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Abstract: 

 

Aims: To investigate multiple tolerance of Saccharomyces cerevisiae obtained through a 

laboratory strategy of adaptive evolution in acetic acid, its relation with enzymatic ROS 

detoxification and bioethanol 2G production.  

Methods and Results: After adaptive evolution in acetic acid, a clone (Y8A) was selected 

for its tolerance to high acetic acid concentrations (13 g l
-1

) in batch cultures. Y8A was 

resistant to multiple stresses: osmotic, thermic, oxidative, saline, ethanol, organic acid, 

phenolic compounds and slow freeze-thawing cycles. Also, Y8A was able to maintain 

redox homeostasis under oxidative stress, whereas the isogenic parental strain (Y8) could 

not, indicating higher basal activity levels of antioxidative enzyme Catalase (CAT) and 

Gluthatione-S-Transferase (GST) in Y8A. Y8A reached higher bioethanol levels in a 

fermentation medium containing up to 8 g l
-1

 of acetic acid when compared to parental 

strain Y8.  
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Conclusions: A multiple-stress-tolerant clone was obtained using adaptive evolution in 

acetic acid. Stress cross-tolerance could be explained by its enzymatic antioxidative 

capacity, namely CAT and GST. 

Significance and Impact of the Study: We demonstrate that adaptive evolution used in S. 

cerevisiae was a useful strategy to obtain a yeast clone tolerant to multiple stresses. At the 

same time, our findings support the idea that tolerance to oxidative stress is the common 

basis for stress co-tolerance, which is related to an increase in the specific enzymes CAT 

and GST but not in Superoxide dismutase (SOD), emphasizing the fact that detoxification 

of H2O2 and not O2

.
 is a key condition for multiple stress tolerance in S. cerevisiae.  

 

Keywords: Robustness, adaptive evolution, acetic acid, multiple tolerance, bioethanol 2G 

production, yeast, Saccharomyces cerevisiae, antioxidative enzymes. 

 

Introduction 

 

Lignocellulosic biomass-based bioethanol production is constantly increasing, and S. 

cerevisiae is frequently used industrially for that purpose (Bathia et al. 2012). As a 

consequence of standard acid pre-treatment of the substrate, several toxic and growth-

inhibiting compounds are produced. Consequently, the ability to tolerate these as well as a 

wide variety of stress conditions and maintain an adequate metabolic performance is 

essential for industrial applications of this yeast in order to reduce operational costs and 

enhance ethanol yields. A common inhibitor produced during pre-treatment is acetic acid 

(Trček et al. 2015).  
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It is possible to increase the yeast performance in the presence of inhibitors or stressors by 

employing different methods such as genetic engineering (Ukibe et al. 2009; Jun and Jiavi 

2012; Swidah et al. 2015; Guan et al. 2015; Chen et al. 2016), but the methodology of 

adaptive evolution/evolutionary engineering seems to offer multiple advantages as an 

efficient way to select yeast populations resistant to different stress conditions, and to 

expand their tolerance range (Çakar et al. 2005; Wallace-Salinas and Gorwa-Grauslund 

2013; Jiang et al. 2016; Baek et al. 2016; Gonzalez-Ramos et al. 2016). The methodology 

is suitable for obtaining microorganisms with desired phenotypes not present in their 

genetic background, or with a complex base that is multi-gene-encoded (Perrone et al. 

2005).  

Reactive oxygen species (ROS) are generated during a fermentative aerobic process from 

molecular oxygen due to the different environmental stress conditions and can produce cell 

damage, with superoxide anion radical (O2•
-
), hydrogen peroxide (H2O2) and hydroxyl 

radical (•OH) being the most important ones that cause damage to proteins (like 

carbonylation), nucleic acids, lipids, and other cellular components, eventually leading to 

yeast cell death (Mendes-Ferreira et al. 2010). 

The yeast S. cerevisiae has a network of defense mechanisms to protect against oxidative 

stress. The primary defense includes proteins that remove ROS or act by sequestering metal 

ions (Moradas-Ferreira et al. 1996). Thereby, primary defense mechanisms combine 

antioxidant enzymes such as catalase (CAT), glutathione S-transferase (GST), and 

superoxide dismutase (SOD) and ROS scavengers such as glutathione and thioredoxin 

(Moradas-Ferreira and Costa 2000). 

