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Abstract

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders of adrenal

steroidogenesis. Disorders in steroid 21-hydroxylation account for over 95% of patients with

CAH. Clinically, the 21-hydroxylase deficiency has been classified in a broad spectrum of clinical

forms, ranging from severe or classical, to mild late onset or non-classical.

Known allelic variants in the disease causing CYP21A2 gene are spread among different sources.

Until recently, most variants reported have been identified in the clinical setting, which presum-

ably bias described variants to pathogenic ones, as those found in theCYPAlleles database.Never-

theless, a large number of variants are being described inmassive genomeprojects,many ofwhich

are found in dbSNP, but lack functional implications and/or their phenotypic effect. In this work,

we gathered a total of 1,340 GVs in the CYP21A2 gene, fromwhich 899 variants were unique and

230 have an effect on human health, and compiled all this information in an integrated database.

We also connected CYP21A2 sequence information to phenotypic effects for all available muta-

tions, including double mutants in cis. Data compiled in the present work could help physicians in

the genetic counseling of families affected with 21-hydroxylase deficiency.
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1 BACKGROUND

Congenital adrenal hyperplasia (CAH; MIM# 201910, E.C.1.14.14.16)

is a group of autosomal recessive disorders of adrenal steroidogenesis.

Disordersof steroid21-hydroxylationaccount forover95%ofpatients

with CAH. Clinically, the 21-hydroxylase deficiency has been classi-

fied in a broad spectrum of clinical forms, ranging from severe or clas-

sical, to mild late onset or non-classical (NC). Classical CAH includes

the salt-wasting (SW) and simple virilizing (SV) forms, both of early

onset. Females with classical CAH are typically born with ambiguous

genitalia, while patientswithNCCAHexhibit clinicalmanifestations of

hyperandrogenism (Miller, 1994;New,White, Pang, Dupont, & Speiser,

1989;White & Speiser, 2000).

The 21-hydroxylase enzyme consists of 495 amino acids with a

molecular weight of 52 kDa (Higashi, Yoshioka, Yamane, Gotoh, &

Fujii-Kuriyama, 1986; Nebert et al., 1991). 21-Hydroxylase displays

endoplasmatic reticulum localization, reducing molecular oxygen and

hydrolyzing two natural substrates: 17-hydroxyprogesterone and pro-

gesterone (White & Speiser, 2000).

The gene encoding 21-hydroxylase enzyme, CYP21A2 (MIM#

613815; GenBank ID 1589), spans 3.35 kb of the short arm of chro-

mosome 6 (6p21.3) and consists of 10 exons and a 1,488 bp open

HumanMutation. 2018;39:5–22. c© 2017Wiley Periodicals, Inc. 5wileyonlinelibrary.com/journal/humu



6 SIMONETTI ET AL.

reading frame (Higashi et al., 1986; White et al., 1986). It is located

within the human leukocyte antigen complex, in the so-called RCCX

module. Approximately two thirds of the chromosomes analyzed

have a duplicated RCCX module that includes a genomic DNA

segment composed of the pseudogenes STK19 (RP2), CYP21A1P,

TNXA, and a second active copy of the C4 (long or short) gene

(Blanchong et al., 2000; Koppens et al., 1992). The active gene

CYP21A2 and its pseudogene CYP21A1P present 98% sequence iden-

tity; they differ in approximately 65 nucleotides. Due to the high

degree of sequence identity, most of the disease-causing mutations

described in 21-hydroxylase deficiency are likely to be the conse-

quence of non-homologous recombination or gene conversion events

(Donohoue et al., 1986; Higashi, Tanae, Inoue, & Fujii-Kuriyama,

1988). Nevertheless, an increasing number of novel or rare muta-

tions have been found in disease-causing alleles during the last three

decades (https://www.cypalleles.ki.se/cyp21.htm). Mutations in the

CYP21A2 gene cause varying degrees of 21-hydroxylase activity loss.

In vitro studies revealed that mutations leading to a complete inac-

tivation of 21-hydroxylase are usually associated with the SW phe-

notype. Mutations that reduce enzyme activity close to 2% cause

the SV phenotype, whereas those with a residual enzymatic activ-

ity in the range of 20% to 60% result in the mild NC CAH phe-

notype. In addition, a great number of patients are compound het-

erozygotes carrying different CYP21A2 mutations on each allele, and

their phenotypes depend on the milder gene defect (Speiser & White,

2003).

