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Abstract

Background

Rapid reinfestation of insecticide-treated dwellings hamper the sustained elimination of Tria-

toma infestans, the main vector of Chagas disease in the Gran Chaco region. We conducted

a seven-year longitudinal study including community-wide spraying with pyrethroid insecti-

cides combined with periodic vector surveillance to investigate the house reinfestation pro-

cess in connection with baseline pyrethroid resistance, housing quality and household

mobility in a rural section of Pampa del Indio mainly inhabited by deprived indigenous people

(Qom).

Methodology/Principal findings

Despite evidence of moderate pyrethroid resistance in local T. infestans populations, house

infestation dropped from 31.9% at baseline to 0.7% at 10 months post-spraying (MPS),

with no triatomine found at 59 and 78 MPS. Household-based surveillance corroborated the

rare occurrence of T. infestans and the house invasion of other four triatomine species. The

annual rates of loss of initially occupied houses and of household mobility were high (4.6–

8.0%). Housing improvements did not translate into a significant reduction of mud-walled

houses and refuges for triatomines because most households kept the former dwelling or

built new ones with mud walls.
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Conclusions/Significance

Our results refute the assumption that vector control actions performed in marginalized com-

munities of the Gran Chaco are doomed to fail. The larger-than-expected impacts of the

intervention program were likely associated with the combined effects of high-coverage,

professional insecticide spraying followed by systematic vector surveillance-and-response,

broad geographic coverage creating a buffer zone, frequent housing replacement and resi-

dential mobility. The dynamical interactions among housing quality, mobility and insecticide-

based control largely affect the chances of vector elimination.

Author summary

Efforts to prevent the transmission of the parasite that causes Chagas disease have been

directed at eliminating its insect vector species from human dwellings via insecticide

applications. The outcome of these interventions has usually been measured through vec-

tor-related metrics in prospective studies ranging up to a few years. Longer-term interven-

tion studies that additionally monitor other social determinants of house infestation, such

as housing quality and population movement, are lacking. Our seven-year study addresses

this gap in a remote rural area of the Argentine Chaco inhabited by deprived indigenous

communities. We show sustained vector control headed towards local elimination despite

the highly adverse social context and the occurrence of moderate pyrethroid resistance in

vector populations. Housing-quality dynamics and household mobility displayed complex

patterns that may affect domestic triatomine populations. Household mobility within the

area was intense: movers usually torn down their previous precarious houses and built

new, equally precarious houses. Housing dynamics included structural improvements,

disappearance and construction of new dwellings elsewhere within the study area. We

infer that these eco-bio-social factors, including the broad geographic coverage of sus-

tained vector control creating a peripheral buffer zone, substantially increased the long-

term effectiveness of the intervention program.

Introduction

Neglected tropical diseases (NTDs) stem from the complex interactions among social, eco-

nomic, political, cultural and environmental determinants acting at various temporal and spa-

tial scales [1]. These complex interactions explain why some groups of people, including

indigenous communities and the rural poor, are most affected by NTDs and frequently suffer

co-infections as part of the cycle of poverty [2,3]. A case in point is the Gran Chaco ecoregion,

including sections of Argentina, Bolivia and Paraguay home to numerous indigenous peoples

[4–6]. This NTD hotspot is characterized by high prevalence rates of human infection with

Trypanosoma cruzi (Chagas disease), geo-helminthiases, and unsatisfied basic needs [7].

High levels of house infestation with Triatoma infestans, historically the main vector in the

Southern Cone countries, are still present in sections of the Gran Chaco despite of the multiple

insecticide-based control campaigns conducted over nearly 70 years [5,8–13]. In the absence

of effective vaccines and given the limitations of current drugs for massive chemotherapy,

Chagas disease prevention efforts have historically relied on residual insecticide spraying and

screening of blood donors. Vector control campaigns contracted the geographic range of T.
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infestans [14–16] and suppressed the domestic transmission of T. cruzi mediated by T. infes-
tans in various countries and provinces since the mid-1990s [6,15]. However, persistent house

reinfestation after insecticide application fueled by peridomestic foci in different areas of the

Argentine Chaco [17], combined with growing evidence of the existence of sylvatic foci of T.

infestans [18–21] and the emergence of pyrethroid insecticide resistance (reviewed in [22]),

cast doubts on how feasible is to achieve the elimination of T. infestans in the Gran Chaco [23],

one of the initial goals of the Southern Cone Initiative in 1991. Lack of consistent state policies

and of a sustainable vector surveillance-and-response system in resource-constrained rural

areas, among other factors, contribute to a persistent or recurrent public health issue [4].

The widespread problem of native, highly competent triatomine species that reinfest insec-

ticide-treated dwellings (e.g., [24]) should be addressed by an integrated vector management

strategy [25] that considers the eco-bio-social determinants of health vulnerability [26] and

house infestation with triatomines [27–29]. Two major components of such strategy are com-

munity participation and housing improvement. Community participation may assist in the

design and implementation of locally adapted, sustainable and more effective vector control

strategies, especially in remote, deprived areas [30]. Housing improvement [25] tends to

reduce triatomine infestation in domestic and peridomestic structures [29,31–36]. The histori-

cal trend toward rural housing improvement, albeit at a widely different pace across regions

and countries, suggest any assessment of the effectiveness of vector control actions should also

encompass structural determinants of infestation such as housing quality, type of occupancy,

and host availability over time.

As part of a longitudinal program on the eco-epidemiology and control of T. infestans and

Chagas disease in the Argentine Chaco, we detected higher-than-expected post-spraying

house infestation rates and apparent residual foci related to moderate (incipient) pyrethroid

resistance in two large rural sections (denominated Areas I and II) of Pampa del Indio having

400–500 houses each [37,38]. A residual focus is defined as a post-spraying infestation derived

from triatomines that survived the insecticide spraying at house level. These patterns suggested

that similar rates of house reinfestation would occur in another large rural section (Area III)

where the same community-wide insecticide spraying interventions were simultaneously

implemented. All these rural areas had poor housing conditions suitable for triatomines, and

high infestation with T. infestans before control actions. Seroprevalence of human T. cruzi
infection averaged 30% [39]. Two of the rural sections were mainly inhabited by an indigenous

people (Qom) that displayed intense residential mobility, especially within Area III [40]. Unex-

pectedly, the intervention there exerted immediate impacts on house infestation as revealed by

timed-manual searches; the few foci detected after blanket insecticide spraying were mainly

assigned to external sources as determined by wing geometric morphometry [41]. Identifying

processes and mechanisms underlying the successful vector control status achieved in Area III

is relevant to the goals of suppressing the major vectors of Chagas disease and interrupt

domestic transmission, in concert with the Sustainable Development Goals and the London’s

Declaration on NTDs [42].

