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Abstract
Starting from the zeromodes of theDirac-Weyl equation for Landau levels in the symmetric gauge, we
propose a novelmechanism to construct the eigenvalues and its eigenfunctions.We show that the
problemmay be addressedwithout numerical calculation and only solving theDirac-Weyl equation
for the zeromodes. Specifically, the eigenstates associated to the negativemagneticfield configurations
may be constructed from the zeromodewith positive chirality. In addition, we obtain that the
eigenstates associated to the positivemagneticfield configurationsmay be constructed from the zero
modewith negative chirality. Finally, we show that ourmechanismmay be used to obtain the
eigenvalues and eigenfunctions of theHamiltonian corresponding to bilayer graphene system.

1. Introduction

The problemof a single electron confined to two dimensions and exposed to amagnetic fieldwas explored by
Darwin [1], Fock [2] and Landau [3]. They show that the electron kinetic energy is quantized, being the discrete
kinetic energy levels ‘the Landau levels’.

In particular, the Landau levels become relevant in theQuantumHall problem [4–14]. Indeed, the integral
QuantumHall effect is a direct consequence of the Landau level formation. In addition the explanation for the
fractional quantumHall effect, arises because the lowest Landau level splits into Landau-like energy levels
[15–18].

In addition, deals with landau levels in planar geometry and in the symmetric gauge, acquire special
significance, since the physics of the FQHEwould not have revealed itself in a gauge other than the symmetric
gauge of the planar geometry [15, 16].

On the other hand, the experimental realization ofmonolayer graphene films [19–21] has allowed explore
the physics of two-dimensional (2D)Dirac-Weyl fermions. This allows relativistic physics to be explored in a
solid state system and physical phenomena such as theKlein–Gordon paradox, the anomalous Landau-Hall
effect or nanoelectricmaterials [21–23]may be addressed. Also, the study ofDirac-Wely electrons inmagnetic
fields has receivedmuch attention in the resent time in order tofind away for confining the charges [24–33].

In this note, we care to study the Landau levels for theDirac-Weyl equation in the symmetric gauge. This
problemwas, previously, studied numerically in the Landau gauge (see for review see [34]). In particular, in
reference [35] exact analytical solutions for the bound states of theDirac-Wely electron inmagnetic fields with
various q-parameters under an electrostatic potential were obtained. In addition, the Landau levels in the
symmetric gaugewere analyzed numerically for the nonrelativistic case [36, 37].

Here, we show that the problemmay be addressedwithout numerically calculation, and only solving the
Dirac-Weyl equation for the zeromodes. Specifically, wewill develop a formalism to construct the eigenvalues
and its eigenfunctions of theDirac-Weyl equation for the landau problem in the symmetric gauge. This
formalism is similar to thewell know ladder operatorsmechanism,which is used to obtain the Landau levels for
the SchrödingerHamiltonian [8, 38, 39] and allows us to generate all the eigenstates of theHamiltonian from
any one energy eigenstate. The novelty, here, is to develop amechanismof ladder operators forDirac-Weyl
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equation, which allows us obtain all Landau levels and their respective eigenfunctions. Aswewill see our
formalism is not only applicable toDirac-WeylHamiltonian, which govern the dynamics ofmonolayer
graphene, but also to bilayer andmultilayer grapheneHamiltonians. Specifically, wewill show that, the
eigenstates associated to the negativemagnetic field configurationsmay be constructed from the zeromodewith
positive chirality. On the other hand, we obtain that the eigenstates associated to the positivemagnetic field
configurationsmay be constructed from the zeromodewith negative chirality. In addition, we discuss how to
generalize ourmechanism tomore complex problems such as the study of bilayer graphene system [40–46].

2. The framework and theAharonov-Casher theorem

Let us start by considering a (2+1)-dimensional Dirac-Weylmodel whoseHamiltonian is described by

H p p p , 1i
i

1
1

2
2s s s= = +( ) ( )

Here, theσ i (i=1, 2) are 2×2 Paulimatrices, i.e.

i
i

0 1
1 0

, 0
0

21 2s s= = -( )( ) ( )

and pi=−i∂i is the two-dimensionalmomentumoperator. Themassless Dirac-Weyl equation in (2+1)
dimensions is

p x y t i x y t, , , , 3i
i ts F = ¶ F( ) ( ) ( )

Here,Φ(x, y, t) is the two-component spinor

, 4a b
Tf fF = ( ) ( )

wherefa andfb represent the envelope functions associatedwith the probability amplitudes. Since, we are
interested in stationary states, it is natural to propose a solution of the form

x y t e x y, , , , 5iEtF = Y-( ) ( ) ( )

then, the time-independentDirac-Weyl equation is

p x y E x y, , 6i
is Y = Y( ) ( ) ( )