The most comprehensive publicly available database (DB) regard-

ing the clinical effects of genetics variants (GVs) in the CYP21A2 gene

is CYPAlleles, which contains 169GVs, but has not been updated since

March 2011. On the other hand, a large number of variants are being

described in massive genome projects, many of which are found in

dbSNP, but lack functional implications and/or their phenotypic effect.

With the aim of providing health professionals useful information

for 21-hydroxylase deficiency, we have compiled and curated data

fromdifferent sources tobuild upaDBof theGVsof theCYP21A2gene

and their biological effects.

2 CYP21A2 GENETIC VARIANTS AND

DATABASES

We compiled the information regarding GVs for the CYP21A2

gene from six publicly available DBs: CYPAlleles (https://

www.cypalleles.ki.se/cyp21.htm), NCBI's dbSNP (https://www.nc

bi.nlm.nih.gov/SNP/) (Sherry et al., 2001), NHLBI-ESP's EVS (https://

evs.gs.washington.edu/EVS/), ExPASy's SwissVar (https://swissvar.exp

asy.org/cgi-bin/swissvar/home) (Mottaz, David, Veuthey, & Yip, 2010),

GWAS Central (www.gwascentral.org) (Beck, Hastings, Gollapudi,

Free, & Brookes, 2014), and ExAC (https://exac.broadinstitute.

org/) (Lek et al., 2016), which is mostly included in dbSNP. The ease

with which data were retrieved from the different DBs, depended on

the options offered by each one of them (Figure 1A): dbSNPwas easily

accessed and consulted through Biopython's “Entrez” package (Cook

et al., 2009), while EVS, SwissVar, GWAS Central, and ExAC offered

a link to download the information as a CSV file. CYPAlleles required

manual copying of the GVs from the HTML table, as it does not offer

any other way to download the information.

In order to integrate the information from the different sources into

a singleDB,wefirst had to establish a unique identifier. Among theDBs

we explored, “rs#” and HGVS are the most frequently used identifiers.

The “rs#” accounts for positions in a gene, so a single one can contain

multiple GVs, not allowing a one-to-one unambiguous identification. In

addition, not every GV has an “rs#” value. An alternative way of iden-

tifying GVs is by referring to the base or amino-acid substitution and

a position in a determined scaffold (chromosome, contig, mRNA, CDS,

etc.). HGVS offers a system to name variants at DNA, RNA, and pro-

tein levels in a very precise way (Dunnen et al., 2016), but the exact

change and position refers to a certain scaffold, and not every DB uses

the same one. In addition, in some occasions, the same GV has a differ-

ent nomenclature, as not all DBs or the bibliography follow the same

naming recommendations.

We developed an algorithm (Supp. Methods) to relativize the GVs

positions to that of the scaffold GRCh38.p7 (chromosome 6), that is

used by the dbSNP DB, limiting the analysis to the region comprising

2,000bpupstream theCYP21A2 translation start-site, and only 480bp

downstream its 3′ UTR, due to its overlap with the 3′ UTR of the TNXB

gene. The algorithm was implemented in the Python 2.7 programming

language (https://www.python.org), and utilizes an alignment of the

DNA sequences used as reference by the different DBs (Figure 1A).

SwissVar DB, that has only amino acid sequences, was fed last to the

algorithm so it could use the previously stored information to assign

thegenetic substitutions to theaminoacid variants,whenpossible. The

final “Integrated DB” has the compiled information under four differ-

ent IDs (the genomic and cDNAposition+ substitution and, if available,

the amino acid position+substitution and the “rs#”) (Supp. Table S1). In

addition, when available, this DB also contains information regarding

the effect of eachGVonhumanhealth (“allele associatedphenotype” in

Supp. Table S1), classified considering the combined information of the

reported phenotype in patients, themutation/s present in the homolo-

gous allele and/or the in vitro activity.

A total of 1,248 GVs were compiled from the different DBs, com-

prising 827 unique GVs (Figure 1B and Supp. Table S2). In addition,

71 GVs not present in the six DBs analyzed were found among the

133 publications reviewed for the present work. Furthermore, we

included a novel GV (GenBank accession number: MF401543); found

in an individual from our cohort (see Supp.Methods for details). All the

GVs with a known effect on human health were uploaded to ClinVar

(https://www.ncbi.nlm.nih.gov/clinvar/).

