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The aim of this work is to study the entanglement harvesting between two graphene layers inside a
planar microcavity. Applying time-dependent perturbation theory it is shown that nonclassical correlations
between electrons in different layers are obtained through the exchange of virtual photons. Considering
different initial states of the electrons and the vacuum state of the electromagnetic field, the negativity
measure that quantifies the entanglement is computed through the photon propagator for time scales
smaller than the light-crossing time of the double layer. The results are compared with those obtained for
hydrogenic probes and pointlike Unruh-DeWitt detectors, showing that for different initial states, entangled
X states and more general entangled reduced matrices are obtained, which enlarge the classification of
bipartite quantum states.
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I. INTRODUCTION

The vacuum state of a free quantum field contains
correlations of different observables in separate regions
of spacetime, even when those regions are spacelike
separated [1–3]. This nonclassical behavior of the vacuum
state of the field is a vital concept in phenomena such as
quantum collect calling [4], the black hole information loss
problem [5,6], and quantum energy teleportation [7–9].
These correlations are, in principle, physically accessible
because they can be obtained from the field vacuum via
quantum particle detectors that couple to it locally [10].
This allows to observe an entanglement of the particle
detectors that are operated by observers, even if they remain
spacelike separated during their whole existence [2]. The
phenomenon of extraction of nonclassical correlations from
the quantum vacuum has become known as entanglement
harvesting, which was introduced in Ref. [1]. Entanglement
harvesting from scalar fields has been widely studied [3]
and applied in entanglement farming [11], metrology [12],
and in cosmology, where it has been shown that entangle-
ment harvesting is very sensitive to the geometry of the
underlying spacetime [13,14] or even its topology [15].
In general, the detector-field interaction is modeled
using the Unruh-DeWitt model [16], which consists of a
linear coupling of a pointlike two-level quantum system
and a massless (or not) scalar quantum field, where a
spatial smearing function is included in order to allow the

two-level system to have a finite extension in space.1

Experimental implementations of the Unruh-DeWitt model
have been developed in atomic systems and superconduct-
ing circuits [17–19], where in the former an alkali atom as a
first quantized system can serve as a detector for the second
quantized electromagnetic field.
Nevertheless, and despite its great success, the Unruh-

DeWitt model cannot capture the complete interaction
between atoms and the electromagnetic field vacuum.
The electromagnetic field is a vector field and carries
angular momentum, but this implies that any study based
on the Unruh-DeWitt model will not capture the anisotro-
pies and orientation dependence of the entanglement
harvesting and will not predict any effect related to the
exchange of the angular momentum of the atoms with the
quantum field. In Ref. [20], a dipole coupling between
the electromagnetic field and hydrogenoid atoms was
studied exhaustively. In turn, particle detector models are
ubiquitous as models for experimental setups in quantum
optics [21]. The most usual light-matter interaction
models—the Jaynes-Cummings model and its variants—
are almost identical to the Unruh-DeWitt model [21],
where the rotating wave approximation is applied, and
the terms proportional to σþa† and the Hermitian conjugate
are removed from the Hamiltonian. The reason behind this
approximation is that the neglected terms yield bounded
oscillations when integrated in time for the detector-field
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1In turn, a time-window function is included in the interaction
to allows the interaction to occur in a finite time.
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resonance. These bounded oscillations can be neglected
in the detector-field dynamics compared to the close-to-
resonance rotating wave terms. Removing these terms
implies that microcausality is not guaranteed and that
the Hamiltonian is no longer linear in the field [22].
On the other hand, graphene—a monolayer of carbon

atoms—has garnered considerable interest because it is
attractive for various electronic and magnetic applications
[23–25]. Besides its novel high-speed electronics properties
[26], graphene is of great interest from the point of view of
fundamental physics as well. The low-energy electron
excitations in graphene are massless Dirac fermions with
a linear energy spectrum [27,28]. This makes graphene a
condensed-matter playground to study various relativistic
quantum phenomena, such as Klein tunneling and the
Casimir effect [29,30]. Up to now, most graphene-related
studies focused on its unusual transport properties, but
quantum effects arising from interactions with a quantized
electromagnetic field have been neglected.
Recently, quantum electromagnetic field effects have

been studied with the purpose of opening a band gap in the
spectrum by illuminating graphene with circularly polar-
ized light [31]. In this case, the gap appears due to the
formation of composite electron-photon states which are
similar to polaritons in ionic crystals and quantum micro-
cavities [32,33]. It should be noted that within the frame-
work of QED, the excitonic effects can be observed even if
real photons are absent and electrons interact only with
vacuum fluctuations of the electromagnetic field by emit-
ting and reabsorbing virtual photons [34]. From this,
it would be natural to expect that the photon-induced
splitting of the valence and conductivity bands in graphene
[31] will arise due to the vacuum fluctuations even in the
absence of external field pumping. These effects can be
observed by decreasing the effective volume where elec-
tron-photon interactions take place, which can be accom-
plished by embedding an electron system inside a planar
microcavity [33].
When the electromagnetic field is coupled to graphene in

the long-wavelength approximation, the minimal coupling
p → p − eA must be applied to the Hamiltonian, which
naturally introduces the Unruh-DeWitt interaction between
the detector (in this case, the sublattice basis) and the
quantum field. This allows to study the entanglement
harvesting between two graphene sheets inside a planar
microcavity and, in particular, to study the photon-induced
splitting of the valence and conduction bands at small
times. From the conceptual viewpoint, this is a generali-
zation of entanglement harvesting to extended or surface
systems and not pointlike systems, such as atomic probes or
two-level systems. It should be stressed that separated
electron systems (such as double-layer graphene) remain
strongly coupled by electron-electron interactions even
when they cannot exchange particles, provided that the
layer separation d is comparable to a characteristic distance

l between charge carriers within layers [35]. One of the
consequences of this remote coupling is a phenomenon
called Coulomb drag, in which an electric current passing
through one of the layers causes frictional charge flow in
the other layer and reveals many unpredicted features in
double-layer graphene, such as a larger Coulomb drag
when both layers are neutral [36]. Although this phenome-
non is considerable for double-layer graphene in a cavity,
when entanglement harvesting—due to the vacuum fluc-
tuations of the electromagnetic field cavity being studied—
time scales much smaller than the light-crossing time
between the layers are considered and the Coulomb drag
can be neglected, or (from the point of view of quantum
field theory) we can consider the Coulomb interaction
between the layers in the spacetime region where causality
is violated.
Thus, in this work we study entanglement harvesting

between two graphene sheets inside a cavity, where the
monopole detector is given by the natural interaction of the
electrons in graphene with the electromagnetic field. In
particular, the raising and lowering operators that act as the
detector are obtained through the Pauli matrices, which act
on the sublattice basis. When the initial states of electrons
are written as eigenstates of the free Hamiltonian, the effect
of the interaction is not trivial because these eigenstates are
written as superpositions of the sublattice basis. In turn,
when the initial states of the electrons are given in a defined
sublattice basis, the entanglement harvesting obtained is
identical to that obtained in Ref. [10], with the main
difference coming from the smearing of the detectors,
which in this work are represented by the graphene sheets.
This paper is organized as follows. In Sec. II we

introduce the formalism to compute the time-dependent
perturbation theory. In Sec. III, we present our results and
discussions for different initial states of electrons in both
graphene sheets, and make a comparison with the Unruh-
DeWitt detector. In Sec. IV we present our conclusions.
In Appendices A and B we present a detailed calculation
of the photon propagator and the second-order contribution
to the reduced quantum operator in time-dependent per-
turbation theory.

