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1. Introduction

Several investigators have studied the influence of rotational and/or translational restraints at
the ends of vibrating beams [1–17]. Kameswara Rao and Mirza [18] have derived exact frequency
and normal mode shape expressions for uniform beams with ends elastically restrained against
rotation and translation. Nallim and Grossi [19] studied the dynamical behaviour of beams with
complicating effects, such as non-uniform cross sections, presence of an arbitrarily placed
concentrated mass and an axial force and ends elastically restrained against rotation and
translation.
In contrast to the body of information described, there is only a limited amount of information

for beams elastically restrained at intermediate points. Rutemberg [20] presented eigenfrequencies
for a uniform cantilever beam with a rotational restraint at some position. Lau [21] extended
Rutemberg’s results including an additional translational restraint. Arenas and Grossi [22]
presented exact and approximate frequencies of a uniform beam, with one end spring-hinged and
a rotational restraint in a variable position.
This paper deals with a particular case, of the problem of free vibrations of a uniform beam

with intermediate constraints and ends elastically restrained against rotation and translation. A
rather curious situation is shown to exist in the frequency values and mode shapes, when only an
intermediate translational restraint is placed and the beam is simply supported at both ends.

2. Determination of the exact solution

Let us consider the uniform beam of length l; shown in Fig. 1, which has elastically restrained
ends, and is constrained at an intermediate point. It has been assumed that the ends are elastically
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restrained against rotation and translation. The rotational restraints are characterised by the
spring constants r1; r2 and the translational restraints by the spring constants t1; t2:
Adopting various values of the parameters ri and ti; i ¼ 1; 2; all the possible combinations of

classical end conditions (i.e., clamped, pinned, sliding and free) can be generated. It is also
assumed that at the intermediate point, a translational restraint characterised by the spring
constant tc is placed.
In order to analyse the transverse planar displacements of the system under study we suppose

that the vertical position of the beam at any time t is described by the function u ¼
uðx; tÞ; xA½0; l�: Then u must satisfy the following differential equations:

EI
@4uðx; tÞ
@x4

þ rA
@2uðx; tÞ

@t2
¼ 0; 8t; 8xAð0; cÞ; ð1Þ

EI
@4uðx; tÞ
@x4

þ rA
@2uðx; tÞ

@t2
¼ 0; 8t;8xAðc; lÞ: ð2Þ

The natural boundary conditions of the problem are given by

r1
@uð0; tÞ
@x

¼ EI
@2uð0; tÞ
@x2

; t1uð0; tÞ ¼ �EI
@3uð0; tÞ
@x3

; ð3; 4Þ

@2uðc�; tÞ
@x2

¼
@2uðcþ; tÞ

@x2
; tcuðc; tÞ ¼ EI

@3uðc�; tÞ
@x3

�
@3uðcþ; tÞ

@x3

� �
; ð5; 6Þ

r2
@uðl; tÞ
@x

¼ �EI
@2uðl; tÞ
@x2

; t2uðl; tÞ ¼ EI
@3uðl; tÞ
@x3

: ð7; 8Þ

Using the well-known method of separation of variables, one assumes as solution of Eq. (1) the
expression

u�ðx; tÞ ¼
XN
n¼1

u�n ðxÞTðtÞ: ð9Þ

Similarly for Eq. (2) we write

uþðx; tÞ ¼
XN
n¼1

uþn ðxÞTðtÞ: ð10Þ
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Fig. 1. Vibrating beam with intermediate support.
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The functions u�n ðxÞ; u
þ
n ðxÞ denote the corresponding nth mode of natural vibration and are

respectively given by

u�n ðxÞ ¼ A1 cosh kx þ A2 sinh kx þ A3 cos kx þ A4 sin kx; ð11Þ

uþn ðxÞ ¼ A5 cosh kx þ A6 sinh kx þ A7 cos kx þ A8 sin kx; ð12Þ

where the parameter k is given by k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA=ðEIÞ

p
on

q
:

Substituting Eqs. (11) and (12) into Eqs. (9) and (10) and then in the boundary conditions
(3)–(8) and in the continuity conditions which correspond to the point where the intermediate
restraint is placed,

uðc�; tÞ ¼ uðcþ; tÞ ¼ uðc; tÞ; ð13Þ

@uðc�; tÞ
@x

¼
@uðcþ; tÞ

@x
¼

@uðc; tÞ
@x

; ð14Þ

one obtains a set of eight homogeneous equations in the constants Ai: Since the system is
homogeneous, for existence of a non-trivial solution, the determinant of coefficients must be equal
to zero. This procedure yields the frequency equation:

GðRi;Ti;Tc; l; cÞ ¼ 0; ð15Þ

where

Ri ¼ ril=ðEIÞ; Ti ¼ til
3=ðEIÞ; i ¼ 1; 2;

Tc ¼ tcl
3=ðEIÞ; l ¼ kl; l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA=ðEIÞ

p
o

q
l: ð16Þ

3. Analysis of a particular case

An interesting case arises when the intermediate translational restraint with parameter Tc is
placed at x ¼ l=2 and the beam is simply supported at both ends. Table 1 depicts the values of
coefficients li; i ¼ 1; 2 for different values of Tc:
When Tc ¼ 0 the classical values l1 ¼ 3:14159265 and l2 ¼ 6:28318531 are obtained. The

corresponding mode shapes are shown in Figs. 2 and 3. As it can be seen in Table 1, for
Tc ¼ 0:1; 1; 10; 100 and 700 the respectively values of the first frequency coefficient are: l1 ¼
3:14320394; 3:15759089; 3:29131258; 4:13153931 and 5:91342567: The corresponding mode
shapes present inflection points as it is illustrated by Fig. 4 in the case Tc ¼ 700:
On the other hand, the values and the mode shapes which correspond to the coefficient l2

remain the same as Tc is varying. The constant value is l2 ¼ 6:28318531 and the mode shapes
coincide with the ones illustrated in Fig. 3.
It is observed that l1-l2 when Tc-995: A curious situation arises when Tc varies in the

interval 995; 996½ �: For instance, when Tc ¼ 995:9 the values of the first two coefficients are
l1 ¼ 6:28317137; l2 ¼ 6:28318531 and the corresponding mode shapes are those of Figs. 5 and 3
respectively. But when Tc ¼ 996 the values of the first two coefficients are l1 ¼ 6:28318531; l2 ¼
6:28327428 and the corresponding mode shapes are illustrated in Figs. 3 and 6.

ARTICLE IN PRESS

C.M. Albarrac!ın et al. / Journal of Sound and Vibration 271 (2004) 475–480 477



In this process the first eigenvalue l1-l2 from the left as Tc varies from 0 to 995:9: When the
values of Tc increase from 996 to infinity, there is a change. The values of l1 remain constant and
equal to l1 ¼ 6:28318531 and the values of l2 are greater and increase as Tc varies from 996 to
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Table 1

Values of the coefficient l1 of simply supported beam with and intermediate point elastically restrained against

translation, T1 ¼ N; R1 ¼ 0; T2 ¼ N; R2 ¼ 0; c ¼ 0:5

Tc

0 0.1 1 10 100 700 995 996 1000 N

l1 3.14159265 3.14320394 3.15759089 3.29131258 4.13153931 5.91342567 6.28222446 6.28318531 6.28318531 6.28318531

l2 6.28318531 6.28318531 6.28318531 6.28318531 6.28318531 6.28318531 6.28318531 6.28327428 6.28738095 7.85320462

Fig. 2. Mode shape which corresponds to l1 ¼ 3:14159265 and Tc ¼ 0:

Fig. 3. Mode shape which corresponds to l2 ¼ 6:28318531; Tc ¼ 0 and also corresponds to l1 ¼ 6:28318531; Tc > %Tc:

Fig. 4. Mode shape which corresponds to l1 ¼ 5:91342567 and Tc ¼ 700:
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infinity. The mode shape, analogue to that illustrated in Fig. 6, which corresponded to the second
eigenvalue (when Tco996 in Table 1) now corresponds to the first one. In the transition, there
exists a value TcA½995:9; 996� which corresponds to the case when l1 ¼ l2 ¼ 2p: This situation
corresponds to an eigenvalue of multiplicity m ¼ 2: Two different eigenfunctions correspond to
this eigenvalue and they have a similar aspect as those which are illustrated in Figs. 3 and 6.
No claim of originality is made by the authors since a simple problem has been solved.

Nevertheless it is felt that it is important to introduce a discussion on the particular situation
analyzed.
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