It is interesting to note that dbSNP and CYPAlleles altogether

account for 99.3% of all GVs from the six analyzed DBs, with only

ExAC and SwissVar contributing 1 and 5 uniqueGVs, respectively (Fig-

ure 1B). Although dbSNP is the DB that contributed the most GVs

(N = 727), these only account for 41.4%of the 169GVs gathered from

CYPAlleles (Supp. Table S2).

The number of genetic variants reported for CYP21A2 had grown

exponentially during the past years thanks to new sequencing

technologies and human sequencing projects (Figure 1C). In fact,

since CYPAlleles DB was last updated in 2011, ∼600 new GVs
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F IGURE 1 Compilation of genetic variants. A: The pipeline used to compile the different GVs from the DBs consulted in this work is shown as a

flowchart.On the left, theDBshave been classified according to the ease to download itsGVs, as easy (green)when they offer away to interactwith

them through scripting, medium (yellow) when there is a way to manually download the data, and hard (red) when the data have to be retrieved

from theHTML. To integrate the information from the differentDBs, eachGVwas relativized to the same scaffold using scripting and the alignment

of the different sequences used by each DB (cogs on the right). SwissVar, a protein DB, is shown in dotted line. The “hand” icon stands for “by

hand,”while the two interlaced, blue and yellow snakes icon, is thePythonprogramming language logo (emoji by https://www.emojidex.com). B: The

contribution of the four DBs that contain all the unique GVs found through the pipeline described in (A) is shown as a Venn diagram. The diagram

was generatedwithVenny 2.1 (Oliveros 2007–2015). C: The cumulative number ofGVs from translated (blue) and non-translated (orange) regions,

reported over the years since CYP21A2 was first described, is shown in, along with important milestones regarding sequencing technologies and

human sequencing projects. The number of GVswith a reported effect on human health is shown superimposed as a dashed line

have been reported, including ∼60 GVs with an effect on human

health.

3 MUTATION TYPES IN THE CYP21A2

GENE

From the total of 899 unique variants, 460 were found affecting the

translated region (TR), and439 thenon-translated region (NTR, includ-

ing the 5′ and 3′ near gene sequences, UTRs and introns) (Supp. Table

S1). The distribution of all GVs with an effect on human health, either

pathogenic (N = 212) or benign (N = 18), is displayed inFigure2 (Supp.

Figure S1 depicts the same GVs but noted either by their “c.” (NTR) or

“p.” (exonic) descriptor according to theM12792.1 reference sequence

of Higashi et al., 1986).

From the 460 variants affecting TR, 401 were single nucleotide

substitutions. Out of these, 281 (∼70%) were missense mutations,

which also represent the majority of the GVs found to have an effect

on human health (153 out of the 230GVs; Supp. Table S1 and Figure 2),

and as expected, they were related to all clinical forms of the disease.

The degree of severity of each of the mutants depends on the nature

of the amino-acid change and/or the position in the protein (Robins,

Carlsson, Sunnerhagen, Wedell, & Persson, 2006; White & Speiser,

2000).

Nonsense (N = 28) and frameshift (N = 32) mutations may cause

either a premature stop codon or the addition of a considerable num-

ber of amino acids to the carboxy-terminal end of the protein (Figure 2

and Supp. Table S1). From the total of 60 nonsense and frameshift GVs

found, 52 were reported in the clinic, and all of them are related to the

classical form of the disease, mainly the SW form.

Only 12 GVs cause an in frame change (deletions, duplica-

tions, and indels), from which eight have been identified in the

clinic, causing diverse effects on the phenotype: p.L10del, p.(W22_

P58dup), p.P46L (c.137_138delinsTG), p.(D68_V71dup), p.S102N



8
SIM

O
N
E
T
T
I
E
T
A
L.