II. THE MODEL

The Hamiltonian of the double-layer graphene coupled
to the electromagnetic field of the cavity reads (see Fig. 1)

H ¼
X
i¼1;2

ðvFσipi − evFσiAiÞ þHF; ð1Þ

where i runs over the two electrons, each in different
graphene layers,2 which can be in either the valence
or conduction band, Ai is the potential vector acting on

2The index i should not be confused with the index notation of
a vector.
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each electron, and HF is the Hamiltonian of the electro-

magnetic field HF ¼ P
n;q;λℏωn;q;λa

†
nqλanqλ, where ωn;q ¼

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðπnL Þ2

q
and anqλða†nqλÞ are the creation and annihi-

lation operators of the cavity field that obeys the usual
commutation relations ½anqλ; a†n0q0λ0 � ¼ δn;n0δλ;λ0δqq0I [31].
The quantum electromagnetic field can be written in terms
of the creation and annihilation operators for each mode q
with frequency ωn;q and polarization λ as [37]

Aiðr; z; tÞ ¼
X

λ¼�;n;q

γffiffiffiffiffiffiffiffiffi
ωn;q

p sin

�
πndi
L

��
êqλanqλeiðq·r−ωn;qtÞ

þ êqλa
†
nqλe

−iðq·r−ωn;qtÞ
�
; ð2Þ

where êqλ are the polarization directions orthogonal to the
in-plane wave vector of the field q, L is the distance
between the two mirrors of the planar cavity, S is the area

of the graphene sample γ ¼
ffiffiffiffiffiffi
ℏ

ϵLS

q
, and n is the mode index

in the z direction. By considering one layer of graphene
placed at z ¼ d1 and the second one at z ¼ d2, the potential
vectors Ai are given by Eq. (2) with the replacements
z ¼ d1 and z ¼ d2, respectively. By considering H0 ¼P

i¼1;2vFσipi (the unperturbed Hamiltonian), a set of
eigenstates can be obtained in terms of the sublattice basis,

jki; sii ¼
eiki·rffiffiffiffiffiffi
2S

p ðjAii þ seiθi jBiiÞ; ð3Þ

where θi ¼ arctanðkyikxi
Þ is the angle of the wave vector with

respect the x axis, and s ¼ �1 for the conduction and
valence bands.3 The elementary electromagnetic field
excitations from the vacuum can be characterized by the
wave vector q and the helicity, which can be constructed
through the polarization vectors êx and êy by redefining
êþ ¼ 1ffiffi

2
p ðêx þ iêyÞ and ê− ¼ 1ffiffi

2
p ðêx − iêyÞ. In order to

express the dot product σiAi we have to consider a two-
dimensional space orthogonal to the z direction. By using
the circular polarization basis, the dot product reads4

σiAi ¼ ðσðiÞx êx þ σðiÞy êyÞðAþ
i êþ þ A−

i ê−Þ ¼
ffiffiffi
2

p X
λ¼�

σðiÞ−λA
ðiÞ
λ ;

ð4Þ

where λ ¼ �1 for both helicities, σðiÞλ ¼ 1
2
ðσðiÞx þ λiσðiÞy Þ,

and where

AðiÞ
λ ¼

X
n;q

γ sinðπndiL Þffiffiffiffiffiffiffiffiffi
ωn;q

p ðanqλeiðq·r−ωn;qtÞ þ a†nqλe
−iðq·r−ωn;qtÞÞ:

ð5Þ

In order to compute the coupling between the valence
and conduction bands with the circular polarized photons,
the following relations must be taken into account:
σþjk; Ai ¼ 0, σþjk; Bi ¼ jk; Ai, σ−jk; Ai ¼ jk; Bi,
σ−jk;Bi¼0, σþjk;þi¼ 1

2
eiηkðjk;þiþjk;−iÞ, σ−jk;þi¼

1
2
e−iηkðjk;þi− jk;−iÞ, σþjk;−i¼−1

2
eiηkðjk;þiþjk;−iÞ,

and σ−jk;−i ¼ 1
2
e−iηkðjk;þi − jk;−iÞ (see Ref. [31]).

From these relations we can see that this model is similar
to those used in entanglement harvesting from two detec-
tors [20], where σ� are the detector’s energy raising and
lowering operators. In this work, this two-level system is
the sublattice basis, which implies that one photon with a
definitive helicity is absorbed whenever a delocalized
electron jumps from the A sublattice to the B sublattice,
or a photon is emitted when an electron jumps from the B
sublattice to the A sublattice. But the stationary states in
graphene are given by the eigenvectors of the Hamiltonian
which can be written as superpositions in the sublattice
basis [see Eq. (3)]. This implies that the entanglement
harvesting of the two graphene layers is more subtle
because the absorbtion and emission of virtual photons
imply a superposition of valence and conduction bands
with definite incoming and outgoing momenta. In turn, the
system under study is a generalization of pointlike systems,
where the monopole detectors raise and lower the two
discrete energy levels. In the case of double-layer graphene,
the detector is given by the interaction σA, where A is now
evaluated in each graphene layer. The entanglement har-
vesting on surfaces implies at least two energy bands, and
the possible transitions are ruled by the energy conservation
given by the momentum of the electrons in both graphene
sheets. In the literature, entanglement harvesting is inves-
tigated using a pointlike approximation for the detector
model, which has no extension and interacts with the
field only at the spacetime point where it is placed. This

FIG. 1. The device setup of double-layer graphene inside a
planar microcavity.

3In the low-wavelength approximation, the wave vector can be
approximated at one of the two inequivalent symmetry points of
the Brillouin zone—theK orK0 valleys. For the sake of simplicity
we will consider one valley.

4We are assuming that the virtual photons interacting with the
graphene layers propagate normally with respect to these layers.
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assumption, which can be considered an approximation
for real detectors with finite size, results in ultraviolet
divergences. Several regularization schemes yield different
transition probabilities [38]. In the case of double-layer
graphene, this problem is not present due to the natural
spatial smearing of the interaction between the electro-
magnetic field and graphene sheets.
In order to compute the entanglement of electrons we

can work perturbatively to second order in the interacting

HamiltonianHint ¼
ffiffiffi
2

p P
λ¼�σ

ðiÞ
−λA

ðiÞ
λ , where the interaction

picture time evolution operator U for the full system is

U ¼ Uð0Þ þ Uð1Þ þUð2Þ þ � � � ; ð6Þ
where Uð0Þ ¼I, Uð1Þ ¼−i

R
t
−∞dt0Hintðt0Þ, Uð2Þ ¼−

R
t
−∞dt0 ×

Hintðt0Þ
R
t0
−∞dt00Hintðt00Þ, and HintðtÞ ¼ e−iðH0þHFÞtVðtÞ×

eiðH0þHFÞt. Then, given an initial density matrix ρ0, the
final density matrix ρT is hence given by

ρT ¼Uρ0U†

¼½IþUð1Þ þUð2Þ þ����ρ0½IþUð1Þ þUð2Þ þ����: ð7Þ

If we write ρT ¼ ρ0 þ ρð1ÞT þ ρð2ÞT þ…, then

ρð1ÞT ¼ Uð1Þρ0 þ ρ0Uð1Þ†;