In the presences of a perpendicularmagnetic field to the (x, y)-plane, we replace themomentumoperator pi by
the covariant derivative, defined asDi=−i∂i+Ai (i=1, 2), whereAi are components of the vector potential,

B A A 7x y y x= ¶ - ¶ ( )

Thus, the equation (6) becomes,

D x y E x y, , 8i
is Y = Y( ) ( ) ( )

Wecan develop this equation to get,

D iD
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0
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whereψa andψb are the components of the spinorΨ (i.e. ,a b
Ty yY = ( ) ). From this equationwe canwrite the

two coupled equations for the componentsψa andψb

D iD E 10b b a1 2y y y- = ( )

D iD E 11a a b1 2y y y+ = ( )
Here, we are interested tofind the the eigenvalues and eigenstates corresponding to equation (8). In order tofind
these one needs to specify a gauge for the vector potential. Here, wewill use a symmetric gauge,

By BxA
1

2
, , 0 12= -( ) ( )

Then, equations (10) and (11) becomes,

i z
B

E
2

13x y b ay y- ¶ - ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )

i z
B

E
2

14x y a by y- ¶ + ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )†

where z=ix+y and z†=−ix+y. The simplest solution of the equations (13) and (14) are the zero energy
modes, that is the solutions for zero energy. This solutionmay be constructed explicitly following, thework done
byAharonov andCasher [47]. For this purpose we assume that the vector potential is divergenceless, which is
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clearly satisfied by (12). Then, one can introduce a scalar potentialλ(x, y) such that,

A A, 15x y y xl l= -¶ = ¶ ( )

and due to the equation (7),

B 16x y
2 2l l= ¶ + ¶ ( )

Then, it is not difficult tofind the solutions of the equations (13) and (14) for the energy zero case. Indeed,
substituting in equation (13)

f e 17b by = l- ( )

and settingE=0, we obtain,

i f 0 18x y b- ¶ - ¶ =[ ] ( )

In similar way, if we propose

f e 19a ay = l ( )

equation is reduced to

i f 0 20x y a- ¶ + ¶ =[ ] ( )

Thus, fa and fb are analytic and complex conjugated analytic entire functions of z=ix+y, respectively.
The equation (16)has the following solution

d G Br r r r r, 21òl = ¢ ¢ ¢( ) ( ) ( ) ( )

where

G
r

r r
r r

,
1

2
ln 22

0p
¢ =

- ¢⎛
⎝⎜

⎞
⎠⎟( ) ∣ ∣ ( )

is theGreen function of the Laplace operator in two dimensions and r0 is an arbitrary constant. According to [47]
themagneticfluxΦ is localized in a restricted region so that for r  ¥

r

r
r

2
ln 23

0

l
p

=
F ⎛

⎝⎜
⎞
⎠⎟( ) ( )

and

f
r

r
24a b a b, ,

0

2

y =

g
p
F⎛

⎝⎜
⎞
⎠⎟ ( )

where γ=1 and−1 forψa andψb respectively. Since the entire function f (z) cannot go to zero in all directions at
infinity,ψa,b can be normalizable only assuming that γΦ<0, that is, zero-energy solutions can exist only for
one spin direction, depending on the sign of the totalmagnetic flux.

Now, consider the caseΦ>0, then in view of (24)wehaveψa=0 and

f e f
r

r
25b b b

0

2

y = l-
p

-F


⎛
⎝⎜

⎞
⎠⎟ ( )

The function fb is dictated by (18) and it is not difficult to check that the solutions are polynomials of the form

f a z 26b
i

j

i
i

0
å=
=

( )

However, one can easily see from equation (25) that the solution is integrable with the square only assuming that
j�N (we count j from j= 0), whereN is the integer part of

2p
F . For the caseΦ<0we have

f e f
r

r
, 0 27a a a b

0

2

y y= =l
p
F


⎛
⎝⎜

⎞
⎠⎟ ( )

where

f a z 28a
i

j

i
i

0
å=
=

˜ ( ) ( )†

and

j N 29 ( )
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Thus, the number of the independent states with zero energy for one spin projection is equal toN+1, and there
are no such solutions for another spin projection.

