect 
immunofluorescence (Fig. 1 F, G) and total cellular expression of CaSR and CaSRS170T was 
also equal, as shown by immunoblotting (Fig. 1 H).

Although the results in Fig. 1 indicated that the responses of wild type and mutant CaSR to 
an increase in the [Ca2+]e were virtually identical, analysis of [Ca2+]i prior to simulation 
revealed an important difference between CaSR and CaSRS170T in the dynamics of basal 
[Ca2+]i. In agreement with our previous results, most cells transfected with wild type CaSR 
and incubated in the presence of medium containing 1.5 mM [Ca2+]e exhibited a stable 
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[Ca2+]i with only a small proportion of cells (~10%) exhibiting spontaneous oscillatory 
activity.

In striking contrast, a substantial proportion of cells transfected with CaSRS170T display 
spontaneous oscillatory fluctuations in [Ca2+]i. The difference in spontaneous [Ca2+]i 
oscillations is illustrated in Fig. 2 A, showing a pseudo-colored images of clusters of cells 
transfected with wild type CaSR or CaSRS170T incubated for various times in medium 
containing 1.5 mM [Ca2+]e. Cells labeled O show a spontaneous increase in [Ca2+]i which 
declines, and then increases again (oscillatory response) while other cells exhibited a stable 
[Ca2+]i. Examples of tracings corresponding to HEK-293 cells transfected with CaSRS170T 
displaying spontaneous [Ca2+]i oscillations are illustrated in Fig. 2 B. The examples also 
illustrate that the oscillatory frequency is markedly higher in cells expressing CaSRS170T. 
The difference in basal [Ca2+]i oscillations between CaSR and CaSRS170T was substantiated 
by analyzing 714 individual cells. We found a marked increase in the proportion of cells that 
display spontaneous [Ca2+]i oscillations when transfected with CaSRS170T (Fig. 2 C, bars). 
These results demonstrate, for the first time, that a sub-population of HEK-293 cells 
expressing CaSRS170T (~27%) displays spontaneous [Ca2+]i oscillations while the majority 
of cells transfected with wild type CaSR exhibited a stable [Ca2+]i. In agreement with our 
previous results [13], we did not detect any [Ca2+]i oscillations in non-transfected HEK-293 
cells or in cells transfected with vector.

The results shown in Fig. 2 prompted us to hypothesize that HEK-293 cells transfected with 
CaSRS170T have increased sensitivity to extracellular Ca2+. To examine this possibility, we 
monitored basal [Ca2+]i oscillations in HEK-293 cells transfected with wild type CaSR or 
CaSRS170T incubated in medium containing different [Ca2+]e. Cells incubated in medium 
containing 0.8 mM Ca2+ show striking differences, as shown in Fig. 3. We found that ~20% 
of HEK-293 cells expressing CaSRS170T exhibit spontaneous [Ca2+]i oscillations with a 
frequency of 3 spikes/min. In sharp contrast, only ~3% of cells transfected with wild type 
CaSR exhibited oscillatory activity of lower frequency (2 spikes/min) whereas 97% of 
transfected cells showed stable [Ca2+]i. A further decrease in [Ca2+]e to 0.4 mM completely 
eliminated any spontaneous [Ca2+]i oscillations in HEK 293 cells transfected with wild type 
CaSR while 10% of HEK-293 cells expressing CaSRS170T exhibited spontaneous [Ca2+]i 
oscillations with a frequency of 2.7 spikes/min (Fig. 3). A small subpopulation of HEK 293 
cells expressing CaSRS170T show spontaneous [Ca2+]i oscillations at a [Ca2+]e as low as 0.2 
mM. The threshold [Ca2+]e required for spontaneous [Ca2+]i oscillations in individual 
HEK-293 cells transfected with either CaSR or CaSRS170T was 0.6mM and 0.2 mM, 
respectively, as extrapolated from the data in Fig. 3. These results support the hypothesis 
that a highly conserved mutation of the CaSR at Ser170 increases the sensitivity of the CaSR 
for extracellular Ca2+.