ρð2ÞT ¼ Uð1Þρ0Uð1Þ† þ Uð2Þρ0 þ ρ0Uð2Þ†: ð8Þ

In order to rearrange the notation, we can write ρði;jÞT ¼
UðiÞρ0UðjÞ†, and therefore the time-evolved density matrix
can be written as a sum of terms of the form ρ ¼
ρ0 þ ρð1;0Þ þ ρð0;1Þ þ ρð2;0Þ þ ρð0;2Þ þ ρð1;1Þ þ � � � Because

we are going to analyze entanglement and correlation
harvesting of both graphene layers from the vacuum
fluctuations of the quantum electromagnetic field, we
can consider that the initial state of the electron-electron
quantum field system is

ρ0 ¼ jΩ0ihΩ0j ⊗ ρG; ð9Þ

where jΩ0i ¼ jΩðþÞ
0 ;Ωð−Þ

0 i is the vacuum state of the
electromagnetic field with circular polarization � and ρG
is the initial density matrix of the electron-electron system,
where without loss of generality we can consider that
both electrons are in the conduction band with momenta k1
and k2, respectively, or both electrons are in the sublattice
basis A with momenta k1 and k2, respectively. We are
interested in the partial state of the electrons in the graphene
sheet after the interaction with the quantum field, which is
given by

ρðtÞ ¼ TrAðUρ0U†Þ: ð10Þ
This means that the nondiagonal terms in the field produced
by time evolution will not be relevant for our purposes. In
particular, any contribution for which the parities of i and j
are different will give a zero contribution to the electrons in
graphene final states as long as the initial state of the field is
diagonal in the Fock basis, which is the case for the vacuum
or any incoherent superposition of Fock states such as a

thermal state. Then, the unique term to be computed is ρð2ÞT
and the trace over the field basis must be carried out. The
TrAðUð2Þρ0Þ ¼ − 1

2

R
t
−∞

R
t
−∞ dt1dt2TrA½Hintðt1ÞHintðt2Þρ0�

contribution in Eq. (8) can be written as

TrϕðUð2Þρ0Þ ¼ −ðevFÞ2
X

i;j¼1;2;λ;λ0

Z
d2r1

Z
d2r2

Z
t

−∞

Z
t

−∞
dt1dt2Δ

ði;jÞ
λ;λ0 ðr1; t1; r2; t2ÞσðiÞ−λðt1ÞσðjÞ−λ0 ðt2ÞρG; ð11Þ

where

Δði;jÞ
λ;λ0 ðr1; t1; r2; t2Þ ¼ hΩ0jAðiÞ

λ ðt1ÞAðjÞ
λ0 ðt2ÞjΩ0i ¼ δλλ0

X
n;q

γ2

ωn;q
sin

�
πndi
L

�
sin

�
πndj
L

�
eiðq·r1−ωn;qt1Þe−iðq·r2−ωn;qt2Þ ð12Þ

is the photon propagator, where we have used that AðiÞ
λ ðr; tÞ ¼ e

i
ℏH0FtAðiÞ

λ e−
i
ℏH0Ft and where σðiÞ−λðtÞ ¼ e

i
ℏH0StσðiÞ−λe

− i
ℏH0St. The

photon propagator can be computed exactly (see Appendix A) and the result reads Δði;jÞ
λ;λ0 ðΔt; jΔrjÞ ¼ δλλ0FijðjxjÞ, where

FijðjxjÞ ¼
γ2 sin

�
πdi
L

�
sin

�
πdj
L

�
sinh

�
πjxj
L

�

16πjxj sin
�
πðdi−dj−ijxjÞ

2L

�
sin

�
πðdiþdj−ijxjÞ

2L

�
sin

�
πðdi−djþijxjÞ

2L

�
sin

�
πðdiþdjþijxjÞ

2L

� ; ð13Þ

where jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2Δt2 − jΔrj2

p
, with Δt ¼ t1 − t2 and Δr ¼

r1 − r2. In the last equation, the infinite sum of modes has
been carried out, although it is known that realistic cavities are
not good cavities for the whole frequency spectrum; thus, an
improved version of themodel introduced in thiswork should

introduce a mode cutoff. Nevertheless, this cutoff would
imply that the usual light-matter interactionviolates causality.
Then, although the model is ideal and does not represent real
cavities, it is consistent with causality. In a similar way, the
other two contributions to ρ at second order read
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Trϕðρ0Uð2Þ†Þ ¼ −ðevFÞ2
X

i;j¼1;2;λ;λ0

Z
d2r1

Z
d2r2

Z
t

−∞

Z
t

−∞
dt1dt2Δ

ðijÞ
λ;λ0 ðr1; t1; r2; t2ÞρGσðiÞ†−λ ðt1ÞσðjÞ†−λ0 ðt2Þ ð14Þ

and

TrϕðUð1Þρ0Uð1Þ†Þ ¼ 2ðevFÞ2
X

i;j¼1;2;λ;λ0

Z
t

−∞

Z
t

−∞
dt1dt2Δ

ði;jÞ�
λ;λ0 ðr1; t1; r2; t2ÞσðiÞ−λðt1ÞρGσðjÞ†−λ ðt2Þ: ð15Þ

Collecting all of the terms, the reduced state reads

ρ ¼ TrϕðρðtÞÞ ¼ −ðevFÞ2
X

i;j¼1;2;λ

Z
t

−∞

Z
t

−∞
dt1dt2Δ

ðijÞ
λ;λ0 ðr1; t1; r2; t2Þ

×
h
σðiÞ−λðt1ÞσðjÞ−λðt2ÞρG þ ρGσ

ðiÞ†
−λ ðt1ÞσðjÞ†−λ ðt2Þ − 2σðiÞ−λðt1ÞρGσðjÞ†−λ ðt2Þ

i
: ð16Þ

In Fig. 2 the photon propagator in the cavity is shown as a
function of jxj for d1=L ¼ 0.4 and d2=L ¼ 0.6. As it can be
seen, the propagator does not vanish outside the light cone,
which implies the emergence of correlations between the
two graphene sheets at t < c=jd2 − d1j. This implies the
generation of a correlated state from an uncorrelated one
only by local interactions because the field vacuum is an
entangled state between spacelike separated regions. In turn,
the nonzero probability of an electron in the graphene sheet
to get excited outside the light cone is independent of the
remaining electron in the other graphene sheet, and thus no
information is carried over a spacelike distance. The main
difference between the result obtained for ρ in double-layer

graphene and the pointlike detectors is the spatial integration
over the constrained space in which the electrons can move.
When real detectors are modeled, a smeared function must
be introduced in the interaction which introduces the spatial
integration (see Ref. [39]). Both electrons are delocalized in
each graphene sheet and can become entangled by merely
letting them interact with the field vacuum state. The system
becomes entangled because they swap entanglement from
the vacuum rather than by interacting through the exchange
of real field quanta.
Finally, the matrix elements hk0