Here we extend the follow-up of Area III to further investigate the house reinfestation pro-

cess in connection with baseline pyrethroid resistance, housing dynamics (construction,

destruction, abandonment and improvement) and household mobility over a seven–year

period. Instead of assuming static environmental conditions and focusing only on vector-

related issues, we adopted a more systemic approach and analyzed other household-level,

time-variable processes related to the dynamics of housing quality (habitat) and residential

mobility, which also affects host availability. Population movement is relevant to the control of

NTDs and other infectious diseases in a context-specific manner [43], but the very few studies

that examined this subject in connection with Chagas disease vectors did it at a village level

Sustained Chagas disease vector control in indigenous communities
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[44] or in urban-type settings [45–46]. Our study provides evidence of sustained vector control

despite moderate pyrethroid resistance in T. infestans populations; corroborates the virtual

absence of post-spraying foci and the house invasion of other four triatomine species through

community-based surveillance, and links the lack of post-spraying foci to frequent housing

replacement, residential mobility, and broad geographic coverage of sustained vector control.

Materials and methods

Study area

Fieldwork was conducted in a 95 km2 rural section of Pampa del Indio municipality (25˚ 55’ S

56˚ 58’ W), Chaco province, Argentina, denominated Area III. The rural area of the munici-

pality was divided in four sections (I-IV) in which a similar intervention protocol was per-

formed (Fig 1). Area III included 404 occupied (inhabited) house compounds in seven

communities where Qom households predominated over a Creole minority as of October

2008 (baseline). The main features of the study area and its population were described else-

where [40]. The study houses were surrounded by agricultural fields mixed with patches of

native forest subject to variable degrees of degradation. No significant environmental changes

were observed in the study communities during the follow-up. Official census information at

the municipality scale indicated a very large annual population growth rate (4.9%) over the

2001–2010 period. An average Qom household had 6.4 occupants in a 43.4-m2 sleeping quar-

ter (domicile), whereas local Creoles had 4.1 occupants in a nearly twice as large area. Houses

lacked access to safe water and a sewage or garbage disposal system within their premises [40].

The last insecticide spraying campaign targeting house infestation with T. infestans in

Pampa del Indio municipality had taken place in 1997–1998. Additionally, a few clusters of

Area III houses were selectively sprayed by local healthcare personnel in 2000 (36 houses),

2006 (49 houses), and July 2008 (45 houses from two communities). Although these actions

Fig 1. Map of the study area. a. Location of Chaco Province, northeastern Argentina, within the Gran Chaco

ecoregion. b. Location of Pampa del Indio municipality within Chaco Province. c. Urban, peri-urban and rural areas

(I-IV) of the municipality.

https://doi.org/10.1371/journal.pntd.0006804.g001
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were not recorded by the provincial Chagas control program, local householders’ reports to

the research team agreed with the information provided by local healthcare agents [40].

Study design

A longitudinal study was conducted to monitor house infestation with triatomines before and

after community-wide spraying with insecticides (Table 1) and any parallel change in housing

structure and household composition. Our usage of household- and housing-related terms fol-

low definitions appearing elsewhere [47,48]. The condition of each house unit was registered at

each vector survey and classified as follows: i) occupied: inhabited; ii) vacant: uninhabited, with

clear signs of current vacancy, often corroborated by neighbors; iii) closed: showing signs of

being occupied, often confirmed by neighbors, with residents absent after one to three re-visits;

iv) demolished: no longer existing at its exact previous location, and v) new house unit: no pre-

vious record at its exact current location. A household was defined as the people (related or

not) sharing food and other housekeeping activities despite the fact that sometimes there were

two or more structurally separate sleeping quarters occupied by related family (i.e., extended

family). In our specific context one household equaled one house unit. A house compound con-

sists of one or more separate human sleeping quarters (domicile or domestic premises), a patio

and nearby peridomestic buildings for human use and animals (e.g., kitchen, storeroom and

chicken coop, among others) as illustrated elsewhere [40,49]. The study protocol was approved

by the Dr. Carlos A. Barclay Independent Ethical Committee for Clinical Research, Buenos

Aires, Argentina (IRB No. 00001678; Protocol N ˚ TW-01-004, Revision N˚ 863-32-2011).

During our first visit to the area, we explained the purpose of the study to the heads of each

household invited them to participate and asked them for an oral consent. A small aluminum

plate was nailed to the front door to identify each house unit for detailed follow-up. The geo-

graphic location of each house compound was recorded with a GPS (Garmin Legend) and

maps were generated with QGIS 2.18.16. The geographical coordinates of each house com-

pound were transformed to preserve the privacy of the households involved in this study, as

described elsewhere [40].

Vector surveys

All house compounds were inspected for triatomines by timed-manual searches using a dis-

lodjant aerosol (0.2% tetramethrin) (Espacial, Argentina) before (October 2008) and

Table 1. Type and coverage of house infestation surveys and spraying with pyrethroid insecticides in Area III of Pampa del Indio, 2008–2015. Only occupied houses

are included.

Months post-spraying (Month/year) Intended vector survey coverage Type of spraying Pyrethroid dosea % spray coverage (No. houses sprayed)

0 (10/2008) Total Community-wide Simple 96.0 (404)b

10 (8/2009) Total Selective Simple 100.0 (46)c

18 (4/2010) Total Selective Simple 100.0 (2)

38 (12/2011) Partial Selective Double 100.0 (2)

49 (11/2012) Total Selective Simple 100.0 (3)

59 (9/2013) Partial Selective Simple 0.0 (0)

78 (4/2015) Total Selective Simple 0.0 (0)

a Suspension concentrate beta-cypermethrin (50 mg/m2) or deltamethrin (25 mg/m2) for community-wide spraying; deltamethrin was applied during the vector

surveillance phase except in 2009 (10 MPS) when beta-cypermethrin was used (the only insecticide available at the vector control program).
b Includes 26 houses sprayed by local healthcare agents in July 2008 and not re-sprayed five months later when the community-wide insecticide campaign was

undertaken.
c All infested and newly-built houses (not sprayed during the insecticidal campaign) were sprayed with insecticides.

https://doi.org/10.1371/journal.pntd.0006804.t001
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periodically after community-wide insecticide spraying (Table 1): August 2009 (10 MPS),

April 2010 (18 MPS), November 2012 (49 MPS) and April 2015 (78 MPS). Each domicile and

peridomestic structure at each compound was searched by one person for 15 min; searches

and insecticide applications were performed by skilled personnel from the national or provin-

cial vector control programs [40]. One member of the research team was present in almost

every inspected or sprayed house during the entire follow-up. Closed houses were re-visited at

least once, and sometimes two or three times, to achieve full-inspection coverage at each sur-

vey. Public buildings and vacant houses were inspected for triatomine infestation when they

were occasionally used as a dwelling or as resting places by free-ranging domestic animals,

respectively; because none of them were ever found infested, they were excluded from house

infestation estimates. T. infestans was found by timed-manual searches in 28.0% of the occu-

pied houses inspected at baseline, and in 31.9% of them when all vector detection methods

were considered [40]. Triatomine abundance was calculated as the number of bugs collected

by timed-manual searches per unit of catch effort. Colonization was defined as the presence of

any nymphal instar among the triatomines collected.