Considering the evidence that the occurrence of an apoptotic phenotype in S. cerevisiae is 

inducible by oxidative stress, the same phenotype could be induced by acetic acid at high 
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concentrations (Ludovico et al. 2001). This phenotype might be avoided by subjecting 

yeast cells to mineral acids that activate ROS detoxifying enzymes, like catalase, since the 

ability to resist multiple stresses is linked to yeast cells’ capacity for H2O2 detoxification 

(Lewis et al. 1997; Giannattasio et al. 2005).   

Thus, in view of the above-mentioned evidence, as well as the principle of stress co-

tolerance in this yeast species (Attfield 1997), the objectives of this study were, firstly, to 

improve the fitness of an industrial osmotolerant S. cerevisiae strain selected for its 

tolerance to high acetic acid concentration through an adaptive evolution strategy to be 

used in bioethanol 2G production. Secondly, to investigate whether it is possible, using this 

method, to obtain a yeast cell population that is co-tolerant to different industrial stress 

conditions; and finally, to gain a first insight into the relation of oxidative stress resistance 

mechanisms to other stressors.  

 

MATERIALS AND METHODS 

 

Strain 

The industrial osmotolerant S. cerevisiae strain Y8 (BAFC 3084) was kindly provided by 

CALSA (Compañía Argentina de Levaduras S.A.) and used throughout this study for the 

adaptive evolution experiments. The strain was maintained on Petri dishes containing 

YPD agar medium at 4°C. The selected clone obtained experimentally was stored in 

glycerol 25% v v
-1

 at -80°C. 
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Media and culture conditions 

Unless otherwise indicated, all experiments were carried out in submerged cultures in 100 

ml Erlenmeyer flasks at a 1:5 medium-to-flask volume ratio containing YPD (1% yeast 

extract, 2% meat peptone, 2% glucose, adjusted to pH 5.5), and maintained under 

continuous agitation (250 rpm, in an orbital shaker), at 28°C. All tests were performed in 

triplicate, and repeated at least twice/once.  

 

Adaptive evolution experiments in acetic acid 

For inoculum preparation, the Y8 strain was grown until late exponential phase was 

reached. This culture was used to inoculate flasks with YPD to an initial OD600nm of 0.5. 

When the culture reached midlog phase, an aliquot was transferred to another flask with 

YPD fresh medium. Each batch was started with low initial biomass concentration 

(OD600nm≈0.1) to select cells with better adaptability or detoxification capacity in acetic 

acid. The initial acetic acid concentration of the serial batch cultures was 3 g l
-1

, and this 

concentration was subsequently increased up to 13 g l
-1

. Growth was followed 

spectrophotometrically (OD600nm) with a UV-Visible Spectrophotometer T60 PG 

Instrument. In the last batch culture grown, samples were withdrawn and stored at −80°C in 

25% (v v
-1

) glycerol solution. 

 

Selection of acetic acid tolerant clones. 

Glycerol stock populations obtained after the adaptation procedure were thawed and 

streaked on YPD agar plates containing 5 g l
-1

 acetic acid. The first colony developed 

(named Y8A) was selected for further characterization.  
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Aerobic growth in acetic acid 

Y8 and Y8A were cultured in YPD medium supplemented with 6, 8 or 10 g l
-1

 of acetic 

acid. Adequate samples were taken at different times (2, 4 and 6 h) for viability 

determination (CFU ml
-1 

after incubation for 48 h).  

 

Resistance to stress conditions  

Y8 and Y8A culture dilutions were made to obtain a final cell concentration with OD600nm 

of 1.0. Then, cells were washed three times with distilled water, centrifuged at 5,000 x g for 

10 min. and resuspended in 0.1 mol l
-1

 potassium phosphate buffer (pH 6.0) before being 

subjected to the following stress conditions: ethanol (10% v v
-1

, 1 h), aliphatic acid (5 g l
-1

 

acetic acid, 6 h, or 20 mmol l-1 formic acid, 30 min), temperature (42°C, 2 h), osmotic 

shock (3 mol l-1 
sorbitol, 3 h), slow freeze-thawing - two cycles for 24 h (Kronberg et al. 