1; s
0
1;k

0
2; s

0
2jTrϕðUð2Þρ0Þj

k1; s1;k2; s2i read (see Appendix B)

hk0
1;s

0
1;k

0
2;s

0
2jρðtÞjk1;s1;k2;s2i¼−ðevFÞ2δðk1−k0

1þk2−k0
2Þ

X
i;j¼1;2;λ

Z
t

0

Z
t

0

dt1dt2F ijðk2−k0
2;ΔtÞ

× hs01;s02j
�
σðiÞ−λðt1ÞσðjÞ−λðt2ÞρG−2σðiÞ−λðt1ÞρGσðjÞ†−λ ðt2ÞþρGσ

ðiÞ†
−λ ðt1ÞσðjÞ†−λ ðt2Þ

�
js1;s2i; ð17Þ

where [see Eq. (B7)]

F ijðk2 − k0
2;ΔtÞ

¼
Z

d2Δre−iðk2−k0
2Þ·ΔrFij

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δt2 − jΔrj2

q �
ð18Þ

and js1; s2i ¼ js1i ⊗ js2i is an arbitrary basis, e.g., the
sublattice basis (in which case si ¼ A, B) or the valence-
conductionbandbasis (inwhichcasesi ¼ �).TheDiracdelta
δðk1 − k0

1 þ k2 − k0
2Þ implies momentum conservation and

ki (k0
i) is the initial (final) momentum of both electrons.

III. RESULTS AND DISCUSSIONS

In order to obtain the critical parameters in which
the reduced quantum state is entangled, we can expand
TrϕðρðtÞÞ in small values of t in Eq. (16),

FIG. 2. Photon cavity propagator as a function of space and
time.
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hk0
1;s

0
1;k

0
2;s

0
2jρðtÞjk1;s1;k2;s2i¼−ðevFtÞ2δðk1−k0

1þk2−k0
2Þ

×
X

i;j¼1;2;λ

F ijðk2−k0
2;0Þ×hs01;s02j

�
σðiÞ−λσ

ðjÞ
−λρG−2σðiÞ−λρGσ

ðjÞ
λ þρGσ

ðiÞ
λ σðjÞλ

�
js1;s2i; ð19Þ

where we have used that σðiÞ†−λ ¼ σðiÞλ . Considering as initial state ρG ¼ jA; AihA; Aj where both electrons in each graphene
sheet have nonzero amplitude in the A sublattice basis, the normalized reduced quantum state can be written in the basis
jA; Ai, jA;Bi, jB;Ai, and jB;Bi as

ρðtÞ ¼

2
666664

1 − 2ðevFÞ2t2½F 11 þ F 22� 0 0 2ðevFÞ2t2F 12

0 2ðevFÞ2t2F 22 −2ðevFÞ2t2F 12 0

0 −2ðevFÞ2t2F 12 2ðevFÞ2t2F 11 0

2ðevFÞ2t2F 12 0 0 0

3
777775
; ð20Þ

where F ij is a function of k2 − k0
2 and momentum

conservation is understood. This density matrix has the
form of the so-called X state [40] and is positive at leading
order in OððγevFÞ2Þ and all the perturbative corrections of
ρ to the final density matrix are traceless. Therefore, the
trace of the final state of ρ is always preserved, independent
of up to which order OðnÞ in the coupling constant the
corrections are taken into account.
The X states are those in which several matrix elements

are zero (ρ12 ¼ ρ13 ¼ ρ24 ¼ ρ34 ¼ 0) [41]. In turn, many
well-known and useful families of states have an X form,
including the Bell states, Werner states [42], and isotropic
states [41]. Recently, it was shown numerically that all two-
qubit mixed states are equivalent to X states by a single
entanglement-preserving unitary transformation, so con-
currence and other entanglement measures of such an X
state are equal to those of the original general state [43]. In

general, a density matrix is said to be inseparable or
entangled if it cannot be expressed as a convex sum of
local density matrices [42]. In the present case of a 2 × 2
system, a necessary and sufficient condition for insepa-
rability is that the negativity be positive, where the
negativity N is defined as the lowest eigenvalue of the
partial transpose of ρ [44–46]. The negativity is an
entanglement monotone that for two-qubit settings only
vanishes for separable states and is defined as

N ðρÞ ¼
X

α∈σ½ρΓ2 �

jαij − αi
2

; ð21Þ

where αi are the eigenvalues of the partial transpose of
ρΓ2 ¼ ðI ⊗ TÞρ with respect to the second system. This
partial transpose reads

ρΓ2 ¼ ðI ⊗ TÞρ ¼

2
6664
1 − 2ðevFtÞ2½F 11 þ F 22� 0 0 −2ðevFtÞ2F 12

0 2ðevFtÞ2F 22 2ðevFtÞ2F 12 0

0 2ðevFtÞ2F 12 2ðevFtÞ2F 11 0

−2ðevFtÞ2F 12 0 0 0

3
7775; ð22Þ

and the eigenvalues are

α1 ¼
1

2
− e2v2Ft

2ðF 11 þ F 22Þ þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e4t4v4F½ðF 11 þ F 22Þ2 þ 4F 2

12� − 4e2t2v2FðF 11 þ F 22Þ þ 1

q
;

α2 ¼
1

2
− e2v2Ft

2ðF 11 þ F 22Þ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e4t4v4F½ðF 11 þ F 22Þ2 þ 4F 2

12� − 4e2t2v2FðF 11 þ F 22Þ þ 1

q
;

α3 ¼ e2v2Ft
2
�
F 11 þ F 22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF 11 − F 22Þ2 þ 4F 2

12

q �
;

α4 ¼ e2v2Ft
2
�
F 11 þ F 22 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF 11 − F 22Þ2 þ 4F 2

12

q �
: ð23Þ

The first two eigenvalues cannot be negative because this would imply that 16e4t4v4FF
2
12 < 0. The only eigenvalue that

can be negative is α4. We shall therefore use the negativity as a measure of entanglement. The following expression is
obtained for the negativity:
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N ¼ e2v2Ft
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF 11 − F 22Þ2 þ 4F 2
12

q
− F 11 − F 22

�
:

ð24Þ

The last equation is the sum of a local term F 11 þ F 22

that depends on the properties of just one of the graphene
sheets and a nonlocal term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF 11 − F 22Þ2 þ 4F 2

12

p
that

depends on the properties of both graphene sheets. This
implies a direct competition between nonlocal, entangling
exchange and local noise, which implies that in order to
have entanglement between the graphene sheets the non-
local term must overcome the single-graphene sheet noise
excitations, as it occurs with atoms [2]. For the set of values
of d1=L, d2=L and Δk ¼ jk2 − k0

2j in which N is positive,
the double-layer graphene becomes entangled for times
smaller than the light-crossing time t < jd1−d2j

c . In order to
obtain analytical results in the case where Δk ¼ 0, instead
of computing the sum over n as done in Appendix A, we
can compute the integral over Δr. Then, F ij can be written
with the sum over n,

F ijðΔkÞ ¼
γ2

16π2
X∞
n¼1

sinðnπdiL Þ sinðnπdjL Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δk2 þ n2π2