The community-wide insecticide spraying campaign covered 96.0% of all occupied houses

in October 2008 (0 MPS) (Table 1). Houses infested with T. infestans over 2009–2015 were

selectively sprayed with pyrethroid insecticide immediately after each survey.

In order to promote community-based vector surveillance, householders were asked for the

presence of triatomines in their dwellings and shown dry specimens of the local species at

every vector survey, and were instructed to collect any triatomine they may find and bring it to

the local healthcare post or hospital. This information was used to build two house infestation

indices: householders’ bug collection (when they delivered triatomines) and householders’ bug

notification (when only reports were given). In October 2011 (36 MPS) and September 2013

(59 MPS), local healthcare agents aimed at visiting every household to ask residents for the

presence of triatomines in their dwellings; no dry triatomine specimens were shown. Research

team members surveyed additional households on December 2011 (38 MPS) to increase the

coverage of residents’ notifications; in total, 85% of all occupied house units (373) were sur-

veyed over October-December 2011. During these visits, timed-manual searches were per-

formed in a selected sample of the occupied houses that either reported the presence of

triatomines and/or had a previous infestation. Additionally, a random sample of dwellings

with suitable conditions for infestation (i.e., mud or unplastered walls, tarred-cardboard roofs,

high refuge availability, large household size, as defined below) were also inspected by timed

searches. In September 2013 (59 MPS), 200 houses (48% of all occupied house units) were vis-

ited by local healthcare workers to canvas householders on house infestation; timed-manual

searches were later performed following the same criteria described above.

All triatomines collected during the follow-up were carried to the field laboratory for identi-

fication to species, stage and sex, and then were preserved at -20˚C. Feces of all live third-instar

nymphs and later stages were examined for infection with T. cruzi at 400× within 2–4 weeks of

bug collection as described elsewhere [50].

Socio-demographic and environmental surveys

Detailed socio-demographic and environmental surveys were performed in parallel to vector

surveys in October 2008 (0 MPS), November 2012 (49 MPS) and April 2015 (78 MPS). At each

occupied house, an adult household member fluent in Spanish was asked for information on

demographic (i.e., number of residents by age class and gender), economic (i.e., number and

type of domestic animals, and their resting places) and environmental variables (e.g, construc-

tion features, insecticide use) to monitor changes over time and investigate their association

Sustained Chagas disease vector control in indigenous communities
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with house infestation [40]. For each domicile, the building materials used in roof and walls,

presence and type of wall plaster, condition of wall surface, type of floor, and number of sleep-

ing quarters were recorded in a form. The availability of refuges for triatomines was catego-

rized into five levels by a skilled member of the research team [49]. Additional socio-

demographic variables were registered from 49 MPS on, including land ownership, educa-

tional level of each household member, and whether a new domicile or house was provided by

a government-sponsored rural housing program or not. These data were used to compute

household educational level, defined as the mean number of schooling years attained by house-

hold members aged 15 years old or more, and the overcrowding index, defined as the number

of human occupants per sleeping quarter [40].

Housing improvement referred to houses with mud-walled domiciles (or more rarely, built

with other materials such as wood or plastic) that shifted to having one or more new human

sleeping quarters with brick-and-cement walls and a corrugated metal-sheet roof (the only

type of improved roof recorded, frequently denominated modern houses), regardless of

whether they had been provided by the rural housing program, house residents or any third

party. These changes were assessed in relation to the status at the preceding survey in which

housing-related variables were registered (0, 49 and 78 MPS surveys). When more than one

building material or more than one domicile existed at baseline, the maximum quality level

qualified the status of the house unit. For example, if a house had one mud-walled domicile

and a second one with brick-and-cement walls, the house unit was taken to have brick-and-

cement walls. Only stable houses provided the data needed for this analysis (see definitions

below).

The demographic composition and location of each household, and the residential destina-

tion of those who moved elsewhere between surveys and their main reasons, were recorded at

49 and 78 MPS. These data were used to classify household mobility for the entire follow-up

(0–78 MPS) and for each study period (0–49 MPS and 49–78 MPS), and varied slightly from

the classification we used previously [40]: movers were households that changed its exact

residential location within Area III (i.e., local movers); non-movers were households that

remained at the exact residential location; out-migrants were households that changed its resi-

dential location to (peri-)urban sections of the municipality or other cities within the country;

new households, those established in Area III during the follow-up (owing to the formation of

a new family or by in-migration, regardless of their origin), and households that ceased to exist

(owing to separation, demise of the only resident, or permanent out-migration from Area III).

Housing stability between any two surveys (0, 49 and 78 MPS) was classified in three levels:

stable (i.e., a permanently occupied house unit), non-stable (a demolished or vacant house

unit), and new (i.e., a newly-built house unit, regardless of the source, type or state of building

materials).

Pyrethroid-resistance bioassays

A sample of the T. infestans collected at baseline (64 females from 22 (18%) house units in 5 of

the 7 infested communities) was tested for pyrethroid resistance at the Center for Research on

Plagues and Insecticides (CIPEIN/CONICET, Buenos Aires, Argentina) using standardized

methods [51]. Screening coverage ranged between 13% and 25% of the infested houses across

communities.

The screening bioassays consisted in the application of a discriminating dose (DD) of 2 ng

of technical-grade deltamethrin (99%), provided by Ehrenstorfer (Augsburg, Germany) per

insect, which causes 99% mortality of the susceptible strain (DL99) [52]. First-instar nymphs

of T. infestans (5–7 days old, mean weight 1.3 ± 0.2 mg, unfed) (F1) received a topical

Sustained Chagas disease vector control in indigenous communities
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application of 0.2 μl of deltamethrin (0.01 mg/ml) in analytical grade acetone (Merck, Buenos

Aires, Argentina) on the dorsal abdomen using a 10-μl Hamilton syringe (Hamilton PB-600-1,

Nevada, USA) with an automatic repeating dispenser [51,79]. The treated insects were kept

inside a plastic container with folded paper at 28–30 ˚C and 50–70% RH. Mortality was evalu-

ated after 24 h by placing the insects at the center of a circular filter paper of 11 cm diameter;

nymphs able to walk to the border were taken as survivors [51]. The bioassays consisted of

three replicates containing at least 10 insects for each bug population. A laboratory-reared, del-

tamethrin-susceptible colony of T. infestans (denominated CIPEIN SRL, susceptible reference

lineage), was used as a negative control, and a laboratory-reared pyrethroid-resistant T. infes-
tans colony (from Salta, Argentina) was used as a positive control.

A triatomine population was considered resistant to the insecticide tested if mortality was

less than 90% in two out of three independent assays, i.e., at least one survivor in two of 3 trials

[52]. When the number of first-instar nymphs available only allowed one or two independent

assays to be performed, the outcome was taken to be resistant or susceptible pending confir-

mation. Houses were grouped according to median mortality in the bioassays as follows: sus-

ceptible (91–100%), moderate (76–90%), reduced (50–75%). No sample showed mortality

rates fewer than 50%.