2007), saline treatment (1.5 mol l
-1

 NaCl, 4 h), phenolic acid (15 mmol l
-1

 gallic acid, 4 h) 

and oxidative stress (5 mmol l
-1

 H2O2, 1 h). After treatments, stressors were removed by 

washing with 0.1 mol l
-1

 potassium phosphate buffer (pH 6.0) and/or by ending the 

experiment in a water bath at 25°C. Afterwards, serial dilutions were carried out (10
0
-10

-4
). 

Cell viability was determined in quadruplicate after each treatment by plating 100 µl of 

each dilution on YPD agar at 28°C for 48 h. The colonies formed were counted and 

viability was reported as the survival percentage
 
(Adams and Moss 2002). All experiments, 

unless otherwise indicated, were carried out at 28°C.  
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Oxidative stress parameters  

 

Enzymatic assay 

The parental strain Y8 and the adapted clone Y8A were used to determine ROS (Reactive 

Oxygen Species), as well as Catalase (CAT), Glutation-S-Transferase (GST) and 

Superoxide dismutase (SOD) enzyme activities. Subsequently, 5 ml aliquots of Y8 and Y8A 

cultures with an OD600nm of 10 were centrifuged at 5,000 x g for 10 min, the supernatants 

were discarded and the cells resuspended in a plastic tube containing 5 ml of YP medium 

(1% yeast extract and 2% meat peptone). Thus, the stress conditions evaluated were: 

Control (without H2O2); low concentration of H2O2 (5 mmol l
-1

) and high concentration of 

H2O2 (100 mmol l
-1

). All these conditions were maintained for 2 h at 28°C and performed in 

triplicate. 

 

Reactive oxygen species assay 

Intracellular ROS production was measured using the oxidant-sensitive probe 2
′
,7

′
-

dichlorofluorescein diacetate (H2DCFDA). Fluorescence was measured using a 

spectrofluorophotometer at an excitation wavelength of 485 nm and emission wavelength 

of 520 nm using a FLUOstar OPTIMA fluorescence plate reader (BMG Labtech) (Zhang et 

al. 2003). A calibration curve was made with different concentrations of H2O2. The ROS 

were calculated as peroxide equivalents and the results expressed as mmol per mg protein
-1

. 

 

Antioxidant enzyme activities 

Cells were harvested by centrifugation at 5,000 x g for 20 min, washed with 0.134 mol l
-1

 

potassium phosphate buffer (pH 6.5) and resuspended in 0.5 ml of the same buffer 
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containing protease inhibitors (0.2 mmol l
-1

 benzamidine and 0.5 mmol l
-1

 phenyl methyl 

sulfonyl fluoride). The cells were then disrupted by sonication using a Cole Parmer CP600 

4710 Ultrasonic homogeniser. The homogenates were centrifuged at 10,000 x g for 30 min, 

and the supernatant was used as the enzyme sample. All procedures were performed at 4°C. 

Catalase (CAT) activity was determined by following the dismutation of hydrogen peroxide 

spectrophotometrically at 240 nm, in a reaction mixture containing 50 mmol l
-1

 potassium 

phosphate buffer (pH 7.4) and 10 mmol l
-1

 hydrogen peroxide (Aebi, 1984). Results were 

expressed as units of CAT per mg proteins. One CAT unit was defined as the amount of 

enzyme required to catalyze the dismutation of 1 mmol of H2O2 per min. 

Glutathione-S-Transferase (GST) activity was measured according to Habig et al. (1974), 

by detecting the conjugation product of reduced glutathione (GSH) with 1-chloro-2,4-

dinitrobenzene (CDNB). The reaction mixture contained enzyme sample, 100 mmol l
-1

 

phosphate buffer (pH 6.5) and 10 mmol l
-1

 CDNB. The absorbance of GS-DNB complex 

was monitored at 340 nm (extinction coefficient GST-CDNB: 9.6 mmol l
−1

 cm
−1

). Results 

were expressed as units of GST per mg proteins. One GST unit was defined as the amount 

of enzyme required to catalyze the formation of 1 mol of GS-DNB per min. 