L2

q ; ð25Þ

which for the case where Δk ¼ 0 reads

F ijðkÞ ¼
L
π
ln

�
e−iðdiþdjÞπL − 1

eidi
π
L − eidj

π
L

�
þ L3Δk2

4π3
½Li3ðe−iðd1−d2ÞπLÞ

þ Li3ðeiðd1−d2ÞπLÞ − Li3ðe−iðd1þd2ÞπLÞ
− Li3ðeiðd1þd2ÞπLÞ� þOðΔk4Þ; ð26Þ

where we have expanded 1ffiffiffiffiffiffiffiffiffiffiffiffi
k2þn2π2

L2

q ∼ L
nπ −

k2
2
ð LnπÞ3 þOðk4Þ. In

Figs. 3 and 4 the function F ij and the negativity are shown
as functions of the dimensionless parameters d1=L and
d2=L for Δk ¼ 0. As expected, the negativity is larger

when the layer separation is smaller at lowest order in t. An
electron in one graphene layer has a nonzero probability of
getting excited outside the light cone, but this probability is
completely independent of the electron in the other gra-
phene layer, so no information is being carried over a
spacelike distance.
In turn, by numerically computing the integral in Eq. (18)

forΔt ¼ 0 andΔk ≠ 0 for different sets of values ofd1=L and
d2=L, the negativity estimator shows a critical value of
ΔkL ∼ 3.2 where the negativity changes sign (see Fig. 5).
By considering L ¼ 500 nm as a normal microcavity, the
induced gap is ϵG ∼ 6 × 10−15 eV which is smaller than
typical induced gaps in normal semiconductors [47].
Following the same procedure, we can consider that the initial
quantum state for the two electrons in each graphene sheet is
given by eigenstates of the Hamiltonian which can be written
as a superposition of the sublattice basis. This implies that the
detector (which acts on the sublattice basis) will mix the
eigenstates of the Hamiltonian. For simplicity, we can write
the initial state as ρG ¼ jþ;þihþ;þj (see Fig. 6), and thus

hs0jσλjsi ¼
1

2
½seiθð1þ λÞ þ s0e−iθ0 ð1 − λÞ�; ð27Þ

FIG. 3. The function F ij as a function of the relative distance of
both graphene sheets with respect to the cavity.

FIG. 4. The negativity measure as a function of each graphene
layer’s relative distance with respect the cavity.

FIG. 5. The negativity as a function of the momentum transfer
for different relative distances d1=L and d2=L.
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where the basis jsi is j�i. After a lengthy calculation, hs01; s02jðσðiÞ−λσðjÞ−λρG − 2σðiÞ−λρGσ
ðjÞ
λ þ ρGσ

ðiÞ
λ σðjÞλ Þjs1; s2i can be written as

hs01; s02j
�
σðiÞ−λσ

ðjÞ
−λρG − 2σðiÞ−λρGσ

ðjÞ
λ þ ρGσ

ðiÞ
λ σðjÞλ

�
js1; s2i ¼ a11F 11 þ a22F 22 þ a12F 12; ð28Þ

where a11 ¼ −δ1s0
2
δ1s2e

iðθ1−θ01Þð1þ s1s01Þ, a22 ¼ −δ1s1δ1s01e
iðθ1−θ01Þð1þ s2s02Þ and

a12 ¼ −eiðθ1−θ02Þðδ1s0
2
δ1s1 þ δ1s0

1
δ1s2s20s1Þ − eiðθ2−θ01Þðδ1s0

1
δ1s2 þ δ1s0

2
δ1s1s2s

0
1Þ

þ e−iðθ01þθ0
2
Þðδ1s0

1
δ1s0

2
þ δ1s1δ1s2s

0
1s

0
2Þ þ eiðθ1þθ2Þðδ1s1δ1s2 þ s1s2δ1s0

1
δ1s0

2
Þ; ð29Þ

where θi (θ0i) is the initial (final) angle of the wave vector ki (k0
i) that appears in the phase in Eq. (3). The normalized reduced

quantum operator reads [see Eq. (8) in Ref. [15]]

ρ ¼

2
666664

1þ ðevFtÞ2½A −D2 −D1� −ðevFtÞ2Bþ −ðevFtÞ2B− ðevFtÞ2C
ðevFtÞ2Bþ ðevFtÞ2½D2 − A� ðevFtÞ2E 0

ðevFtÞ2B− ðevFtÞ2E ðevFtÞ2½D1 − A� 0

ðevFtÞ2C 0 0 ðevFtÞ2A

3
777775
; ð30Þ

where

A ¼ e−iðθ01þθ0
2
Þ
h
F 12ð−eiðθ1þθ0

1
Þ − eiðθ2þθ0

2
Þ þ eiðθ01þθ0

2
þθ1þθ2Þ þ 1Þ − eiðθ02þθ1ÞðF 11 þ F 22Þ

i
;

B� ¼ 1

2
F 12e−iðθ

0
1
þθ0

2
Þð∓ 1þ eiðθ01þθ1ÞÞð�1þ eiðθ02þθ2ÞÞ;

C ¼ 1

2
F 12ðe−iðθ01þθ0

2
Þ þ eiðθ1þθ2ÞÞ;

Di ¼ −F iie−iðθ
0
1
−θ1Þ;

E ¼ −
1

2
F 12ðeiðθ1−θ02Þ þ eiðθ2−θ01ÞÞ: ð31Þ

From Eq. (30), the reduced operator is no longer an X
state due to the matrix elements B�; nevertheless, for
specific choices of initial and final angles of the wave
vectors, different kinds of entangled matrices can be
obtained. For B� ¼ 0, the angles must obey θ01 þ θ1 ¼ 0
and θ02 þ θ2 ¼ 0 or θ01 þ θ1 ¼ π and θ02 þ θ2 ¼ π. In the
first case, A does not depend on F 12 and the matrix is
identical to Eq. (20), but in the second case, eiðθ1þθ0

1
Þ þ

eiðθ2þθ0
2
Þ − eiðθ01þθ0

2
þθ1þθ2Þ − 1 does not vanish and F 12

appears in the diagonal elements. In turn, when
θ1 þ θ01 ¼ θ2 þ θ02 − π, E ¼ 0 and the density matrix can

no longer be related to all pure and mixed states by an
entanglement-preserving unitary transformation such that
the transformed state has the same entanglement as the
input state, a property which is supported by strong
numerical evidence [48]. The correlated angles at which
the electrons in both layers scatter is related to the broken
symmetry in double-layer graphene shown in Ref. [36].
The matrix-element dependence of ρ with the initial and
final angles implies that the nonlocal correlations are
sensitive to the relative orientation of the electrons.
An operational two-party entanglement-harvesting pro-

tocol to detect this nonlocal correlation in double-layer
graphene involves applying an external voltage on both
layers, which can vary the carrier concentration in the
material [49]. It is well known that graphene’s density of
states at the neutral point vanishes, which implies that there
are no states to occupy and hence there are no carriers
which could contribute to the electronic transport. An usual
procedure to change the charge concentration is to use
graphene as the second parallel plate of a capacitor, where
the first plate is SiO2 and a back-gate voltage is applied

FIG. 6. Initial and final angles of both conduction electrons in
each graphene sheet.
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perpendicular to the graphene sheet which creates an
electrostatic potential drop between the sample and the
gate electrode and shifts the Fermi level [50]. The distance
between graphene layers should be an order of magnitude
larger than the capacitor in order to not change the
boundary conditions for the electromagnetic field used
in the calculations [51]. By switching the back-gate voltage
on and off in one graphene layer in the interval ½0; T1� and
performing the same procedure in the second layer in the
interval ½T2; T 0

2� (where T 0
2 − T2 ¼ T1 and the initial time at

which the second back-gate voltage is turned on obeys
T2 <

d1−d2
c ) and by measuring the current in each graphene

layer [52], it is possible to detect nonlocal correlation
even if both electrons do not exchange real photons.5 An
improvement to the setup is to introduce a dielectric in
the whole cavity that changes the refractive index and
the velocity of light in order to decrease the time
intervals at which the back-gate voltages are switched
on and off [51].
Summing up, we have presented a new physical effect of

vacuum fluctuations which is associated with quantum
nonlocality in double-layer graphene, which allows to
study relativistic quantum effects in the laboratory. It
should be stressed that this effect stands in contrast to
other vacuum phenomena, such as the Lamb shift or the
Casimir effect [54], which to some extent can be emulated
by classical stochastic local noise.