Data analysis

The percentage of new, occupied house units at the survey conducted at time t was calculated

relative to the total number of occupied house units enumerated at t. The percentage of demol-

ished houses at t was computed from the number of occupied houses enumerated at t-1 that

ceased to exist at t relative to the number of occupied houses enumerated at t-1.

All statistical analyses were conducted using Stata 15.1 [53]. The distribution of household

characteristics over the follow-up was examined with χ2 tests. The Kruskal-Wallis test was

used for comparison of household size over time. The agreement between householders’ noti-

fications of triatomine presence and direct assessments of house infestation was measured

using the kappa index. An exact Fisher’s test was used to examine the association between

house infestation status before and after insecticide spraying. A Cox regression survival analy-

sis was used to test whether the loss rate of house occupancy differed between infested and

non-infested houses at baseline.

Global spatial analyses (univariate and bivariate) were performed using the weighted K-

function implemented in Programita [54]. Random labeling was selected to test the null

hypothesis of random occurrence of events among the fixed spatial distribution of all houses.

The selected cell size was 200 m (assuming that each house had at least three neighbors at the

minimum distance of analysis), and the maximum distance was set at 6 km (i.e., half of the

dimension of the area) [55]. Monte Carlo simulations (n = 999) were performed and the 95%

‘confidence envelope’ was calculated with the 2.5% upper and lower simulations. We created

heat maps (i.e. density maps) to visualize the spatial aggregation of housing instability (i.e.,

non-stable houses) over 0–78 MPS. The analysis was implemented in QGIS using a kernel den-

sity estimation algorithm within a radius of 200 m.

Results

Household and housing follow-up

The total number of houses increased from 411 to 485 in a roughly linear fashion over the

seven-year period, as did the frequency of occupied, new and demolished houses (Fig 2A and

2B). The observed frequencies and linear regression equations appear in S1 Table. In total,

30.7% of the occupied houses at baseline were lost (i.e., vacant or demolished) over the follow-
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up; the annual loss rate was 4.6% (standard error, 0.36) as determined by ordinary linear

regression (F = 168.1, df = 1 and 3, p< 0.001, adj R2 = 0.977). Among the 123 baseline-infested

houses (as determined by any collection method), 22.0% and 32.5% subsequently became

vacant or were demolished at 49 and 78 MPS, respectively, whereas 19.9% and 28.6% of the

266 non-infested houses at baseline were no longer occupied at those time points, respectively

(Fig 2C) (Cox regression test, χ2 = 0.2, df = 1, p = 0.7).

Fig 2. Status of house units over time (A: total and occupied; B: new, demolished and vacant) and survival curves

of baseline-infested, -non-infested and -occupied house units (C) in Area III of Pampa del Indio, 2008–2015.

https://doi.org/10.1371/journal.pntd.0006804.g002
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The prevalence of house units having at least one domicile with mud walls decreased mar-

ginally from 78.9% to 72.4% over 0–78 MPS (χ2 = 4.9, df = 2, p = 0.09), whereas the same met-

ric for brick-and-cement walls increased highly significantly from 25.8% to 41.9% (χ2 = 24.5,

df = 2, p< 0.001) (Table 2). These changes were closely related to a government-sponsored

rural housing program, which increasingly covered up to 18.6% of existing houses as of 78

MPS and benefited 77 Qom and two creole households. This increase in the proportion of

brick-and-cement walled domiciles was even observed in the group of baseline-infested houses

(S1 Text). Nonetheless, most of the new house units (236) built during the follow-up had

unplastered mud-walled domiciles (S1 Text). For all houses with an improved domicile at 78

MPS, most of the new premises had plastered walls (73.3%) and absence of cracks (81.7%),

whereas 66–94% of them also retained the former mud-walled structure at 49 and 78 MPS.

Almost 60% of all mud-walled houses had unplastered walls as of 78 MPS.

The trend toward housing improvement was also expressed in the highly significant drop

in houses having tarred-cardboard roofs, from 52.9% to 31.6% over 0–78 MPS (χ2 = 40.5,

df = 2, p< 0.001), which were replaced by corrugated metal-sheet roofs (Table 2). In spite of

these improvements, the mean score of domestic refuge availability for triatomines remained

high and tended to increase (Kruskal-Wallis test, χ2 = 6.8, df = 2, p = 0.03). Householders’

application of domestic insecticides mainly included low-concentration pyrethroid sprays;

their frequency of use highly significantly increased over 0–49 MPS (χ2 = 26.4, df = 1,

p< 0.001). Household size averaged 6 residents and remained approximately constant (Krus-

kal-Wallis test, χ2 = 4.7, df = 2, p = 0.09), as did residential overcrowding and household edu-

cational level.

Most households (>78.5%) had stable residence over 0–49 and 49–78 MPS (Table 3).

Movements mainly occurred within the study area (i.e., local movers, ~11%), and slightly less

often included out-migration to large cities or (peri-)urban areas of Pampa del Indio (7.5–

9.2%). The annual rate of household mobility averaged 5.1% and 8.0% over 0–49 and 49–78

MPS, respectively. Most movers comprised Qom households (96.0%, 95/99), who torn down

(77.8%) their former dwelling and occupied a new house (98.3%) rather than an existing one.

Significantly fewer (54.9%, 39/71) out-migrant households demolished their houses compared

Table 2. Characteristics of domestic premises, household size and vector control practices in Area III of Pampa del Indio, 2008–2015.

Attribute % of houses (No. of houses surveyed)

0 MPS 49 MPS 78 MPS

Mud walls 78.9 (399) 75.1 (438) 72.4 (445)

Brick-and-cement walls 25.8 (399) 33.3 (438) 42.0 (445)

Tarred-cardboard roofs 52.9 (399) 38.4 (409) 31.6 (433)

Rural housing programa NR� 8.3 (423) 18.6 (427)

Refuge availability (mean ± SD) 3.8 ± 0.8 4.1 ± 0.8 4.0 ± 0.7

Domestic insecticide application 47.7 (386) 65.7 (411) NR�

Household size (mean ± SD) 6.2 ± 3.5 5.8 ± 3.4 5.9 ± 3.5

Residential overcrowdingb (mean ± SD) NR� 3.5 ± 2.3 3.4 ± 2.1

Household educational levelc (mean ± SD) NR� 5.3 ± 3.1 5.1 ± 3.1

a Fraction of all surveyed house units built by the housing program, which included human sleeping quarters with brick-and-cement walls, corrugated metal-sheet roof

and cement floor.
b Number of residents per sleeping quarter.
c Mean number of years of schooling among residents aged >15 years old.

�Data not registered (NR).

https://doi.org/10.1371/journal.pntd.0006804.t002
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to movers (χ2 = 10.0, df = 1, p = 0.002). Nearly half (45.3–51.0%) of the new houses were occu-

pied by movers (Table 3). The formation of new households from current Area III residents

and from in-migrants substantially increased (by 3.9–11.6×) over 49–78 MPS relative to 0–49

MPS. Most in-migrants (86%, 18/21) occupied a new house. Overall, 47% of the households

that changed their residential location over 49–78 MPS had also moved or migrated at least

once over 0–49 MPS (repeat movers).