In addition to its role as sensor of [Ca2+]e, the CaSR is also stimulated by aromatic amino 
acids [26] that induce striking and lasting transient [Ca2+]i oscillations characterized by low 
frequency [Ca2+]i spikes that return to the base-line level [13]. These oscillations are 
mediated by a phospholipase C-independent pathway that involves Rho, filamin and TRPC1 
[13,15,16,18]. In contrast, CaSR activation in response to modest increase in [Ca2+]e (e.g. 
from 1.5 to 3 mM) produces high frequency sinusoidal oscillations upon a raised plateau 
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level of [Ca2+]i [13,15,16]. Consequently, we next determined whether CaSRS170T mediates 
different oscillatory patterns, i.e. sinusoidal and transient oscillations in response to different 
agonists in cells initially incubated in low [Ca2+]e. To examine this possibility, HEK-293 
cells transfected with CaSRS170T were incubated in medium containing 0.8 mM [Ca2+]e to 
diminish spontaneous [Ca2+]i oscillations and then stimulated by an increase of [Ca2+]e to 3 
mM or by addition of 5 mM L-Phe. As shown in Fig. 4, HEK-293 cells expressing 
CaSRS170T displayed sinusoidal oscillations in response to an increase in [Ca2+]e to 3 mM 
and striking transient oscillations in response to 5 mM L-Phe in the presence of 0.8 mM 
[Ca2+]e (Fig. 4). The responses were comparable to those showed by HEK-293 cells 
expressing wild type CaSR but incubated initially in medium containing 1.5 mM [Ca2+]e 
and thus substantiating that the Ser170 to Thr mutation decreases the [Ca2+]e required for 
detecting transient oscillations in response to aromatic amino acids.

5. Discussion
Oscillatory changes in [Ca2+]i in response to receptor stimulation is a fundamental 
mechanism of cell signaling implicated in the regulation of signal transduction [15,19,20], 
metabolism [21,22], and differential gene expression [23,24]. Previous studies identified 
Ser-170 in the N-terminal region of the VFTD as a critical residue in Ca2+ binding and 
signal generation since mutation of Ser-170 to Ala completely abolished the response to 
even very high concentrations of extracellular Ca2+ [31] without affecting its membrane 
expression [30,31]. In the current study we analyzed [Ca2+]i in single HEK-293 cells 
expressing wild type CaSR or a receptor with a highly conservative mutation of Ser-170 to 
Thr. Our results demonstrated that cells expressing CaSRS170T exhibit spontaneous 
oscillatory activity when incubated in medium containing 1.5 mM [Ca2+]e. Analysis of 
spontaneous [Ca2+]i oscillations as a function of [Ca2+]e revealed that HEK-293 cells 
expressing CaSRS170T display [Ca2+]i oscillations of higher frequency at markedly lower 
[Ca2+]e as compared with HEK-293 cells expressing wild type CaSR. Furthermore, 
HEK-293 cells expressing CaSRS170T display sinusoidal [Ca2+]i oscillations in response to 
an increase in [Ca2+]e or transient oscillations when challenged by L-Phe, provided that cells 
are initially incubated in medium containing a low [Ca2+]e. We conclude that a small 
increase in the size of the side chain of Ser170 (Ser-to-Thr substitution in the VTFD) is 
sufficient to induce a marked increase in sensitivity to [Ca2+]e of the CaSR.