IV. CONCLUSIONS

In this work we have performed a detailed study of the
phenomenon of entanglement harvesting from the vacuum
state of the electromagnetic field in double-layer graphene
for different initial states for the electrons. By considering
that each graphene sheet interacts with the vacuum electro-
magnetic field state and by partially tracing the degrees of
freedom of this field, the reduced quantum state of the
electrons in different layers gets entangled for times smaller
than the time of flight of light between the sheets. By
using time-dependent perturbation theory up to second
order, the negativity measure of entanglement has been
computed. We have exhaustively analyzed the case in
which both electrons are in one of the pseudospin states,
showing that for time scales smaller than the light-crossing
time between both layers, both electrons are correlated due
to the tails of the virtual photon propagator. In turn, we have
shown that when both electrons are in the conduction
band, the reduced density matrix reduces to an X state
for θ01 þ θ1 ¼ 0 and θ02 þ θ2 ¼ 0 or θ01 þ θ1 ¼ π and
θ02 þ θ2 ¼ π, and for general angles the bipartite quantum

state becomes highly entangled with broken electron-hole
symmetry.
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APPENDIX A: PHOTON PROPAGATOR

In order to compute the photon propagator of Eq. (12),

hΩjTAðiÞ
λ ðr1; t1ÞAðjÞ

λ0 ðr2; t2ÞjΩi

¼ δλλ0
X∞
n¼1

γ2 sin

�
πndi
L

�
sin

�
πndj
L

�

×
Z

d2q
ð2πÞ2

eiqðr1−r2Þeiωn;qðt2−t1Þ

ωn;q
; ðA1Þ

we can apply the Schwinger time representation procedure
by introducing a new variable of integration q0,

eiωn;qðt2−t1Þ

ωn;q
¼

Z
∞

−∞

dq0
2πi

2eiq0ðt2−t1Þ

q20 − q2 − ðnπL Þ2
: ðA2Þ

The q0 integration can be computed using the residue
theorem, and the contour contains the q0 real line and the
semicircle of radius R, where R → ∞ and where the
contour encloses the pole located at q0 ¼ ωn;q ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðnπL Þ2

q
. Then, we can apply the Wick rotation to

the Euclidean space by defining q0 ¼ ip0 and q ¼ p; thus,
d2qdq0 ¼ id3p and q20 − q · q ¼ −p2

0 − p2 ¼ −p2 and
Eq. (A1) becomes

Z
d2q
ð2πÞ2

Z
∞

−∞

dq0
2πi

2eiqðr1−r2Þe−iq0ðt1−t2Þ

q20 − q2 − ðnπL Þ2

→ −
Z

d3p
ð2πÞ3

2eip·x

p2 þ ðnπL Þ2
; ðA3Þ

where x ¼ ðΔt;−ΔrÞ. The last integral can be
computed by considering spherical coordinates d3p ¼
p2dp sin θpdθpdϕp and by writing p · x ¼ pjxj cos θp,
where θp is the angle between the momentum p and

the vector x, jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2Δt2 − jΔrj2

p
, and Δr ¼ r1 − r2.

Computing the integrals over θp and ϕp, we obtain

5The two voltages are switched on for the same amount of time
but with a time delay between them, which implies that the
worldsheet of the second graphene layer lies outside the light
cone of the worldsheet of the first graphene layer (see Fig. 1 of
Ref. [53]).
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Δði;jÞ
λ ðΔt;ΔrÞ ¼ −

δλλ0

π2jxj
X∞
n¼1

γ2 sin

�
πndi
L

�
sin

�
πndj
L

�Z
∞

0

pdp sinðpjxjÞ
p2 þ ðnπL Þ2

: ðA4Þ

Finally, the integral over p reads

Z
∞

0

pdp sinðpjxjÞ
p2 þ ðnπL Þ2

¼ −iθðx2Þ 1

4πðx2 − iϵÞ12 e
−inπL

ffiffiffiffiffiffiffiffi
x2−iϵ

p
þ θð−x2Þ 1

4πð−x2 þ iϵÞ12 e
−nπ

L

ffiffiffiffiffiffiffiffiffiffiffi
−x2þiϵ

p
; ðA5Þ

where we have used Eq. (27) of Ref. [55], and the sum over n reads

Δði;jÞ
λ ðjxjÞ ¼ −δλλ0

γ2

2πjxj
X∞
n¼1

sin

�
nπdi
L

�
sin

�
nπdj
L

�
e−nπ

jxj
L ¼

Δði;jÞ
λ ðjxjÞ ¼ −

δλλ0

16πjxj
γ2 sinðπdiL Þ sinð

πdj
L Þ sinhðπjxjL Þ

sin
�
πðdi−dj−ijxjÞ

2L

�
sin

�
πðdiþdj−ijxjÞ

2L

�
sin

�
πðdi−djþijxjÞ

2L

�
sin

�
πðdiþdjþijxjÞ

2L

� ; ðA6Þ

which is the desired result for the photon propagator in the planar microcavity.

APPENDIX B: SECOND ORDER CONTRIBUTION TO THE REDUCED QUANTUM OPERATOR

In order to obtain Eq. (16) we must compute the matrix elements of the reduced density matrix
ρðtÞ ¼ TrϕðUð2Þρ0 þ Uð1ÞρUð1Þ† þ ρ0Uð2Þ†Þ, that is, hk0

1; s
0
1;k

0
2; s

0
2jρðtÞjk1; s1;k2; s2i, where k0

i; s
0
i are the labels for

the wave vector and s ¼ �1 is the band index. It should be noted that these matrix elements do not depend on the photon
quantum states due to the partial trace over these degrees of freedom. For simplicity, we will compute the matrix elements of
the first term of ρðtÞ, that is, hk0

1; s
0
1;k

0
2; s

0
2jTrϕðUð2Þρ0Þjk1; s1;k2; s2i. We can write TrϕðUð2Þρ0Þ as

TrϕðUð2Þρ0Þ ¼ −ðevFÞ2
X

i;j¼1;2;λ;λ0

Z
t

0

Z
t

0

dt1dt2 × Trϕ
h
eiðH0þHFÞt1σðiÞ−λA

ðiÞ
λ e−iðH0þHFÞt1eiðH0þHFÞt2σðjÞ−λ0A

ðjÞ
λ0 e

−iðH0þHFÞt2ρG
i
;

ðB1Þ

with ρ0 ¼ jΩihΩjρG, where ρG is the initial density operator of the two-electron system, ρG ¼ jkð0Þ
1 ; sð0Þ1 ;kð0Þ

2 ; sð0Þ2 i
hkð0Þ

1 ; sð0Þ1 ;kð0Þ
2 ; sð0Þ2 j, where kð0Þ

i and sð0Þi are the initial wave vectors and valence/conduction (or sublattice) indices. The last
equation can be written as

TrϕðUð2Þρ0Þ ¼ −ðevFÞ2
X

i;j¼1;2;λ;λ0

Z
t

0

Z
t

0

dt1dt2hΩjAðiÞ
λ ðt1ÞAðjÞ

λ0 ðt2ÞjΩiσðiÞ−λðt1ÞσðjÞ−λ0 ðt2ÞρG; ðB2Þ

where σðiÞ−λðt1Þ ¼ eiH0t1σðiÞ−λe
−iH0t1 , σðjÞ−λ0 ðt2Þ ¼ eiH0t2σðjÞ−λ0e

−iH0t2 , AðiÞ
λ ðt1Þ ¼ eiHFt1AðiÞ

λ e−iHFt1 , and AðjÞ
λ0 ðt2Þ ¼ eiHFt2AðjÞ

λ0 e
−iHFt2 .