3. Thefirst level of energy and its eigenstates for negativemagneticfield

Let us now concentrate on the construction of eigenstates corresponding to eigenvalues different form zero. To
proceedwe start by considering the simplest case,

a e
0

300,0
0Y =

l⎛
⎝⎜

⎞
⎠⎟

˜ ( )

Here, thefirst subindex denote the number of independent state with zero energy and the second index denote
level of energy. In other words the spinor (30) is thefirst independent zero energymode. According towhat we
have seen (30) is a solution of the set

i z
B

i z
B
2

0

2
0 31

x y b

x y a

y

y

- ¶ - ¶ - =

- ¶ + ¶ - =

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

[ ]

[ ] ( )†

Then, we can take the operator i zx y
B

2
- ¶ - ¶ -⎡⎣ ⎤⎦[ ] and apply it toψa,

i z
B

a i e z
B

a e
2 2

32x y a x y0 0y l l- ¶ - ¶ - = - ¶ - ¶ -l l⎡
⎣⎢

⎤
⎦⎥[ ] ˜ [ ] ˜ ( )

Thus, in view of (12), (15) and the definition of z, it not difficult to arrive to following result

i z
B

zBa e zB
2

33x y a a0y y- ¶ - ¶ - = - = -l⎡
⎣⎢

⎤
⎦⎥[ ] ˜ ( )

To continuewe can take the state zBa e0- l˜ and apply the operator i zx y
B

2
- ¶ + ¶ -⎡⎣ ⎤⎦[ ] † . Then, we have,

i z
B

zBa e Ba e B
2

2 2 34x y a0 0 y- ¶ + ¶ - - = - = -l l⎡
⎣⎢

⎤
⎦⎥[ ] ( ˜ ) ˜ ( )†

From, (33), (34)we conclude that

i z
B

i z
B

B
2 2

2 35x y x y a ay y- ¶ + ¶ - - ¶ - ¶ - = -
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥[ ] [ ] ( )†

This is crucial point since indicates thatψa is an eigenstate of the operator i z i zx y
B

x y
B

2 2
- ¶ -¶ - - ¶ +¶ -⎡⎣ ⎤⎦⎡⎣ ⎤⎦[ ] [ ] †

with eigenvalue−2B. Thus,we can rename−2B asE2 so that

E B2 36=  - ( )
Thenwe can think the equations (33) and (34) as

i z
B

E
2

37x y a a,0y y- ¶ - ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )

i z
B

E E B
2

2 38x y a a a,0
2y y y- ¶ + ¶ - = = -

⎡
⎣⎢

⎤
⎦⎥[ ] ( )†

whereψa,0may be obtained dividing zBa e0- l( ˜ ) by E,

zBa e

B

B
z

2 2
39a a,0

0y y=
-
 -

= 
-l( ˜ ) ( )

Therefore, dividing the equation (38) by E, the equations (37) and (38) become

i z
B

E
2

40x y a a,0y y- ¶ - ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )

i z
B

E
2

41x y a a,0y y- ¶ + ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )†

Comparing these last two equations with (13) and (14), we see that

42a

a
0,1

,0y
y

Y =
⎛
⎝⎜

⎞
⎠⎟ ( )
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is an eigenstate of theDirac-WeylHamiltonianwith eigenvalue B2 - . Here, it is important to point out that
for the eigenvalue tomake sense themagnetic fieldmust be negative. This implies thatΦ<0which agrees with
the result (27).

We can try to go even further and study the case inwhichψa is thefirst order polynomial in z†, that is
a a z ea 0 1y = + l( ˜ ˜ )† , thenwe have the following zeromode,

a a z e
0

431,0
0 1Y = + l⎛

⎝⎜
⎞
⎠⎟

( ˜ ˜ ) ( )
†

Again, we can take the operator i zx y
B

2
- ¶ - ¶ -⎡⎣ ⎤⎦[ ] and apply it toψa,

i z
B

zB a a z e a e zB a e
2

2 2 44x y a a0 1 1 1y y- ¶ - ¶ - = - + - = - -l l l⎡
⎣⎢

⎤
⎦⎥[ ] [( ˜ ˜ ) ] ˜ ˜ ( )†

Herewe see that our result incorporates the term zB a z e a e21 1- -l l[( ˜ ) ] ˜† to the result obtained in (33), of
course, this term is due to the action of i zx y

B

2
- ¶ - ¶ -⎡⎣ ⎤⎦[ ] on a z e1

l˜ † . Also, it is interesting to note that, writing

in terms ofψa, the result of (33) is−zBψawhereas in (44)we obtain zB a e2a 1y- - l˜ , that is, the result in (44) is
not only reduced to−zBψa, but also now appears the term a e2 1- l˜ .