Superoxide dismutase (SOD) activity was determined according to Beauchamp and 

Fridovich (1971). This method is based on the inhibition of the photochemical reduction of 

nitro blue tretrazolium (NBT). The reaction mixture contained enzyme sample, 13 mmol l
-1

 

methionine, 0.1 mmol l
-1

 EDTA, 75 μmol l
-1

 NBT and 2 μmol l
-1

 riboflavin in 50 mmol l
-1

 

potassium phosphate buffer (pH 7.8). The samples were exposed to intense cool-white light 

for 15 min and then the absorbance was measured at 560 nm. Results were expressed as 

units of SOD per mg proteins. One-unit of SOD was defined as the amount of enzyme 
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necessary to inhibit the NBT reduction rate by 50%. Results were expressed as units of 

SOD per mg proteins. 

 

Peroxide determination 

H2O2 concentrations of the solutions used were determined in adequate aliquots with a UV-

Visible Spectrophotometer T60 PG Instrument at 240 nm using the peroxide molar 

extinction coefficient (43.6 mol l
-1

 cm
-1

).  

 

Protein content 

Total soluble protein content was determined in the supernatant according to Bradford 

(1976), using bovine serum albumin as a standard (Sigma Aldrich, St. Louis, Missouri, 

USA).  

 

 

Ethanologenic fermentation in presence of acetic acid  

All fermentations were carried out in microaerobic conditions (Nikel et al, 2006), in 100 ml 

Erlenmeyer flask using YPD in the absence or presence of acetic acid (6, 8 and 10 g l
-1

). 

The initial cell concentration was ajusted to OD600nm 0.5, and the cells were kept in 

suspension with a magnetic stirrer (50 rpm). Ethanol was determined in supernatant 

aliquots of the cultures using an enzymatic kit (R-Biopharm AG, Darmstadt, Germany, Cat. 

No. 10 176 290 035). 
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Bioethanol 2G production 

To evaluate the ethanologenic performance of the adapted strain in the presence of 

inhibitors commonly found in acid hydrolyzates of lignocellulosic biomass, we used a 

medium produced in our laboratory. Briefly, residual seed cake of jojoba (Simmondsia 

chinensis, Gayol et al. 2007) - alpha cellulose 40%, hemicellulose 23% and lignin 18%, 

was ground to less than 1 mm particles, hydrolyzed in diluted acid (1:10 w v
-1

 of 0.5 N 

H2SO4, 3 h and 100°C), pH was brought to 5.5 with NaOH, and then filtered. The 

hydrolyzate was supplemented with glucose, up to a final concentration of 120 g l
-1

, named 

as JH12%. Fermentation performance was compared to that of the parental strain, and 

controls were carried out in YNBD (6.7 g l
-1

 YNB “BD™ Difco™ Yeast Nitrogen Base”  

and 120 g l
-1

 glucose), named as YNBD12%. Ethanol and glucose were determined in 

adequated supernatant aliquots after centrifugation of the fermentation samples at 7.500 x g 

for 10 min at 24, 48 and 72 h using two enzymatic kits (R-Biopharm AG, Darmstadt, 

Germany, Cat. No. 10 176 290 035 for ethanol and Wiener lab, Rosario, Argentina, Cat. No. 

1400101 for glucose). Unless indicated, all the drugs used were of analytical grade or of the 

best commercial grade available. 

 

Statistical analysis  

Results from different treatments were compared statistically by two-way analysis of 

variance (ANOVA) followed by a Tukey post hoc test. The suppositions of normality and 

homogeneity of variances were tested with Lillieford and Bartlett tests, respectively (Sokal 

and Rohlf, 1999). All data were analyzed statistically using GraphPad Prism 5 software. 

The suppositions test was carried out with Statistica v.8 software.  
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Results 

 

Strain adaptation in acetic acid 

The adaptation and selection procedures in the successive batches with acetic acid were 

performed over a period of 33 days at 28°C. In the last batch with a concentration of 13 g l
-

1 
no growth was observed. Before the nineteenth day, the batch incubation periods were 

short (one or two days), from then on, the periods were longer in duration (3, 4 or 5 days). 