F IGURE 2 Distribution of GVs with known effect over the CYP21A2 gene. The positions of all GVs with a reported or deduced effect on human health, both pathogenic (SW, SV, NC, and intermediate

forms) and benign (normal), are shown. The CYP21A2 gene is represented in the middle, depicting the 5′ UTR (green) and the 3′ UTR (red), the 10 exons (numbered yellow boxes) and 9 introns (lines in

between). On the upper region, every line represents the position of each GVwith a given effect, while on the bottom, the sameGVs are noted either by their “c.” (coding DNA) or “p.” (protein) descriptor,

according to the GRCh37.p13/GRCh38.p7 NC_000006.12 reference sequence fromGRCh38.p7 (RefSeq for cDNA: NM_000500.7; Protein: NP_000491.4). If two different GVs cause the same effect on

the protein sequence, the “p.” identifier is noted only once. The same color scheme is followed in both regions. The four GVs that conform the promoter conversion (Chang and Chung, 1995) are shown

grouped. &Marks thenineGVswhere there is uncertainty regarding its effect onhumanhealth (phenotypic effect accompaniedby “?” in Suppl. Table S1); #Marks the13GVs thatwere artificially introduced

and their in vitro activity tested, but were not found in patients
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(c.304_305delinsAA); p.E197del, p.Q390_A392del, p.(M474_R480

dup).

Finally, we compiled 439 GVs located in the NTR, 19 of which have

a reported effect on human health (Figure 2 and Supp. Table S1). The

intronic regions contain 290 GVs, from which 15 affect the consensus

splicing sites. Regarding the 5′ and 3′ UTRs and near regions, only two

GVs with known effect on the phenotype have been described: from

the four GVs that produce the promoter conversion (c.[-126C > T;-

113G > A;-110T > C;-103A > G]) c.-126C > T has been observed

alone causing the NC form of the disease (Araújo et al., 2007), and the

c.*13C > T, also related to the NC form (Cargill et al., 1999; Menabò

et al., 2012) (Figure 2).

4 CYP21A2 GENETIC VARIANTS:

GENOTYPE–PHENOTYPE CORRELATION

As shown in Figure 2, the distribution of GVs with an effect on human

health is in general homogeneous along the TR, although exon 2 and 5

show a diminished ratio of the GVs per exon length (data not shown).

Themajority of the GVs encode for the classical form of the disease

(156 out of the 230 GVs), while at least 43 mutants are related to the

mild NC form. Although many of the GVs can be linked to a particular

form of the disease, there are some GVs that have been found occupy-

ing an intermediate position, associated with two forms, establishing a

gradient along the severity of the phenotypic effects observed.

There are 122 variants whose enzymatic residual activity (ERA)

has been tested in vitro (Supp. Table S1). Most of the GVs related

to the classical form show an ERA below 10% (62 out of 65, 95.4%).

Among these, the ERAs of the 91.9% of GVs associated with the SW

phenotype are below 2% (34 out of 37). About 90% of GVs related

to the NC phenotype show an ERA between 10% and 78% (27 out

of 30).

There are 27 GVs where, although coming from the clinic, their

severity could not be ascertained (Table 1). These GVs lack a reported

in vitro activity and either no information of the patient phenotype

or the mutation on the homologous allele is provided in the bibliogra-

phy, the phenotype is explained by mutations present on the homol-

ogous allele (mostly NC patients with mild substitutions), they were

found in carrier individuals or the GV is located in cis with another

mutation.

All GVs (as point mutations) found in the clinic that have not been

uploaded or updated in CYPAlleles are shown in Table 2, where 64 new

GVs occur in the TR, 12 new GVs affect the introns, two the promoter

region, andone the3′ UTR.Also included inTable 2 are17updatedGVs

that were present in CYPAlleles, but new information regarding their

effect and/or functionality has been published.

5 DOUBLE MUTANTS IN CIS

A number of 21-hydroxylase deficient alleles have been reported with

two or more mutations occurring in cis. Table 3 discloses 43 double

mutants in cis not present in CYPAlleles retrieved from the bibliogra-

phy (not included in this table are micro-conversions that often pro-

duce neighboring mutations and the so-called chimeras that may con-

tain several mutations). Only three of these double mutants have been

tested in vitro, nevertheless most of them present an associated effect

on human health, mostly classical CAH (35 out of the 43), with 27 asso-

ciated to the SW form of the disease.