Previous studies concluded that mutation of Ser-170 to Thr impairs amino acid sensing 
[30,31], as judged by experiments in which the EC50 value for [Ca2+]e remains unchanged 
in the presence of L-Phe. In contrast, we demonstrated that L-Phe induced transient 
oscillations in cells expressing CaSRS170T incubated in medium containing a low [Ca2+]e. 
We propose that the S170T mutation separates two different allosteric effects of aromatic 
amino acids on the CaSR. Specifically, (1) the stabilization of a conformation that promotes 
transient oscillations in the presence of a threshold level of [Ca2+]e via a multi-protein 
complex that includes Rho, filamin-A, and TRPC1 from (2) the positive heterotropic effect 
that causes an increase in the affinity of the CaSR for extracellular Ca2+. We obtained 
similar results using a different CaSR mutant in which Glu127 was replaced by Ala, an 
activating mutation. As with CaSRS170T, cells expressing the CaSRE127A mutation displayed 
[Ca2+]i transient oscillations in response to L-Phe. We conclude that the allosteric regulation 
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of the CaSR by aromatic amino acids is not only mediated by an heterotropic positive effect 
on Ca2+ binding cooperativity but, as a biased agonist, aromatic amino acids stabilize a 
CaSR conformation that couples to a different signaling pathway leading to transient [Ca2+]i 
oscillations.
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Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• [Ca2+]i oscillations were analyzed in HEK-293 cells expressing CaSR and 
CaSRS170T

• CaSRS170T mediated basal [Ca2+]i oscillations even in medium with low [Ca2+]e

• CaSRS170T produced transient [Ca2+]i oscillations in response to L-
phenylalanine.

• CaSRS170T separates enhanced sensitivity to [Ca2+]e from transient oscillations

Young et al. Page 10

Biochem Biophys Res Commun. Author manuscript; available in PMC 2016 November 06.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Figure 1. 
Changes in [Ca2+]i in HEK-293 cells transfected with CaSR (WT) A, or CaSRS170T (S170T) 
B,C, in response to an increase in [Ca2+]e from 1.5 mM to 5 mM. The addition of Ca2+ is 
indicated by upward arrows whereas the return of [Ca2+]e to 1.5 mM is indicated by the 
downward arrows. D, Bar chart: Percentage of HEK-293 cells transfected with CaSR (WT) 
or CaSRS170T which responded to an increase in [Ca2+]e from 1.5 mM to 5 mM. E, F, G. 
Fixed cells were labeled with an anti-CaSR murine monoclonal antibody to detect surface 
expressed receptor. E. Control, no transfection. F. Transfected with CaSR(WT). G. 
Transfected with CaRS170T. Scale Bar 30 µM. H. Western Blot analysis of control, no 
transfection (−), CaSR (WT), and CaSRS170T (S170T) cell lysates.
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Figure 2. 
Spontaneous [Ca2+]i oscillations of HEK-293 cells transfected with wild type CaSR (WT) or 
CaSRS170T (S170T) and incubated in medium containing 1.5 mM [Ca2+]e. A. Pseudo-
colored images of clusters of cells showing changes in [Ca2+]i with time. Shown is one cycle 
of rest to peak response. Spontaneously oscillating cells (O) are marked with an arrow. B. 
Typical traces of [Ca2+]i as a function of time (s) for a single HEK-293 cell transfected with 
the wild type CaSR or a single HEK-293 cells transfected with CaSRS170T. C. Percentage of 
spontaneously oscillating HEK-293 cells from a total of 544 transfected with the wild type 
CaSR and from 170 cells transfected with CaSRS170T.
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Figure 3. 
Percentage of spontaneously oscillating HEK-293 cells transfected with wild type CaSR 
(WT) or CaSRS170T (S170T), (left panels) and their oscillating frequencies (right panels) as 
a function of varying [Ca2+]e. The data is a summary derived from a total of 1,289 HEK-293 
cells transfected with wild type CaSR and 1,386 HEK-293 cells transfected with CaSRS170T. 
Numbers show number of cells measured at each [Ca2+]e.
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Figure 4. 
Oscillatory responses in [Ca2+]i in HEK-293 expressing CaSRS170T (S170T) cells when 
challenged with increases in [Ca2+]e or L-phenylalanine (L-Phe). The cells were initially 
incubated in medium containing [Ca2+]e at 0.8 mM. After recording basal [Ca2+]i the cells 
were challenged by either increasing the [Ca2+]e to 3mM or 5 mM L-Phe (upward arrows). 
Downward arrow marks return to medium containing [Ca2+]e at 1.5 mM.
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