The Y8 strain was able to grow up to a concentration of 12 g l
-1

 of acetic acid. This growth 

protocol allowed the adaptation of resistant populations through metabolism adaptation or 

spontaneous mutations. 

 

Evaluation of clone tolerance to acetic acid 

After growing in YPD medium containing acetic acid, a pronounced decrease in CFU ml
-1

 

was observed for the parental strain in 8 and 10 g l
-1 

of acetic acid, in contrast to the 

adapted clone, as indicated by viability and percentage of survival (Fig. 1 and Table 1).  

In all conditions tested, the survival rate was greater in the adapted clone than in the 

parental strain. This result indicated that the tolerance to acetic acid in the adapted clone 

Y8A was certainly improved during the evolutionary engineering method in this acid. 

 

Aerobic growth in different acetic acid concentration levels.  

The batch cultures performed in the presence of 6, 8 and 10 g l
-1 

of acetic acid were carried 

out to study the behavior of the parental (Y8) and the adapted strain (Y8A) over a 96 h 

growth period in aerobic conditions. As shown in Fig. 2, there were no differences between 

clones in control conditions (0 g l
-1 

acetic acid), 6 and 10 g l
-1

 of acetic acid. The latter 
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acetic acid concentration was found to be inhibitory to both strains in this period of time. 

On the other hand, clone Y8A reached significantly higher biomass levels after 48 h in YPD 

medium containing 8 g l
-1

 of acid acetic, a longer lag phase was observed during the first 48 

h in both cell types. Thereafter, clone Y8A was able to grow up to OD600nm≈10 at 96 h 

while the parental strain could not grow. 

 

Multiple stress tolerance 

In order to analyze the sturdiness of the adapted clone strain in relation to the parental 

strain, tolerance to a set of stress conditions that might be encountered during bioethanol 

industrial production was evaluated. The first set of stresses studied was the following: 

heat, ethanol, oxidative stress, osmotic shock and freezing-thawing. The second set of 

stresses studied consisted of inhibitors that might be present in the lignocellulosic 

hydrolyzate used for fermentation: aliphatic acids (acetic and formic), phenolic compounds 

(gallic acid) and saline solution (NaCl) (Fig. 3). The clone Y8A showed a significantly 

higher tolerance to all stress conditions tested.  

 

Enzymatic assays in oxidative conditions 

To evaluate the response to oxidative stress, we studied in cell free extract the activity of 

the enzymes Catalase (CAT), Glutathione S Transferase (GST) and Superoxide dismutase 

(SOD) and its relationship to intracellular ROS levels. In addition, these assays were used 

as another way to compare the capacity of yeast to tolerate various stress conditions 

through antioxidant response. 

Results indicated that ROS levels of the parental strain showed significant differences 

between control and H2O2 treated cultures. While the adapted strain showed no significant 
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differences between the control, and cells treated with 5 mmol l
-1

 and 100 mmol l
-1

 H2O2, in 

contrast, significant differences in ROS content were found between the parental and the 

adapted strain (Fig. 4). 

CAT activity was significantly different in the two strains, with the activity of the adapted 

strain being greater than that of the parental strain under the 3 conditions tested (Fig. 5). On 

the other hand, treatments with H2O2 did not affect CAT activity in either of the two strains. 

SOD activity did not show significant differences between strains and between treatments 

(Fig. 6). 

GST activity of the parental strain showed no significant differences under the different 

treatment conditions, while the adapted strain showed a decrease in GST activity that was 

statistically significant between the control and 100 mmol l
-1

 H2O2. The comparison of the 

GST activity between Y8 and Y8A showed a significantly higher value in the adapted Y8A 

compared to the parental Y8 under control conditions and with 5 mmol l
-1

  H2O2. In the 

treatment with 100 mmol l
-1

  H2O2, the adapted Y8A showed activity similar to the parental 

strain (Fig. 7). 