Now,we can try to apply the operator i zx y
B

2
- ¶ + ¶ -⎡⎣ ⎤⎦[ ] † to zB a e2a 1y- - l˜ . This operation leads us to

the following result,

i z
B

zB a e B a a z e B
2

2 2 2 45x y a a1 0 1y y- ¶ + ¶ - - - = - + = -l l⎡
⎣⎢

⎤
⎦⎥[ ] ( ˜ ) ( ˜ ˜ ) ( )† †

Again the result obtained in (34) and (35) is repeated. Therefore,−2B is an eigenvalue of

i z i zx y
B

x y
B

2 2
- ¶ - ¶ - - ¶ + ¶ -⎡⎣ ⎤⎦⎡⎣ ⎤⎦[ ] [ ] † with eigenstate a a z ea 0 1y = + l( ˜ ˜ )† . Thus, the equations (44) and

(45)may be rewritten as

i z
B

E
2

46x y a a,1y y- ¶ - ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )

i z
B

E E B
2

2 , 47x y a a a,1
2y y y- ¶ + ¶ - = = -

⎡
⎣⎢

⎤
⎦⎥[ ] ( ) ( )†

with,

E B2 , 48=  - ( )

andwherewe have renamed zB a e2a 1y- - l˜ asE ψa,1, which implies,

zB a e

B
B z

a e

B

2

2

1

2

2
49a

a
a,1

1 1y
y

y=
- -

 -
=  - -

-

l l˜ [ ˜ ] ( )

So, the equations (46) and (47) reads as,

i z
B

E
2

50x y a a,1y y- ¶ - ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )

i z
B

E
2

51x y a a,1y y- ¶ + ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )†

Thus, we have constructed an new eigenstate

52a

a
1,1

,1y
y

Y =
⎛
⎝⎜

⎞
⎠⎟ ( )

of theDirac-WeylHamiltonianwith eigenvalue B2 - .
In order to obtained a general formula for the eigenstates of theDirac-WeylHamiltonian, let us explore the

case inwhichψa is the second order polynomial in z†, that is a a z a z ea 0 1 2
2y = + + l( ˜ ˜ ˜ ( ) )† † . Then, after a bit of

algebra, we have

i z
B

zB a a z a z e a a z e

zB a a z e

2
2 4

2 4 53

x y a

a

0 1 2
2

1 2

1 2

y

y

- ¶ - ¶ - =- + + + - -

=- + - -

l l

l

⎡
⎣⎢

⎤
⎦⎥[ ] [( ˜ ˜ ˜ ( ) ) ] ( ˜ ˜ )

( ˜ ˜ ) ( )

† † †

†

Notice that the result is composed by the term−zBψa plus a polynomial offirst order in z†. If we compare this
result with the results of formulas (33) and (44), wewill notice that the result to apply the operator

i zx y
B

2
- ¶ - ¶ -⎡⎣ ⎤⎦[ ] to the stateψa is composed by the term−zBψa plus a polynomial of a lower order in z†

thanψa.
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Toproceed, we apply the operator i zx y
B

2
- ¶ + ¶ -⎡⎣ ⎤⎦[ ] † to the state zB a a z e2 4a 1 2y- + - - l( ˜ ˜ )† . Thus, we

arrive to

i z
B

zB a a z e

B a a z a z e B

2
2 4

2 2 54

x y a

a

1 2

0 1 2
2

y

y

- ¶ + ¶ - - + - -

=- + + = -

l

l

⎡
⎣⎢

⎤
⎦⎥[ ] ( ( ˜ ˜ ) )

( ˜ ˜ ˜ ( ) ) ( )

† †

† †

Thereby, we can construct the stateψa,2, dividing zB a a z e2 4a 1 2y- + - - l( ˜ ˜ )† by B2 - ,

zB a a z e

B
B z

a a z e

B

2 4

2

1

2

2 4
55a

a
a,2

1 2 1 2y
y

y=
- + - -

 -
=  - +

- -
-

l l( ˜ ˜ ) [ ( ˜ ˜ ) ] ( )
† †

and the eigenstate of theDirac-WeylHamiltonian as

56a

a
2,1

,2y
y

Y =
⎛
⎝⎜

⎞
⎠⎟ ( )

It is not difficult to generalize this idea to the case

a z e 57a
i

j

i
i

0
åy = l

=

˜ ( ) ( )†

with

j N 58 ( )

The result is

B z
B

i a z e
1

2

1
2 59a j a

i

j

i
i

,
0

1åy y=  - -
-

l

=

-
⎡
⎣⎢

⎤
⎦⎥˜ ( ) ( )†

Therefore, we can create another new eigenstate of theDirac-WeylHamiltonian,

60j
a j

a
,1

,y
y

Y =
⎛
⎝⎜

⎞
⎠⎟ ( )

with eigenvalue B2 - .When j=Nwe have

61N
a N

a
,1

,y
y

Y =
⎛
⎝⎜

⎞
⎠⎟ ( )

Here, it is important to remark that the state (61) is (N+1)-th eigenstate that we create and due to the
Aharonov-Casher theoremwe cannot create another independent eigenstate. So, for a level of energy
E B2= - we can only have (N+1)-th independent eigenstates and in similar way for the level E B2= - -
wehave (N+1)-th independent eigenstates associated to it. Another interesting aspect shows that the
eigenstates j,1Y depend only onψa i.e. an eigenstate of positive chirality. Hence, it is not surprising that for the
eigenvalue tomake sense themagnetic fieldmust be negative. This agrees with the result (27) and involves a
extension of the Aharonov-Casher result.