6 FUTURE PROSPECTS AND

CONCLUSIONS

The 21-hydroxylase deficiency is the most common cause among

patients with CAH. The classical form has an overall incidence of

1:15,000 live births (Pang and Shook, 1997; Therell, 2001; Van der

Kamp and Wit, 2004), while NC CAH is one of the most common

autosomal recessive disorders in humans and affects approximately

one in 1,000 individuals, more frequent in certain ethnic groups such

as Jews of Eastern Europe, Hispanics and Yugoslavs (Speiser et al.,

1985).

In the three decades passed since CYP21A2 (previously called

P450c21B, CYP21B, or CYP21) was first described, many GVs have

been reported. Until recently, most variants reported in the CYP21A2

gene were identified in the clinic, as those found in the CYPAlleles

DB. However, a large number of GVs are being described in massive

genome projects, many of which are found in dbSNP, but lack func-

tional implications and/or their phenotypic effect. Moreover, some of

the GVs are not even deposited in a DB, with the consequence that the

information is spread in several sources and in some circumstances

hard to be identified.

With the aim to join all this information, make it widely accessible

and linking the effects of GVs to their phenotypic outcomes, we have

gathered all the information regardingGVs for theCYP21A2 gene from

six publicly available DBs and from publications and compiled it in an

integrated DB.

Even though an effort was made toward the design and imple-

mentation of tools to automate the collection and integration of GVs’

information, it was not possible to consider every case, and manual

curation was necessary in many cases. That was particularly true for

information regarding the effect of GVs on human health, absent in

most of theDBs explored, highlighting the importance of DBs aimed at

gathering clinical information, like ClinVar (Landrum et al., 2016) and

LOVD (Fokkema et al., 2011).

In addition, when compiling the information into the integrated DB,

the HGVS naming recommendations were applied to all GVs (Dunnen

et al., 2016). Through this process, and especially when applying the

3′ naming rule, we found cases where the same GV was reported as

different changes. Also, some frameshifts descriptions were fixed to

start with the first new amino acid.

21-Hydroxylase deficiency is an autosomal recessive disorder with

the underlying phenotype related to the residual activity of the milder

allele. Although there is in general a good genotype–phenotype cor-

relation (Dain et al., 2002; Krone, Braun, Roscher, Knorr, & Schwarz,
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TABLE 1 CYP21A2GVs found in the clinic with uncertain severity

g.(GRCh38.p7) c.(GRCh38.p7) p.(GRCh38.p7) Patient´s phenotype Homologous allele References

g.32038423A>C c.1A>C p.? Unknown Unknown Tardy andMorel, 2007a

g.32038538A> T c.116A> T p.(H39L) Unknown Unknown Tardy, 2006

g.32038551del c.129del p.(D44fs) Unknown Unknown Zeng et al., 2004

g.32038565A>G c.143A>G p.(Y48C) Unknown Unknown Tardy et al., 2007

g.32038727G> T c.208G> T p.(V70L) SV p.[(Q319*);R357W];
[H63L;(V70L)]a

Wang et al., 2016

g.32038816G>A c.292+5G>A p.? SW p.[?];[?;V282L]b Friães et al., 2006

g.(32039142C>A) c.(341C>A) p.(S114Y) NC p.V282L New et al., 2013

g.32039199G>A c.398G>A p.(R133H) NC p.[V282L];[(R113H);V282L]a Bruque et al., 2016

g.32039812G>A c.715G>A p.(E239K) Unknown Unknown Kirac et al., 2014

g.32040056G>C c.790G>C p.(G264R) Normal WT This reportd

g.(32040183T>A) c.(917T>A) p.(V306D) Unknown Unknown Haider et al., 2013

g.(32040416G> T) c.(950G> T) p.(R317L) NC p.V282L New et al., 2013

g.(32040431T>C) c.(965T>C) p.(L322P) Unknown Unknown Haider et al., 2013

g.32040473C> T c.1007C> T p.(P336L) NC p.[?];[V282L; (P336L)]a ,c Bruque et al., 2016