 

Oxidative and non-oxidative stress biomarkers 

To analyze the cellular features elicited by other stresses than oxidative ones in the strain 

used, and in order to assess the hypothesis that stress co-tolerance is based on oxidative 

stress tolerance, we investigated whether a non-oxidative stress like saline stress (See 

Materials and Methods) could produce an oxidative response such as those we found for 

hydrogen peroxide stress. The results obtained in this work showed that after saline stress, 

oxidative biomarkers levels were higher in Y8A respect to Y8 (ROS levels were 0.007 and 

0.005 mmol mg protein
-1

 for Y8A and Y8 respectively, and CAT levels were 0.65 and 0.4 
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Units mg protein
-1

 for Y8A and Y8 respectively). These results are in agreement with those 

found for oxidative stress  

 

Growth and fermentation performance in the presence of acetic acid  

The adapted clone Y8A and the parental strain Y8 were compared for ethanol production in 

YPD fermentation mediums with different acetic acid concentrations containing 20 g l
-1

 

glucose at 28°C. As shown in Fig. 8, in control conditions, the ethanol concentration of 

both strains increased rapidly during the first 24 h of fermentation until it reached 9 g l
-1

 

and then it remained stable after 48 hours. Notably, the yeast Y8A was most efficient in 

producing ethanol in the medium containing 6 g l
-1

 of acetic acid, reaching a maximum 

ethanol production of 4.15 g l
-1

 at 48 h, which represents a yield of 0.21 g g
−1, 

corresponding to 41.2% of the theoretical yield. Y8 produced about 2.71 g l
−1

 of ethanol, 

with a yield of 0.135 g g
−1

, which corresponded to 26.5% of the theoretical yield. The acetic 

acid selected strain showed significantly higher ethanol yield than the parental strain. Also, 

in comparison with the parental Y8, the clone Y8A presented significant differences in 

ethanol production when we evaluated it at 8 g l
-1

 acetic acid after 48 h. In this case, Y8A 

was able to produce 2.02 g l
-1

 (0.10 g g
−1

 – 19.6% theoretical yield) versus 1.6 g l
-1

 (0.08 

g g
−1 

– 15.7% theoretical yield) for Y8.  

 

Bioethanol 2G production  

To test the ability of Y8A to produce 2G bioethanol on a commercial scale, we formulated a 

fermentation medium consisting of lignocellulosic raw material in the form of acid-
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hydrolyzed Jojoba cake (See Materials and Methods) supplemented with glucose up to 120 

g l
-1

 in order to reach a bioethanol concentration of about 60 g l
-1

. 

As shown in Figure 9a, the stress tolerant strain was able to ferment an agroindustrial 

residue like Jojoba cake (JH12%), reaching an ethanol volumetric production of 56.3 g l
-1

 

after 72 hours. The bioethanol level reached by the non-adapted strain was 1.3-fold lower in 

these conditions. On the other hand, bioethanol production in YNBD12% was higher for the 

non-adapted strain compared to the adapted one. Furthemore, glucose uptake accompanied 

ethanol production by each strain using the different substrates  (Figure 9b).  

As a whole, the results indicated that the adapted strain attained higher ethanol levels than 

the non-adapted one because it is tolerant to the toxic compounds present in the 

lignocellulosic raw material. Also, the non-adapted clone showed a prolonged lag phase, 

which again could be explained by the presence of inhibitors of yeast growth and 

metabolism present in the lignocellulosic material. 

 

Discussion 

In this work, by using the evolutionary adaptation strategy of metabolic engineering (Çakar 

et al. 2012) a clone of S. cerevisiae tolerant to acetic acid was obtained. When compared to 

the isogenic osmotolerant parental strain, the adapted strain was able to resist a higher 

acetic acid concentration (12 g l
-1

) and also to withstand a wider range of stresses affecting 

yeast performance during the bioethanol 2G production process. These results imply that a 

common damage tolerance and repair mechanism must exist in order to tolerate these 

stresses. The improved performance of the tolerant strain could be attributed to 

physiological or genotype variations provoked during adaptation in acetic acid either by 
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mutations or metabolic adaptations. Our results are consistent with the principle of stress 

co-tolerance found in S. cerevisiae (Attfield 1997, Lewis et al. 1997).  

Gonzalez-Ramos et al. (2013) used a similar strategy to the one we applied in this work but 

based on an alternating cultivation cycle in the presence and absence of acetic acid and they 

obtained a constitutively resistant S. cerevisiae variant tolerant to acetic acid as the one we 

obtained. Likewise, they found that mutations in four genes were identified as causative for 

acetic acid tolerance. 