4. Thefirst level of energy and its eigenstates for positivemagneticfield

Let us consider how to construct eigenstates of theDirac-WeylHamiltonian starting nowby a simplest spinor of
negative chirality, i.e.

a e
0

620,0
0

Y = l-

⎛
⎝⎜

⎞
⎠⎟ ( )

as the spinor of (30) it is a zeromode of theDira-WeylHamiltonian. The idea, now, is applicate the operator

i zx y
B

2
- ¶ + ¶ -⎡⎣ ⎤⎦[ ] † toψb. This can be done easily and leads us to,

i z
B

a Bz e z B
2

63x y b b0y y- ¶ + ¶ - = - = -l-⎡
⎣⎢

⎤
⎦⎥[ ] ( )† † †

Following the same ideawe take z B by- † and apply the operator i zx y
B

2
- ¶ - ¶ -⎡⎣ ⎤⎦[ ] ,

i z
B

z B a Be B
2

2 2 64x y b b0y y- ¶ - ¶ - - = =l-⎡
⎣⎢

⎤
⎦⎥[ ] ( ) ( )†
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Thus, if we comparewith (34) and (35)we see that the Schrödinger equation

i z
B

i z
B

B
2 2

2 65x y x y b by y- ¶ - ¶ - - ¶ + ¶ - =
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥[ ] [ ] ( )†

has now an eigenvaluewith the same absolute value but different sign, i.e. B2 . Therefore, we have that the energy,
now reads

E B2 , 66=  ( )

so that the equations (63) and (81), can be arranged to give,

i z
B

E
2

67x y b b,0y y- ¶ + ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )†

i z
B

E E
2

68x y b b,0
2y y- ¶ - ¶ - =

⎡
⎣⎢

⎤
⎦⎥[ ] ( )

where

z B

B

B
z

2 2
69b

b
b,0y

y
y=

-


=  ( )
†

†

Hence, dividing (68) byE, we have, the set following set of equations

i z
B

E
2

70x y b b,1y y- ¶ + ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )†

i z
B

E
2

71x y b b,0y y- ¶ - ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )

Wecan compare this equations with (13) and (14). Then, it is clear that

72b

b
0,1

,0

y
y

Y =
⎛
⎝⎜

⎞
⎠⎟ ( )

is an eigenstate of theDirac-WeylHamiltonianwith eigenvalue B2 . In contrast with the previous section,
here, themagnetic fieldmust be positive, otherwise the eigenvalue becomesmeaningless. This implies that

0F > , and again, it agrees with the result of the Aharonov andCasher theorem.
As in the previous section the ideamay be generalized. Indeed, if we take

a z e 73b
i

j

i
i

0
åy = l

=

-( ) ( )†

and follow the same procedure of the previous section, we can create a j-th eigenstate, with eigenvalue
E B2=  , of theDirac-WeylHamiltonian

74j
b

b j
,1

,

y
yY =

⎛
⎝⎜

⎞
⎠⎟ ( )

where

B z
B

i a z e
1

2

1
2 75b j b

i

j

i
i

,
0

1åy y= - l

=

- -
⎡
⎣⎢

⎤
⎦⎥( ) ( )† †

Again, due to the Aharonov andCasher theorem, j�N, so that we can, only, createN+1 independent
eigenstates associated to the eigenvalue E B2= and anotherN+1 associated to level E B2= -

5. The generalization for higher energy levels

Let us concentrate in the generalization of the procedure studied in the previous section.We can start by
considering the second level of energy. In order to proceed consider the equations (70) and (71) and repeat the
procedure of the previous section, i.e. take the second component of the spinor

76b

b
0,1

,0

y
y

Y =
⎛
⎝⎜

⎞
⎠⎟ ( )
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and apply the operator i zx y
B

2
- ¶ + ¶ -⎡⎣ ⎤⎦[ ] † to this state. Then, we have,

i z
B B

i z
B

z
2 2 2

77x y b x y b,0y y- ¶ + ¶ - = - ¶ + ¶ -
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥[ ] [ ] ( ) ( )† † †