We then apply hk0
1; s

0
1;k

0
2; s

0
2j and jk1; s1;k2; s2i in the coordinate representation,

hk0
1; s

0
1;k

0
2; s

0
2jTrϕðUð2Þρ0Þjk1; s1;k2; s2i ¼ −ðevFÞ2

X
i;j¼1;2;λ;λ0

Z
d2r1

Z
d2r2

Z
t

0

Z
t

0

dt1dt2eik1·r1eik2·r2e−ik
0
1·r1e−ik

0
2·r2

× hΩjAðiÞ
λ ðr1; di; t1ÞAðjÞ

λ0 ðr2; dj; t2ÞjΩihs01; s02jσðiÞ−λðt1ÞσðjÞ−λ0 ðt2ÞρGjs1; s2i: ðB3Þ

In Appendix A it was shown that hΩjTAðiÞ
λ ðr1; t1ÞAðjÞ

λ0 ðr2; t2ÞjΩi ¼ Δði;jÞ
λ ðjxjÞ ¼ δλλ0FijðjxjÞ, where jxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δt2 − jΔrj2

p
.

Then,

hk0
1; s

0
1;k

0
2; s

0
2jTrϕðUð2Þρ0Þjk1; s1;k2; s2i

¼ −ðevFÞ2
X

i;j¼1;2;λ

Z
t

0

Z
t

0

Z
d2r1

Z
d2r2dt1dt2e

iðk1−k0
1Þ·r1eiðk2−k0

2Þ·r2FijðjxjÞhs01; s02jσðiÞ−λðt1ÞσðjÞ−λðt2ÞρGjs1; s2i: ðB4Þ
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By performing the change of variables Δr ¼ r1 − r2, we have

hk0
1; s

0
1;k

0
2; s

0
2jTrϕðUð2Þρ0Þjk1; s1;k2; s2i ¼ −ðevFÞ2

X
i;j¼1;2;λ

Z
t

0

Z
t

0

dt1dt2

Z
d2r1

Z
d2r2e

iðk1−k0
1þk2−k0

2Þ·r1e−iðk2−k0
2Þ·Δr

× Fij

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δt2 − jΔrj2

q �
hs01; s02jσðiÞ−λðt1ÞσðjÞ−λðt2ÞρGjs1; s2i: ðB5Þ

Integrating over r1, we have

hk0
1; s

0
1;k

0
2; s

0
2jTrϕðUð2Þρ0Þjk1; s1;k2; s2i

¼ −ðevFÞ2δðk1 − k0
1 þ k2 − k0

2Þ
X

i;j¼1;2;λ

Z
t

0

Z
t

0

dt1dt2hs01; s02jσðiÞ−λðt1ÞσðjÞ−λðt2ÞρGjs1; s2iF ijðk2 − k0
2Þ; ðB6Þ

where F ijðk2 − k0
2Þ is the Fourier transform of Fijð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δt2 − jΔrj2

p
Þ,

F ijðk2 − k0
2;ΔtÞ ¼

Z
d2Δre−iðk2−k0

2Þ·ΔrFij

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δt2 − jΔrj2

q �
: ðB7Þ

An identical procedure can be applied to hk0
1; s

0
1;k

0
2; s

0
2jTrϕðUð1Þρ0Uð1Þ†Þjk1; s1;k2; s2i and hk0

1; s
0
1;k

0
2; s

0
2jTrϕðρ0Uð2Þ†Þ

jk1; s1;k2; s2i, and the results are shown in Eqs. (14) and (15).

[1] A. Valentini, Phys. Lett. A 153, 321 (1991).
[2] B. Reznik, A. Retzker, and J. Silman, Phys. Rev. A 71,

042104 (2005).
[3] A. Pozas-Kerstjens and E. Martin-Martinez, Phys. Rev. D

92, 064042 (2015).
[4] R. H. Jonsson, E. Martin-Martinez, and A. Kempf, Phys.

Rev. Lett. 114, 110505 (2015).
[5] S. W. Hawking, M. J. Perry, and A. Strominger, Phys. Rev.

Lett. 116, 231301 (2016).
[6] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, J. High

Energy Phys. 02 (2013) 62.
[7] M. Hotta, Phys. Rev. D 78, 045006 (2008).
[8] J. S. Ardenghi, Phys. Rev. D 91, 085006 (2015).
[9] J. S. Ardenghi, Int. J. Mod. Phys. A 33, 1850081 (2018).

[10] B. Reznik, Found. Phys. 33, 167 (2003).
[11] E. Martin-Martinez, E. G. Brown, W. Donnelly, and A.

Kempf, Phys. Rev. A 88, 052310 (2013).
[12] G. Salton, R. B. Mann, and N. C. Menicucci, New J. Phys.

17, 035001 (2015).
[13] G. V. Steeg and N. C. Menicucci, Phys. Rev. D 79, 044027

(2009).
[14] E. Martin-Martinez and N. C. Menicucci, Classical Quan-

tum Gravity 29, 224003 (2012).
[15] E. Martin-Martinez, A. R. H. Smith, and D. R. Terno, Phys.

Rev. D 93, 044001 (2016).
[16] B. S. DeWitt, S. W. Hawking, and W. Israel, General

Relativity: An Einstein Centenary Survey (Cambridge
University Press, Cambridge, England, 1979).

[17] S. J. Olson and T. C. Ralph, Phys. Rev. Lett. 106, 110404
(2011).

[18] S. J. Olson and T. C. Ralph, Phys. Rev. A 85, 012306
(2012).

[19] C. Sabin, B. Peropadre, M. del Rey, and E. Martin-Martinez,
Phys. Rev. Lett. 109, 033602 (2012).

[20] A. Pozas-Kerstjens and E. Martin-Martinez, Phys. Rev. D
94, 064074 (2016).

[21] M. O. Scully andM. S. Zubairy,QuantumOptics (Cambridge
University Press, Cambridge, England, 1997).

[22] E. Martin-Martinez, Phys. Rev. D 92, 104019 (2015).
[23] A. Geim, Science 324, 1530 (2009).
[24] F. Escudero, J. S. Ardenghi, L. Sourrouille, and P. Jasen,

J. Magn. Magn. Mater. 429, 294 (2017).
[25] F. Escudero, J. S. Ardenghi, and P. Jasen, J. Phys. Condens.

Matter 30, 275803 (2018).
[26] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev.