g.32040477C>G c.1011C>G p.(Y337*) NC p.V282L Bernal González et al., 2006

g.32040566G>A c.1100G>A p.(R367H) Unknown Unknown Haider et al., 2013

g.(32040693G>A) c.(1144G>A) p.(G382S) Unknown Unknown Haider et al., 2013

g.32040709C> T c.1160C> T p.(P387L) Unknown Unknown Haider et al., 2013

g.32040713C>G c.1164C>G p.(N388K) NC p.V282L Wasniewska et al., 2009

g.(32040764C>R) c.(1215C>R) p.(F405L) NC p.V282L New et al., 2013

g.32040772G>C c.1222+1G>C p.? Unknown Unknown Krone et al., 2013

g.32040919_32040927del c.1273_1281del p.(G425_R427del) NC p.P31L New et al., 2013

g.32040926G>C c.1280G>C p.(R427P) NC p.V282L Finkielstain et al., 2011

g.32040944C> T c.1298C> T p.(P433L) NC p.P454S Carvalho et al., 2012

g.(32040980G>C) c.(1334G>C) p.(R445P) Unknown Unknown Haider et al., 2013

g.32041027_32041044del c.1381_1398del p.(S461_P466del) Unknown p.V282L Bidet et al., 2009

g.32041091A>C c.1445A>C p.(Q482P) SW p.[?];[P483S;(Q482P)]a Di Pasquale et al., 2005

For eachGV, theposition and substitution for the genomicDNA, the codingDNA, and theprotein sequence level are shown (RefSeq forDNA:NC_000006.12;
cDNA: NM_000500.7; Protein: NP_000491.4). When available, the mutation found on the homologous allele is also shown. SW, salt wasting; SV, simple
virilizing; NC, non-classical;WT, wild type.
aThese patients have amutation in cis and therefore the complete genotypewas included.
bThis patient presented a partial conversion.
cThis patient presented a conversion or a deletion in the homologous allele.
dThis was studied to exclude a carrier condition.

2000; Finkelstein et al., 2011; Marino et al., 2011), exceptions have

been found (New et al., 2013). Moreover, although 21-hydroxylase

deficiency is typically classified into three different forms, the fact that

someGVs associatewithmore than one phenotypic effect (as shown in

this work) is in line with the idea that the disease represents a continu-

ous phenotypic spectrum. Indeed, several factors may be responsible

for the genotype–phenotype variability in patients with CAH. Extra-

adrenal 21-hydroxylase activity have been described (Gomes et al.,

2009), and it was suggested that genes related to the fetal androgen

synthesis could modulate the degree of external genitalia virilization

(Kaupert et al., 2013).

Due to the proximity and the high degree of sequence identity

between the geneCYP21A2 and its pseudogeneCYP21A1P,most of the

patients displayed the 10 most frequent pseudogene-derived muta-

tions. Nevertheless, the great majority of the disease-causing muta-

tions found in the CYP21A2 gene listed in the present work and

depicted in Figure 2 are rare ones and were found in a single family or

at most in a reduced number of patients. It must be noted, that there

may be variations in the measured activities in vitro depending on the

assay technology used (ex vivo systems of COS1/COS7 cells, yeast co-

expression system, bacterial expression systems, etc.) and that only

the percentage of enzyme conversion is provided; biochemical param-

eters such as Km or Vmax are not reported. In that sense, when more

than one activity was reported for the same mutation, the most accu-

rate, newest, and better related to patient's phenotype was preferred

to incorporate in the integrated DB. Therefore, the compiled data are

intended to be used only as a guideline when providing professional

genetic counseling.

In the post-genomic and personalized medicine era, a large amount

of genetic information is expected to accumulate. A comprehensive
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TABLE 2 Compilation of GVs (as point mutations) found in the clinic that have not been uploaded or updated in CYPAlleles

Rare variants

In vitro activity

g.(GRCh38.p7) c.(GRCh38.p7) p.(GRCh38.p7)
Allele associated
phenotype 17OHP P References

g.32038424T>C c.2T>C p.? SW-SV ND ND Kirac et al., 2014;
Toraman et al.,
2013

g.32038459C>A c.37C>A p.L13M Normal 99± 1 100± 1 De Paula
Michelatto
et al., 2016

g.32038471C> T c.49C> T p.R17C Normal 95± 3 81± 3 De Paula
Michelatto
et al., 2016