Since, i z 0x y- ¶ + ¶ =[ ] † and

i z
B

E
2

78x y b b1 ,0y y- ¶ + ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )†

where E B21 =  , it is not difficult to arrive to

i z
B

Bz
2

79x y b b,0 ,0y y- ¶ + ¶ - = -
⎡
⎣⎢

⎤
⎦⎥[ ] ( )† †

Wecan continuewith the procedure and take the state−Bz†ψb,0 and apply the operator i zx y
B

2
- ¶ - ¶ -⎡⎣ ⎤⎦[ ] ,

i z
B

Bz B Bz i z
B

2
2

2
80x y b b x y b,0 ,0 ,0y y y- ¶ - ¶ - - = - - ¶ - ¶ -

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥[ ] ( ) [ ] ( )† †

Here, we can consider the formula (68). Then, the termof (80) can be rewritten as

i z
B

Bz B B B z
2

2 2 81x y b b b,0 ,0y y y- ¶ - ¶ - - = 
⎡
⎣⎢

⎤
⎦⎥[ ] ( ) ( )† †

The second termof (81)may be arranged as

B B z B2 2 , 82b b,0y y= ( )†

so that

i z
B

Bz B
2

4 83x y b b,0 ,0y y- ¶ - ¶ - - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( ) ( )†

If we rename B4 as E2
2, and create a new state

B
z

2
, 84b b,1 ,0y y=  ( )†

then, the equations (79) and (83) reads as

i z
B

E
2

85x y b b,0 2 ,1y y- ¶ + ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )†

E i z
B

E
2

86x y b b2 ,1 2
2

,0y y- ¶ - ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )

Dividing the last equation by E2, it becomes clear that

87
b

b
0,2

,0

,1

y
y

Y =
⎛
⎝⎜

⎞
⎠⎟ ( )

is an eigenstate of theDirac-WeylHamiltonianwith eigenvalue B2 . In general, we can get the spinor (74).
Since, it is a solution of theDirac-Weyl equation, it satisfy

i z
B

E
2

88x y b b j1 ,y y- ¶ + ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )†

i z
B

E
2

89x y b j b, 1y y- ¶ - ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )

Wecan repeat the previous steps to obtain

z
B B

z
B

z

B
i a z

B
z e

2 2 2

1

2
2

2
90

b j b

i

j

i
i

,

0

1å

y y¶ - = ¶ -

 ¶ - l

=

- -


⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

¯ ¯ ( )

¯ (( ) ) ( )

† † †

† †

Hereψb is dictated by the formula (73) and i x y¶ = - ¶ + ¶¯ [ ]. The formula (90)may be developed easily if we
consider the following equalities,
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z

z
B

E

z
B

e Bz e

0

2

2
91

b b j1 ,y y

¶ =

¶ - =

¶ - = -l l- -

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

¯

¯

¯ ( )

†

†

† †

then, it is not difficult to show that,

z
B

Bz B i a z e
2

2 92b j b j
i

j

i
i

, ,
0

åy y¶ - = - l

=

-
⎡
⎣⎢

⎤
⎦⎥¯ ( ) ( )† † †

Now, the application of the operator z B

2
¶ -⎡⎣ ⎤⎦, wherewe have named i x y¶ = - ¶ - ¶[ ], on the state

Bz B i a z e2b j i
j

i
i

, 0y- å l
=

- ( )† † leads us to

z
B

Bz B i a z e B z
B

z

B i a z
B

z e

2
2

2

2
2

93

b j
i

j

i
i

b j

i

j

i
i

,
0

,

0

å

å

y y¶ - - =- ¶ -

¶ -

l

l

=

-

=

-





⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( )

(( ) ) ( )

† † †

†

Toproceedwe use the following identities

z

z
B

E

z
B

e

2

2

2
0, 94

b j b, 1y y

¶ = -

¶ - =

¶ - =l-

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ ( )

†

then equation (93)may be developed to give

z
B

Bz B i a z e B
2

2 4 95b j
i

j

i
i

b j,
0

,åy y¶ - - =l

=

-
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟( ) ( )† †

The equations (92) and (97) are arranged, sowe have

z
B

E
2

96b j b j, 2 , 1y y¶ - = +
⎡
⎣⎢

⎤
⎦⎥¯ ( )†

z
B

E B
2

4 97b j b j2 , 1 ,y y¶ - =+
⎡
⎣⎢

⎤
⎦⎥( ) ( )

where, as in (85) and (86), E B22 =  and the stateψb,j+1 is defined as

B
Bz B i a z e

1

2
2 98b j b j

i

j

i
i

, 1 ,
0

åy y=


- l
+

=

-
⎛
⎝⎜

⎞
⎠⎟( ) ( )† †

Thus, we have that the state,

99j
b j

b j
,2

,

, 1

y
y

Y =
+

⎛
⎝⎜

⎞
⎠⎟ ( )

is an eigenstate of theDirac-WeylHamiltonianwith eigenvalue B2 . In this way, we can obtain all
independent state of the second Landau level of the energy B2 . Again, it is interested to note that there are
N+1 independent states with energy E B22 = and anotherN+1 associated to the energy E B22 = - .We
can repeat the procedure to create the eigenstates associated to the third levels of energy and so on. In addition, it
is not difficult to imagine the same procedure for the case of eigenvalues and eigenstates associated to negative
magnetic field configuration. In this case, wewould take the first component of the spinor (60) andwould apply
the operator i zx y