Acetic acid triggers hydrogen peroxide production, resulting in apoptotic cell death of 

yeast. This means that a high expression of catalase is necessary to resist acetic acid stress 

by eliminating hydrogen peroxide (Giannattasio et al. 2005). Nevertheless, in the acetic 

acid-adapted clone, we found higher levels of ROS compared to the non-adapted strain, in 

spite of the fact that the adapted strain presented higher levels of CAT. Also, acetic acid 

causes an oxidative imbalance, with the consequent increase in antioxidant defenses 

(increase in CAT, among others) (Giannasttasio et al. 2015). Although it does not allow the 

redox state to return to the initial values (evidenced by the higher level of ROS than was 

present), it makes it possible to withstand the highest levels of ROS (Martani et al. 2013), 

found in the adapted strains.  

In the engineered clone, CAT and GST activity was higher in both control and oxidative 

conditions. Indeed, CAT seems to play a relevant role as an antioxidant defense in this 

yeast. The increase observed in the Y8A strain, when exposed to the highest H2O2 

concentration applied, could be indicative of an antioxidant response. High CAT activity 

probably provides a yeast with higher tolerance to the other stress conditions used in this 

work (Lewis et al. 1997).  
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While the adapted strain had higher levels of GST activity, treatment with the highest 

hydrogen peroxide concentration used diminished the activity of the enzyme. This could be 

due to either a direct effect on the structure, or on the active site of the enzyme, as well as 

to the inhibition of certain synthesis steps, caused by the oxidative imbalance induced by 

H2O2  (Bray et al. 1974). 

Assuming a common basis for the stress co-tolerance of S. cerevisiae, these types of 

antioxidant enzyme activity would be able to neutralize or decrease the effects of the 

stresses on the yeast cell.  

SOD enzyme activity of the parental and adapted strains was found to be at comparable 

levels under the all the conditions tested. This study is further experimental evidence for the 

hypothesis first postulated by Giannattasio et al. 2005 that in S. cerevisiae, H2O2 

detoxification rather than superoxide detoxification, plays a major role in preventing yeast 

cell damage or death in response to acetic acid and probably to other stresses 

The link found between saline and oxidative biomarker production could apply to other 

stresses such as those used in this work. This must be verified with other non-oxidative 

stresses, but the results presented here support the hypothesis that tolerance to oxidative 

stress is a good indicator of multiple stress tolerance in this yeast species. 

Taken as a whole, our results suggest that the ability of S. cerevisiae to co-tolerate stresses, 

indicative of its general robustness, could be linked to its capacity for H2O2 detoxification, 

and also point to the fact that the maintenance of intracellular redox balance is pivotal for S. 

cerevisiae to resist multiple stressors.  

The adapted strain not only produced bioethanol in a synthetic medium (YNBD12%) but 

also in a lignocellulosic based medium (JH12%). The results found are indicative that the 

adapted strain was specifically tolerant to inhibitors present in the acid hydrolysate and 
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could be used to produce bioethanol in this non-detoxified agroindustrial residue. 

Moreover, if the cellulosic raw material contains appropriate levels of fermentable sugars, 

bioethanol production could reach adequate commercial levels. 

Finally, we obtained a robust clone with better ethanol fermentation performance in the 

presence of acetic acid when compared with the isogenic parental strain.  
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Table 1 Survival rate percentages in different acetic acid concentration and times of 

exposure.  

Strain 6 g l-1 acetic acid 8 g l-1 acetic acid 10 g l-1 acetic acid 

 2h 4h 6h 2h 4h 6h 2h 4h 6h 

Y8 83.6±8.9 67.05±11.3 19.1±1.3 61.6±9.3 13.7±3.9 1.03±0.03 21.2±6.8 0.4±0.04 0.09±0.009 

Y8A 113.1±15.7 101.5±13.6 75.3±13.3 108.6±12.8 66.6±7.5 16.3±0.1 96.6±5.8 54.9±5.5 13.1±1.9 

Experiments have been performed in duplicate. The results represent the mean values ± SD of two 

independent experiments. 
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