House infestation and triatomine infection

House infestation decreased from 31.9% to 0.7% at 10 MPS and then remained marginal, with

no infested house detected at 59 and 78 MPS (Fig 3A). Vector surveys inspected 93.8–96.3% of

the occupied house units over the follow-up; less than 1.6% of them refused searches for triato-

mines (S1 Table). No public building or vacant house was ever found infested with T. infestans.
The few occupied houses that were neither inspected for infestation nor sprayed with insecti-

cides at baseline were subsequently inspected for triatomines at least once, and none of them

was positive for T. infestans except one at 10 MPS (which had neither been inspected nor

sprayed at baseline due to its remote location). The apparent increase in house infestation

(2.3%, only including two infested houses) at 38 MPS was related to targeted searches of

higher-risk dwellings.

Pre- and post-spraying infestation mostly occurred in human sleeping quarters. Only 10

(1.6%) of 615 occupied houses inspected at least once over the follow-up were positive for T.

infestans by timed-manual searches, and 9 of them had infested domestic premises. The

median relative abundance per infested collection site over the follow-up was low (2.0 triato-

mines; first-third quartiles, 1–3 per unit of catch effort), and peaked at 18 MPS owing to a

high-density triatomine population in a peridomestic habitat used by chickens (Fig 3A). Colo-

nies of T. infestans were found in 8 of the 10 infested houses as determined by any detection

method. The stages most frequently captured by timed-manual searches were females (33%)

and males (17%).

Triatoma sordida (a secondary vector candidate for domestication) was found by timed-

manual searches in 4.4% of the occupied houses at baseline, and then fluctuated between 1.7%

and 5.3% over the follow-up (excluding surveys in which only a sample of houses was

Table 3. Distribution of household mobility and origin of new occupants in Area III of Pampa del Indio, 2008–

2012 and 2012–2015.

Variable Level % (no. of house units)

0–49 MPS 49–78 MPS

Household mobility� Non-movers 78.5 (317) 79.8 (352)

Movers 11.6 (47) 11.8 (52)

Out-migrants1 9.2 (37) 7.5 (33)

Other2 0.7 (3) 0.9 (4)

Origin of occupants of new houses Movers 51.0 (76) 45.3 (39)

New households 2.7 (4) 31.4 (27)

In-migration 6.0 (9) 23.3 (20)

No data 40.3 (60) - (0)

� Only includes stable and non-stable housing units.
1 Includes permanent movement to large cities or (peri-) urban areas of Pampa del Indio, and absence of an exact

destination.
2 The only dweller passed away.

https://doi.org/10.1371/journal.pntd.0006804.t003
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inspected) (Fig 3B). T. sordida mainly occurred in habitats used by chickens, and was collected

inside a human sleeping quarter or a kitchen (both adults and nymphs) only in two occasions.

The median relative abundance per infested collection site was 7 triatomines (first-third quar-

tiles, 1–14 per unit of catch effort) over the follow-up; colonies were found in 90.2% of all

infested sites as determined by any method. Fifth- (32%) and fourth-instar nymphs (23%)

were the stages most frequently captured by timed searches.

Baseline and post-spraying house infestation with T. infestans were not significantly

associated among 379 houses inspected for triatomines on both periods (exact Fisher’s text,

p = 0.683, df = 1) (S2 Table). Three of the post-spraying infested houses had also been infested

at baseline, but in between these occasions there were 1 or 2 surveys in which no T. infestans
was collected by any method, suggesting post-spraying infestations were unlikely to be residual

foci. The three infested houses at 10 MPS (two baseline-negative and one baseline-no data)

were not strictly defined residual foci because they had not been sprayed with insecticides at

baseline, although two of them might have been residual foci from a prior non-professional

spraying. The remainder was neither inspected nor sprayed at baseline due to its remote loca-

tion (footnotes 3 and 4 in S2 Table).

The space-time series of observations and subsequent interviews to householders suggested

putative cases of passive or active dispersal of T. infestans among infested dwellings of one

community (Pampa Grande). Four of the five infested houses detected at 38 and 49 MPS were

Fig 3. Prevalence of house infestation (bars) and relative abundance (circles: median; bars: first and third

quartiles) of A) Triatoma infestans and B) Triatoma sordida in domestic and peridomestic premises in Area III of

Pampa del Indio, 2008–2015. Numbers above bars indicate the number of occupied houses inspected in each survey.

The y axis scale differs between graphs.

https://doi.org/10.1371/journal.pntd.0006804.g003
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located in a well-defined sector in which only one house was heavily infested (i.e., the putative

index case). Householders reported that one resident of the heavily infested house moved tem-

porally with his belongings to two nearby houses, which subsequently appeared infested, sug-

gesting passive bug transport. The other infested house was at 700 m of the heavily infested

one, and within the flight range of T. infestans.
Three of the 10 infested house units detected over the follow-up harbored at least one T.

infestans infected with T. cruzi whereas this fraction (34/75, including only infested houses

with bug infection data) was higher at baseline though not significantly so (Fisher’s exact test,

p = 0.5). This downward trend holds both in domiciles (33%, 3/9 vs. 45%, 28/62) and perido-

miciles (0%, 0/3 vs. 44%, 8/18), respectively. The overall infection prevalence in post-spraying

T. infestans was 11% (n = 44 insects examined). None of the 42 T. sordida collected from 6

houses at 10 MPS were infected with T. cruzi.

Community-based vector surveillance

Householders’ notifications of the presence of any triatomine species were significantly more

frequent than the direct assessments by any detection method at every post-spraying survey

(χ2 test, df = 1, p< 0.01), except at 10 MPS (χ2 test, df = 1, p = 0.4) (Fig 4). There was a poor

agreement between post-spraying householders’ notifications and other vector detection

methods (kappa coefficients < 0.2). Nonetheless, the relative odds of post-spraying house

infestation with T. infestans was approximately 10–13 times higher when householders notified

the presence of any triatomine than when they did not (10 MPS: OR, 10.1; 95% CI: 0.9–118.5;

18 MPS: OR, 12.6; 95% CI: 0.7–211.9, and 49 MPS: OR, 11.7; 95% CI: 1.03–134.3). Household-

ers’ notification of T. infestans also dropped below 1% at 10 MPS, as did timed-manual

Fig 4. Comparison between householders’ notifications of the presence of T. infestans or any triatomine species and

the outcome of other vector detection methods (including timed-manual searches, during insecticide spraying and

householders’ bug collections) in Area III of Pampa del Indio, 2008–2015. Only notifications of Triatominae (without

distinguishing species) were registered at 38 and 59 MPS.

https://doi.org/10.1371/journal.pntd.0006804.g004
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searches, and then increased at 49 MPS (6.5%) and 78 MPS (3.6%) (Fig 4), matching the fre-

quent catch of T. sordida by timed searches in both surveys (Fig 3B) and householders’ collec-

tions of T. sordida or other triatomines at 49 MPS. Householders reported the presence of T.

infestans before timed searches in five of the 10 houses ever found infested post-spraying; the

remainder had either a peridomestic infestation only or very low domestic bug abundance.