Mod. Phys. 83, 407 (2011).
[27] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.

Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A.
Firsov, Nature (London) 438, 197 (2005).

[28] A. H.CastroNeto,F.Guinea,N.M. R.Peres,K. S.Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[29] C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
[30] I. V. Fialkovsky, V. N. Marachevsky, and D. V. Vassilevich,

Phys. Rev. B 84, 035446 (2011).
[31] O. V. Kibis, Phys. Rev. B 81, 165433 (2010).
[32] T. C. H. Liew, I. A. Shelykh, and G. Malpuech, Physica

(Amsterdam) 43E, 1543 (2011).
[33] T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang,

P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and
F. Koppensm, Nat. Mater. 16, 182 (2017).

ENTANGLEMENT HARVESTING IN DOUBLE-LAYER … PHYS. REV. D 98, 045006 (2018)

045006-11

https://doi.org/10.1016/0375-9601(91)90952-5
https://doi.org/10.1103/PhysRevA.71.042104
https://doi.org/10.1103/PhysRevA.71.042104
https://doi.org/10.1103/PhysRevD.92.064042
https://doi.org/10.1103/PhysRevD.92.064042
https://doi.org/10.1103/PhysRevLett.114.110505
https://doi.org/10.1103/PhysRevLett.114.110505
https://doi.org/10.1103/PhysRevLett.116.231301
https://doi.org/10.1103/PhysRevLett.116.231301
https://doi.org/10.1007/JHEP02(2013)062
https://doi.org/10.1007/JHEP02(2013)062
https://doi.org/10.1103/PhysRevD.78.045006
https://doi.org/10.1103/PhysRevD.91.085006
https://doi.org/10.1142/S0217751X18500811
https://doi.org/10.1023/A:1022875910744
https://doi.org/10.1103/PhysRevA.88.052310
https://doi.org/10.1088/1367-2630/17/3/035001
https://doi.org/10.1088/1367-2630/17/3/035001
https://doi.org/10.1103/PhysRevD.79.044027
https://doi.org/10.1103/PhysRevD.79.044027
https://doi.org/10.1088/0264-9381/29/22/224003
https://doi.org/10.1088/0264-9381/29/22/224003
https://doi.org/10.1103/PhysRevD.93.044001
https://doi.org/10.1103/PhysRevD.93.044001
https://doi.org/10.1103/PhysRevLett.106.110404
https://doi.org/10.1103/PhysRevLett.106.110404
https://doi.org/10.1103/PhysRevA.85.012306
https://doi.org/10.1103/PhysRevA.85.012306
https://doi.org/10.1103/PhysRevLett.109.033602
https://doi.org/10.1103/PhysRevD.94.064074
https://doi.org/10.1103/PhysRevD.94.064074
https://doi.org/10.1103/PhysRevD.92.104019
https://doi.org/10.1126/science.1158877
https://doi.org/10.1016/j.jmmm.2016.12.032
https://doi.org/10.1088/1361-648X/aac7ea
https://doi.org/10.1088/1361-648X/aac7ea
https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1038/nature04233
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.80.1337
https://doi.org/10.1103/PhysRevB.84.035446
https://doi.org/10.1103/PhysRevB.81.165433
https://doi.org/10.1016/j.physe.2011.04.003
https://doi.org/10.1016/j.physe.2011.04.003
https://doi.org/10.1038/nmat4792


[34] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,
Quantum Electrodynamics (Pergamon, New York, 1982).

[35] T Stauber and G. Gomez-Santos, New J. Phys. 14, 105018
(2012).

[36] R. V. Gorbachev, A. K. Geim, M. I. Katsnelson, K. S.
Novoselov, T. Tudorovskiy, I. V. Grigorieva, A. H.
MacDonald, S. V. Morozov, K. Watanabe, T. Taniguchi,
and L. A. Ponomarenko, Nat. Phys. 8, 896 (2012).

[37] O. V. Kibis, O. Kyriienko, and I. A. Shelykh, Phys. Rev. B
87, 245437 (2013).

[38] S. Schlicht, Classical Quantum Gravity 21, 4647 (2004).
[39] E. Martın-Martınez, M. Montero, and M. del Rey, Phys.

Rev. D 87, 064038 (2013).
[40] M. Ali, A. R. P. Rau, and G. Alber, Phys. Rev. A 81, 042105

(2010).
[41] T. Yu and J. H. Eberly, Quantum Inf. Comput. 7, 459 (2007).
[42] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
[43] P. E. M. F. Mendonca, M. A. Marchiolli, and D. Galetti,

Ann. Phys. (Amsterdam) 351, 79 (2014).
[44] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[45] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett.

A 223, 1 (1996).

[46] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314
(2002).

[47] O. V. Kibis, K. B. Arnardottir, and I. A. Shelykh, Phys. Rev.
A 90, 055802 (2014).

[48] S. R. Hedemann, arXiv:1310.7038.
[49] M. F. Craciun, S. Russo, M. Yamamoto, and S. Tarucha,

Nano Today 6, 42 (2011).
[50] A. Das, B. Chakraborty, and K. Sood, Graphene and Its

Fascinating Attributes (World Scientific, Singapore, 2011),
Chap. 7.

[51] S. M. Badalyan and F. M. Peeters, Phys. Rev. B 85, 195444
(2012).

[52] K. Tsukagoshi, H. Miyazaki, S.-L. Li, A. Kumatani,
H. Hiura, and A. Kanda, Graphene and its Fascinating
Attributes (World Scientific, Singapore, 2011), p. 179.

[53] E. Martın-Martınez and B. C. Sanders, New J. Phys. 18,
043031 (2016).

[54] M. B. Farias, C. D. Fosco, F. C. Lombardo, and F. D.
Mazzitelli, Phys. Rev. D 95, 065012 (2017).

[55] H. Zhang, K. Feng, S. Qiu, A. Zhao, and X. Li, Chin.
Phys. C 34, 1576 (2010).

JUAN SEBASTIÁN ARDENGHI PHYS. REV. D 98, 045006 (2018)

045006-12

https://doi.org/10.1088/1367-2630/14/10/105018
https://doi.org/10.1088/1367-2630/14/10/105018
https://doi.org/10.1038/nphys2441
https://doi.org/10.1103/PhysRevB.87.245437
https://doi.org/10.1103/PhysRevB.87.245437
https://doi.org/10.1088/0264-9381/21/19/011
https://doi.org/10.1103/PhysRevD.87.064038
https://doi.org/10.1103/PhysRevD.87.064038
https://doi.org/10.1103/PhysRevA.81.042105
https://doi.org/10.1103/PhysRevA.81.042105
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1016/j.aop.2014.08.017
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.90.055802
https://doi.org/10.1103/PhysRevA.90.055802
http://arXiv.org/abs/1310.7038
https://doi.org/10.1016/j.nantod.2010.12.001
https://doi.org/10.1103/PhysRevB.85.195444
https://doi.org/10.1103/PhysRevB.85.195444
https://doi.org/10.1088/1367-2630/18/4/043031
https://doi.org/10.1088/1367-2630/18/4/043031
https://doi.org/10.1103/PhysRevD.95.065012
https://doi.org/10.1088/1674-1137/34/10/005
https://doi.org/10.1088/1674-1137/34/10/005