B

2
- ¶ - ¶ -⎡⎣ ⎤⎦[ ] , in order to obtain a stateψa,j+1 and a new spinor

100j
a j

a j
,2

, 1

,

y
y

Y =
+⎛

⎝⎜
⎞
⎠⎟ ( )

which is the j+1-th eigenstate of theDirac-WeylHamiltonian associated to the second level of energy
E B22 =  - . Of course, as for the states associated positivemagnetic field configuration, there areN+1
independent states with energy E B22 = - and anotherN+1 associated to the energy E B22 = - - .
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6. Application to bilayer graphene

To conclude, we discuss the application of ourmechanism to study the case of bilayerHamiltonian. The bilayer
graphene [40–46] in the simplest approximation can be considered as a zero-gap semiconductor with parabolic
touching of the electron and hole bands described by the single-particleHamiltonian. By exfoliation of graphene
one can obtain several layers of carbon atoms. Its electronic structure can be understood in the framework of a
tight-bindingmodel.

Let us then consider theHamiltonian for the bilayer graphene,

D iD

D iD
E

0

0
101a

b

a

b

1 2
2

1 2
2

y
y

y
y

-
+

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

This description is accurate at the energy scale larger than a fewmeV, otherwise amore complicated picture
including trigonal warping takes place; wewill restrict our- selves only by the case of not too small dopingwhen
the approximateHamiltonian (123)works. Two components of thewave function originated from the
crystallographic structure of graphite sheets with two carbon atoms in the sheet per elementary cell. There are
two touching points per Brillouin zone: K andK′. For smooth enough external potential, noUmklapp processes
between these points are allowed and thus they can be considered independently.

Thus, equation (123)may be rewritten as

D iD E 102b a1 2
2y y- =( ) ( )

D iD E 103a b1 2
2y y+ =( ) ( )

Following the same procedure for the single-layerHamiltonianwe shouldfind the eigenfunctions of the
Hamiltonian (123) for zero energy in the symmetric gauge, that is,

i z
B

2
0 104x y b

2

y- ¶ - ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )

i z
B

2
0 105x y a

2

y- ¶ + ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )†

The solution of these equations can be found easily from the development done in section 3. Indeed, we can
check that

z a z e 106b
i

j

i
i

0
åy = l

=

- ( )†

and

z a z e 107a
i

j

i
i

0
åy = l

=

˜ ( ) ( )†

satisfy (104) and (105). In order to construct the eigenstates different from the zeromodes we can start by
considering the simplest solution in a negative field background. According towhat we see in the previous
sections, this solution should be a spinor

za e
0

1080,0
0Y =

l⎛
⎝⎜

⎞
⎠⎟

˜ ( )

which is the simplest zeromode of theHamiltonian (123). Again, we can take the operator i zx y
B

2
- ¶ - ¶ -⎡⎣ ⎤⎦[ ]

and apply it toψa. Thus, using the result of section 3we obtain

i z
B

z Ba e
2

109x y a
2

0y- ¶ - ¶ - = - l⎡
⎣⎢

⎤
⎦⎥[ ] ˜ ( )

Applying the operator i zx y
B

2
- ¶ - ¶ -⎡⎣ ⎤⎦[ ] onemore time, lead us to

i z
B

z B a e
2

110x y a

2
3 2

0y- ¶ - ¶ - = l⎡
⎣⎢

⎤
⎦⎥[ ] ˜ ( )

Following the same reasoning carried out in the section 3, we should apply the operator i zx y
B

2

2
- ¶ + ¶ -⎡⎣ ⎤⎦[ ] †

to the polynomial z B a e3 2
0

l˜ . Again, using the results of the section section 3 and after a bit of algebrawe arrive to

i z
B

z B a e B z a e
2

6 111x y
3 2

0
2 2

0- ¶ + ¶ - =l l⎡
⎣⎢

⎤
⎦⎥[ ] ( ˜ ) ˜ ( )†
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The application of the operator i zx y
B