Householders collected 45 triatomines at 25 different dwellings and other Reduviidae bugs at

15 houses over the surveillance phase (S1 Text).

Insecticide resistance and house infestation

In total, 55% of the 22 populations of T. infestans individually screened for pyrethroid resis-

tance had reduced mortality (Table 4). None of the post-spraying infested houses had informa-

tion on pyrethroid resistance at baseline. Moreover, none of the 12 houses with reduced

mortality to pyrethroids was found infested after the community-wide spraying.

Housing instability, improvement and house infestation

Housing instability was mainly concentrated in a few clusters of houses, as was housing

improvements. Both events partially overlapped, particularly in a section with high-density

residential mobility and housing improvement (Fig 5A and 5B). The spatial distribution of

Table 4. Mortality of T. infestans populations in pyrethroid-resistance bioassays, Area III of Pampa del Indio,

2008 (baseline).

Deltamethrin resistance status (% mortality) No. of houses % median mortality (first-third quartiles)

Susceptible (91–100%) 10 100

Moderate (76–90%) 8 83.5 (80.8–90.0)

Reduced (50–75%) 4 58.0 (56.0–68.8)

https://doi.org/10.1371/journal.pntd.0006804.t004

Fig 5. Spatial distribution of baseline (A) and post-spraying (B) house infestation with T. infestans (circles),

housing instability (heat map) and high-density areas with housing improvements (contour lines). C. Evidence of

pyrethroid resistance at baseline and post-spraying house infestation with T. infestans in Area III of Pampa del

Indio, 2008–2015. The maps were created in QGIS 2.18.16. based on the data collected within the scope of this study

(S3 Table).

https://doi.org/10.1371/journal.pntd.0006804.g005
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non-stable houses and of improved houses did not differ significantly from a random pattern.

However, a qualitative spatial overlap between a high density of improved houses, housing

instability and baseline house infestation is apparent (Fig 5A), and wanes for post-spraying

house infestation (Fig 5B). No significant association was found between post-spraying house

infestation and household instability or housing improvements in univariate analyses (χ2 =

0.5, df = 1, p = 0.5; χ2 = 0.8, df = 1, p = 0.4, respectively). Both the houses with any evidence of

pyrethroid resistance and those screened for the latter were dispersed throughout the study

area (Fig 5C), showing no apparent spatial association with post-spraying infestation.

The relationship between post-spraying domestic infestation with T. infestans, housing sta-

bility and housing improvement is shown in Table 5. Non-stable and stable houses displayed

virtually the same prevalence of domestic infestation, which was twice as large as that of new

houses. None of the 29 houses subjected to improvement became infested. When differential

exposure time was accounted for, non-stable, non-improved houses had a much higher rate of

domestic infestation than stable, non-improved houses (~×4) or new houses (~×2). This rank-

ing was not affected by whether the three putative residual foci were excluded or not (footnote

of Table 5).

Discussion

Our seven-year intervention program exerted immediate impacts on T. infestans populations

and infected-bug densities, which were sustained at least through 78 MPS in a high-risk,

remote setting including vulnerable indigenous communities despite evidence of moderate

pyrethroid resistance in the main vector. These results refute the assumption that vector con-

trol actions performed in marginalized rural communities of the Gran Chaco are doomed to

fail and lead to rapid house reinfestation (e.g., [10, 36, 37, 56]). The prevalence of post-spraying

house infestation, vector abundance and infection rates in Area III were substantially lower

than in neighboring rural areas subjected to the same intervention protocol [11,38] or in other

rural locations within the Gran Chaco [10, 36, 56–59]. The larger impacts of the interventions

in Area III were likely associated with the combined effects of high-coverage, professional

insecticide spraying and systematic vector surveillance-and-response, frequent housing

replacement and residential mobility, and broad geographic coverage of sustained vector con-

trol creating a buffer zone, since Area III was surrounded by virtually uninfested communities

and agricultural fields (Fig 1).

Table 5. Post-spraying domestic infestation with Triatoma infestans according to housing stability and improvements in Area III of Pampa del Indio, 2008–2012.

The table includes only occupied houses inspected at least once over 10–49 MPS and excludes the three putative residual foci detected at 10 MPS.

Housing

stability�
Housing

improvement��
Prevalence of domestic infestation (no. houses infested/

no. inspected)

Rate of post-spraying domestic infestation per 100 house-

years (exposure time)

Non-stable

houses

No 1.5 (1/67) 1.1 (90.2)

Stable houses No 1.4 (4/288)��� 0.3 (1176.0)���

Yes 0.0 (0/29) 0.0 (118.4)

New houses - 0.7 (1/141) 0.6 (159.2)

� ‘Non-stable’ includes occupied houses at baseline that subsequent became vacant or were demolished over the follow-up; ‘Stable’ includes houses that were

permanently occupied over the follow-up; ‘New houses’ include occupied houses that were built after the baseline survey.

�� Housing improvement refers to a house that shifted from a mud-walled domicile (or wood or plastic) to one having brick-and-cement walls and a corrugated metal-

sheet roof.

��� If the three putative residual foci detected at 10 MPS were included, the prevalence of domestic infestation reaches 2.4% (7/291) and the rate 0.6% (over 1188.3

house-years).

https://doi.org/10.1371/journal.pntd.0006804.t005
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Other ecological factors may have contributed to the greater relative impact of vector con-

trol actions in Area III: i) pre-spraying house infestation mainly occurred inside domestic

premises, where the effectiveness of pyrethroids and duration of its residual effects are much

higher than in peridomestic structures exposed to weather agents [11, 56, 57, 60]; ii) houses

had fewer or no peridomestic structures with hosts (i.e., fewer suitable habitats for triato-

mines); iii) stochastic processes affecting the recovery of low-density, isolated triatomine pop-

ulations are likely to occur, and iv) the study communities had fewer forest fragments near

dwellings, which may eventually harbor sylvatic foci of T. infestans, not detected in Pampa del

Indio yet [61]. This may not represent a barrier to house invasion with triatomines. Hence-

forth we examine the main outcomes in terms of structural determinants (housing quality

dynamics), demographic features (household mobility), and vector-related aspects.

Inadequate and unhealthy housing prevailed over time and space in the study area. Mud-

walled houses were similarly prevalent at baseline and among the newly-built houses, whereas

the fraction with brick-and-cement walls and metal roofs increased slowly over time, partially

through a government-sponsored housing program. The weak trend toward housing improve-

ment did not translate into an overall reduction of unplastered mud walls (nor in the mean

score of domestic refuge availability) because most households kept the former structure

owing to its greater capacity to dampen extreme temperatures or for alternative usage, and

because most of the new buildings were mud-walled. Rather than replacement of precarious

houses, there was a disproportionate addition of precarious to modern housing units (~4:1).