2

2
- ¶ + ¶ -⎡⎣ ⎤⎦[ ] † for the second time lead us to following result

i z
B

B z a e B za e B
2

6 24 24 112x y a
2 2

0
2

0
2y- ¶ + ¶ - = =l l⎡

⎣⎢
⎤
⎦⎥[ ] ( ˜ ) ˜ ( )†

Renamed, 24B2 as E2 we have,

E B24 113=  ∣ ∣ ( )

Then, the equations (110) and (112)may be rewritten as follow

i z
B

E
2

114x y a a

2

,0y y- ¶ - ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )

i z
B

E
2

115x y a a

2

,0y y- ¶ + ¶ - =
⎡
⎣⎢

⎤
⎦⎥[ ] ( )†

whereψa,0 is obtained by dividing z B a e3 2
0

l( ˜ ) byE,

z B a e

B

z Ba e

24 24
116a,0

3 2
0

3
0y =


= 

l l( ˜ ) ˜ ( )

This show that the spinor

117a

a
0,1

,0y
y

Y =
⎛
⎝⎜

⎞
⎠⎟ ( )

is an eigenstate of theHamiltonian (123)with eigenvalue B24 . In general, we can start by considering a zero
mode of the form

z a z e

0

118
i

j

i
i

0,1 0
åY =

l

=

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

˜ ( ) ( )
†

Then, we apply the operator i zx y
B

2
- ¶ - ¶ -⎡⎣ ⎤⎦[ ] to z a z ei

j
i

i
0å l

= ˜ ( )† . Thus, in view of the equation (59) and
[−i∂x−∂y]z=0 it not difficult to see that

i z
B

z a z e z B
2

2 119x y
i

j

i
i

a j
0

,å y- ¶ - ¶ - =  -l

=

⎡
⎣⎢

⎤
⎦⎥[ ] ˜ ( ) ( )†

whereψa, j is dictated by the formula (59). The application of the operator i zx y
B

2
- ¶ - ¶ -⎡⎣ ⎤⎦[ ] to z B2 a j,y -

leads to

i z
B

z a z e z B i z
B

2
2

2
120x y

i

j

i
i

x y a j

2

0
,å y- ¶ - ¶ - =  - - ¶ - ¶ -l

=

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥[ ] ˜ ( ) [ ] ( )†

where

i z
B

B z
B

z i B
2

1

2
2

1
2 2 121x y a j a j a j, ,

1
,y y y- ¶ - ¶ - =  -

-
 --⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥[ ] ∣ ∣ ( ) ( )

The samemechanism can be repeated starting from the zeromode

a z e

0

122j

i

j

i
i,0

0
åY = l

=

-

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ( )

In addition, following the same steps of the section 5, we can obtain the higher levels of energy and its eigenstates.
The generalization of this formalism to amultilayer graphene, can be easily understood, from the formof the

multilayerHamiltonian equation [42–46]

D iD

D iD
E

0

0
123

J

J

a

b

a

b

1 2

1 2

y
y

y
y

-
+

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

where J is a positive integer. Thenwe can consider the solutions of the bilayer graphene and repeat the same
formalism to obtain the solutions for a 3-layer graphene system and so on for an arbitrary number of layers.
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7. Conclusion

In summary, we have developed a formalism to construct the eigenvalues and its eigenfunctions of theDirac-
Weyl equation for the Landau problem in the symmetric gauge.We have shown that for negativemagnetic field
configurations the eigenstatesmay be constructed from the zeromodewith positive chirality whereas for
positivemagnetic field the eigenstates are constructed form the zeromodewith negative chirality. This is a
consequence of the Aharonov-Casher theorem,which establishes that for a negativemagnetic flux the zero-
energy solutions can exist only for positive spin direction, whereas if themagnetic flux is positive the zero-energy
solutions can exist only for negative spin direction.

In addition, we showed that ourmechanismmay be generalized to study theHamiltonians ofmultilayer
graphene systems, in such away to obtain the eigenfunctions and eigenvalues for arbitrary numbers of graphene
layers. This is important due to the role that Landau levels play in graphene. The bilayerHamiltonian is different
both fromnonrelativistic (Schrodinger) and from relativistic (Dirac) cases. The eigenstates of thisHamiltonian
have very special chiral properties [42], resulting in a special Landau quantization and special scattering. In this
sense, ourmethod becomes a useful tool in order to obtain the landau levels for bilayer graphene. Although, in
this note we do not study in detail the bilayer graphene, it would be interesting to deal withmore emphasis the
study of Landau levels in bilayer andmultilayer graphene. This becomes of particular importance due to the
unconventional quantumHall effect in bilayer graphene [40, 42], where Landau quantization of the fermions
results in plateaus inHall conductivity at standard integer positions, beingmissing the last (zero-level)plateau.
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