Other improvements (in peridomestic structures and screening of doors and windows) were

not implemented except for the latrines built by the housing program. In other settings, the

frequent use of corrugated metal roofs lacking an insulating ceiling underneath created an

unbearably hot, unhealthy environment that defeats the goal of replacing inadequate dwell-

ings. Thus, housing programs must consider the environmental and cultural features of the

target populations and foster community participation in the design, layout and arrangement

of house compounds to achieve the purported goals.

Even higher-quality modern houses can be heavily infested with T. infestans, as there are

numerous refuges for triatomines in boxes and furniture regardless of other structural aspects

of housing quality, and triatomines may hide in the insulating ceiling (S2 Fig). Although hous-

ing improvements may reduce refuge availability, triatomine abundance and domestic trans-

mission risks [31–34, 36, 62, 63], and provide another means to cope with pyrethroid-resistant

triatomines [64], the effects may range from subtle to strong depending on the details, scale

and context of interventions. For example, the massive rural housing program implemented in

Venezuela over 1958–2000 slightly reduced the force of human infection with T. cruzi whereas

the large-scale insecticidal campaigns implemented from 1966 onward drastically cut trans-

mission without reaching its complete interruption [24]. Recently, a systematic review of

household-centered interventions concluded that modifications of housing structure “had no

impact on the control of vectors” of Chagas disease [65].

Our follow-up shows that this mainly Qom population comprised three subgroups of

households that remained rather invariant over time: non-movers (~80%), with permanent

residential stability; movers (~12%), households with substantial short-distance residential

mobility within Area III, which usually demolished the old house; and other population losses

(e.g., permanent out-migrants, ~8%). The main drivers for local movement were gaining bet-

ter access to electricity, potable water, health care and education, better lands to cultivate [40],

and cultural practices, such as dismantling a house after a family member passed away [66].

These mobility patterns are also consistent with ancestral practices: the Qom people originally

included many semi-nomadic hunter-gatherer groups that built simple dwellings using avail-

able materials such as tree branches and animal skins [66, 67]. Several developments at the
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onset of the 20th century forced them to settle down [67], which severely affected their lifestyle

and housing characteristics. We have also recorded a rural-to-peri-urban movement stream

for the same reasons stated above combined with dwindling agriculture and local employment,

leading to the creation of peri-urban slums within the municipality [68] and a strong depen-

dency on welfare support.

In our study, household mobility was not random, as movers were more disadvantaged

than non-movers [40]: most of the new houses built by movers and in-migrants were precari-

ous, with unplastered mud walls and a metal-sheet roof. Baseline-infested houses (likely repre-

senting a higher-risk group) were demolished at a consistently slightly greater rate than non-

infested ones, which may be relevant for long-term vector control. Similarly, post-spraying

foci occurred more often in non-stable houses occupied by movers and out-migrants than in

stable houses occupied by non-movers (Table 5), although the paucity of post-spraying foci

strongly diminishes the power of any statistical test. Non-stable houses tended to spatially

overlap with greater baseline infestation and subsequent high density of housing improve-

ments (Fig 5). Most households (>80%) owned the land they occupied under individual,

familial or communal regimes [40], which gave them enormous flexibility to move within the

area. In contrast, land tenure security increased the propagation of house infestation in other

peri-urban settings, where the mobility patterns herein described were not observed [46]. The

specific type of population movement described here was not recorded in a recent review of

the subject [43]. Houses were frequently re-built in the proximities of their former location in

a rural village of Bahia, Brazil [44], which suggests this practice may neither be strictly related

to indigenous groups nor be uncommon. As expressed 25 years ago and still valid, “Shifts in

the rates of new construction and demolished housing have never been explored in their rela-

tion to local household infestation in the literature” [69]. It is precisely this feature of mobility

which may strengthen the effects of insecticide spraying, leading to the sustained impact

observed.

Household relocation and associated housing dynamics may exert large negative impacts

on the resident triatomine population through habitat destruction and host disappearance, but

it may also create new suitable habitats free from insecticide; the latter can readily become

infested through passive transportation of triatomines hidden in boxes and other belongings.

This mechanism may explain why the prevalence of house infestation with T. infestans
increased with the frequency of demolished houses and of new houses over two study periods

across a large region of Minas Gerais, Brazil [69]. In contrast, following an effective insecticide

spraying campaign (as in Area III), the net effects of household mobility within the study area

and construction of new houses with local materials (albeit precarious) can be safely assumed

to be detrimental to triatomine populations. A key point is that the inflow of migrants from

other possibly infested areas outside of Pampa del Indio remained marginal over the seven-

year period.

The high treatment coverage achieved in the community-wide insecticide campaign virtu-

ally suppressed house infestation and averted the occurrence of untreated houses as residual

sources of triatomines except in one case. This is important because untreated urban dwellings

have been identified as important sources in Arequipa, Peru [70]. Although the close supervi-

sion of spraying operations may have contributed to an enhanced performance of spray teams,

the same intervention procedures achieved inferior results in other rural sections within

Pampa del Indio municipality. In the context of household mobility and housing improve-

ments described above, the sustained follow-up with selective sprays of the few detected foci

led to the apparent suppression of house infestation at 78 MPS.

The three infested houses detected at 10 MPS were not residual foci in a strict sense since

they had not been sprayed at the 2008 community-wide insecticide spraying (S2 Table,
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footnotes 3, 4). However, two of them had been sprayed with pyrethroids by healthcare agents

two months before the insecticide campaign, and therefore qualified as residual foci of a

slightly different nature. Several pieces of evidence do not support that the remaining post-

spraying infestations originated from residual foci: pre-spraying and post-spraying infestations

were not significantly associated, unlike in Areas I and II [37, 38]; wing shape analyses of T.

infestans populations from Area III indicated the post-spraying foci were more likely related to

external sources (not within Area III) than to baseline populations, with a low rate of exchange

between Area III and Area I triatomines [41]; the protracted time gap between pre- and post-

spraying foci at the same house, and the stage distribution and abundance of post-spraying

foci (mainly including incipient bug colonies with a few adults and early-instar nymphs).

Peripheral or sylvatic sources of T. infestans were very unlikely, as explained above. Barring the

few putative cases of passive or active dispersal around a suspect source inside Area III, the

ultimate origins of some post-spraying foci remain ill-defined.

Most post-spraying foci occurred in domestic premises with high scores for refuge availabil-

ity and in households with very low educational level (average, 4.6 yr), as in the baseline sur-

vey. Half of the 10 post-spraying infested houses were Creoles’ (though they represented 10%

of all households); most had brick-and-cement domiciles (60%), a low overcrowding index, no

poultry inside domiciles (70%), few peridomestic structures, reportedly applied domestic

insecticides (60%), and were not located in highly-infested communities at baseline (i.e., no

neighborhood effect). The application of low-concentration insecticides in Area III is more

likely related to householders’ socio-economic status and attitude responses rather than to hav-

ing a direct impact on domestic triatomine populations [40]. Taken together, these features

point to households with low-risk attributes at baseline [40], which paradoxically concentrated

most post-spraying foci. While this inability to predict house reinfestation from preinterven-

tion models reflects imperfect system knowledge, they also suggest that other underlying (not

readily observable) processes may have generated the new foci (e.g., passive transport from

external sources).

Household-based vector surveillance corroborated the very low levels of post-spraying

infestation shown by timed-manual searches, and revealed the invasion of four other triato-

mine species. Householders’ notifications of triatomines performed better than timed searches

during the initial vector surveys but not later, suggesting the residents’ motivation may wane

over time and when non-target triatomine species prevail. While these results reveal the poten-

tial of community-based efforts for sustainable vector surveillance, strengthening local capaci-

ties and periodic stimulation of community involvement are crucial [3, 71]. The widespread

network of local healthcare workers (most of Qom descent) who assisted in this task is a major

local asset for vector and disease surveillance [72], and provides a means to resolve the cultural

barriers that often obstruct health interventions in indigenous communities [73].

Despite the virtual suppression of T. infestans after insecticide spraying, none of the sylvatic

triatomine species (not targeted for control) were able to recolonize peridomestic habitats

except T. sordida, as in Area I [74], and all failed to establish domestic colonies. The triato-

mines collected by householders were spatially aggregated and mainly occurred in one com-

munity. Whether the surrounding landscape facilitated the invasion of sylvatic triatomines

[75] or local residents were more aware and committed to vector surveillance, perhaps boosted

by the contagious nature of community participation [76], remains for future investigation.

The baseline populations of T. infestans displayed evidence of moderate pyrethroid resis-

tance throughout Area III, thus predicating the subsequent occurrence of vector control

failures as in Areas I and II [37, 38]. One highly persistent bug population re-treated four

times in Area I displayed a mean resistance ratio (RR) of 7.2 [37], whereas another persistent

population in Area II displayed reduced mortality (60–70%) in the screening tests [38]. In
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contrast, pyrethroid applications in Area III were highly effective and no sprayed focus per-

sisted over several surveys. Why did post-spraying infestation rates differ so much from

those expected on the basis of diagnostic screening tests and background evidence is unclear.

One potential explanation is that diagnostic mortalities ranging from ~30 to 70% and RR

from ~8 to 20 are inconsistent predictors of pyrethroid effectiveness in real-life rural settings

(i.e., fall in a diagnostic indeterminate zone), whereas RR>50 are invariably associated with

vector control failures in northern Argentina and Bolivia [51, 77–79]. Another, not mutually

exclusive, explanation is that low-density triatomine populations subject to removal by

timed searches followed by insecticide spraying were likely decimated and then faced the

additional constraints imposed by environmental and demographic stochasticity. The sub-

stantial number of triatomine populations screened for pyrethroid resistance and evidence

of its widespread occurrence at moderate levels minimized the issues related to sample size

and representativeness [80]. Our results also reveal the importance of simultaneous monitor-

ing of house infestations, insecticide resistance and other social determinants (housing,

mobility) to assess whether post-spraying infestation indices match the outcome of screening

tests or other underlying causes for vector control failure [77] or success affect the outcomes,

as in the current study.

The geographic distribution of pyrethroid resistance in T. infestans is concentrated in cen-

tral areas of the Gran Chaco region [81]. In Argentina, the main hotspot of pyrethroid resis-

tance is close to Pampa del Indio [79]. The limited flight dispersal of T. infestans and the

reduced exchange of household goods between resource-constrained rural areas (linked to

passive transport of triatomines) may have hampered the expansion of pyrethroid-resistant

foci. Substantial population structuring in T. infestans [41, 82, 83] may also contribute to

explain household-level variations in resistance status [84]. Therefore, the combination of sev-

eral factors may help explain the heterogeneous impact of the same intervention protocol

among Pampa del Indio study areas.

Our study had some limitations not described above: i) the limited sensitivity of timed-

manual searches to detect triatomine infestation, especially at low densities [85], was in part

compensated by repeated searches over the follow-up and household-based vector surveil-

lance. Similarly, the low (38 MPS) or nil (59 MPS) house infestation levels revealed by these

partial vector surveys were confirmed subsequently by full-coverage vector survey; ii) the ref-

uge availability index showed low variability in domiciles, which may difficult the detection of

changes associated with housing improvements; iii) the limited number of female triatomines

at a given focus precluded the assessment of pyrethroid RR and testing the association between

resistance status and infestation at household level; iv) the very few post-spraying foci detected

impeded us from conducting a detailed risk factor analysis and examine whether the house

infestation risk models developed from baseline data had any predictive power, and v) the des-

tination of many out-migrant households frequently included missing data due to the difficul-

ties in obtaining information for those who left the area.

Implications for vector control and research

Both household mobility and housing quality are key to understand house infestation dynam-

ics in the context of vector control interventions and demographic change, and the details of

their interaction with other factors matter. For example, whether a vacant house is immedi-

ately re-occupied by newcomers (rather than being torn down), or whether movers always

build the new house from scratch will determine the fate of pre-existing infestations; so does

whether housing improvements are combined with insecticide spraying or not. These aspects

pose additional challenges to traditional housing and vector control programs since for
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instance, many sprayed (presumably protected) houses disappear while new (unprotected)

houses built with used or new materials emerge. The relationship between housing instability,

household mobility and infestation requires further investigation in different endemic and cul-

tural settings. Underlying these patterns, our study discloses a chronic housing crisis in rural

areas of the Argentine Chaco, tightly linked to one of the goals in the 2030 Agenda for Sustain-

able Development: ensure access for all to adequate, safe and affordable housing and basic

services.

Which vector surveillance strategy is appropriate for scenarios such as those in the rural

Chaco? In the context of low house infestation levels after interventions over extended, at

times inaccessible areas, annual house searches for triatomines are neither cost-effective [10,

86, 87] nor sustainable [8]. One of the challenges vector control programs face there is how

to sustain the initial progress in the face of their limited operational capabilities and the com-

peting demands posed by recurring outbreaks of dengue and other mosquito-borne diseases

[4]. Mixed approaches including community-based vector surveillance showed promising

results [5, 33, 34, 36, 72, 86–88]. Early detection of house infestation with triatomines and

prompt insecticide treatment can be achieved through coordinated local efforts among

householders, the primary healthcare system and other grassroots organizations, especially

when rural communities are disperse and access is difficult. School-based health education

interventions may assist in fostering community participation in vector surveillance and

control. A crucial point in such community-based programs is related to providing an

appropriate response to householders’ notifications (service delivery): who will provide gear,

insecticide and apply it properly [5, 88]. The implementation, maintenance and supervision

of the vector surveillance-and-response system are essential for long-term disease control in

high-risk contexts [20, 88, 89].
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