g.32038546C> T c.124C> T p.(Q42*) SW ND ND Marino et al.,
2011

g.32038559_32038560
delinsTG

c.137_138delinsTG p.P46L SW-SV? 105± 10.6 ND Brønstad et al.,
2014

g.32038793A>G c.274A>G p.(R92G) SW ND ND Wang et al., 2016

g.(32038793A> T) c.(274A> T) p.(R92*) SW ND ND New et al., 2013

g.32039105_32039106
delinsAA

c.304_305delinsAA p.S102N NC-Normal? 94± 3 74± 2 De Paula
Michelatto
et al., 2016

g.32039124T>A c.323T>A p.(L108Q) SV-NC ND ND Bruque et al.,
2016

g.(32039142C>A) c.(341C> T) p.(S114Y) ND ND New et al., 2013

g.32039142C> T c.341C>A p.S114F SV 4± 1 4± 2 De Paula
Michelatto
et al., 2016;
Haider et al.,
2013

g.32039169T>C c.368T>C p.L123P SW 1.42± 2.13 −1.86± 5.19 Massimi et al.,
2014

g.32039169T>G c.368T>G p.(L123R) NC ND ND Bruque et al.,
2016

g.32039174C> T c.373C> T p.R125C SV-NC? ND 16± 0.6 Krone et al., 2013

g.32039190T>C c.389T>C p.(L130P) SW ND ND Milacic et al., 2015

g.32039222G>A c.421G>A p.E141K SW? 11.30± 2.4 ND Brønstad et al.,
2014

g.32039225C> T c.424C> T p.(Q142*) SW ND ND Krone et al., 2013

g.32039235A>C c.434A>C p.(Q145P) SW ND ND Wang et al., 2016

g.32039357G>C c.449G>C p.R150P NC 23.4± 1.7 16.9± 2 Chu et al., 2013

g.32039360T>G c.452T>G p.M151R SV-NC? 17.66± 1.87 4.57± 1.87 Massimi et al.,
2014

g.32039368C> T c.460C> T p.(Q154*) SW ND ND Wang et al., 2016

g.32039386G>A c.478G>A p.A160T Normal 126.6± 29.9 ND Brønstad et al.,
2014

g.32039392G> T c.484G> T p.E162* SW 0.29± 0.11 0.18± 0 Massimi et al.,
2014

g.32039402T>C c.494T>C p.(F165S) CL ND ND Wang et al., 2016

g.32039404T>C c.496T>C p.(S166P) NC ND ND Milacic et al., 2015

g.32039570T>C c.574T>C p.Y192H NC 37.1± 7 25.8± 9 Concolino et al.,
2012

g.32039603A>G c.607A>G p.S203G NC-Normal 85± 2 81± 3 De Paula
Michelatto
et al., 2016

(Continues)
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TABLE 2 (Continued)

Rare variants

In vitro activity

g.(GRCh38.p7) c.(GRCh38.p7) p.(GRCh38.p7)
Allele associated
phenotype 17OHP P References

g.32039630G>A c.634G>A p.V212M Normal? 99.5± 32.4 ND Brønstad et al.,
2014; Kirac
et al., 2014

g.32039759del c.662del p.(N221fs) SW ND ND Girgis, Ajamian, &
Metcalfe, 2013

g.32039773_32039774
del

c.676_677del p.(R226fs) SW ND ND New et al., 2013

g.32039812G>A c.715G>A p.(E239K) ND ND Kirac et al., 2014

g.32040053dup c.787dup p.(Q263fs) SW ND ND Finkielstain et al.,
2011

g.32040056G>C c.790G>C p.(G264R) ND ND This report

g.32040062G> T c.796G> T p.A266S Normal 90± 9 104± 15 Barbaro et al.,
2014

g.32040069C> T c.803C> T p.P268L Normal 97± 1 87± 7 De Paula
Michelatto
et al., 2016

g.32040113C>A c.847C>A p.H283N SV 1.6± 6 2.7± 5 Concolino et al.,
2012

g.32040180T>A c.914T>A p.(V305E) SW ND ND Wang et al., 2016

g.(32040183T>A) c.(917T>A) p.(V306D) ND ND Haider et al., 2013

g.32040185T>G c.919T>G p.(F307V) NC ND ND Haider et al.,
2013; Khajuria,
Walia, Bhansali,
& Prasad, 2017

g.(32040188T>G) c.(922T>G) p.(L308V) NC ND ND New et al., 2013

g.(32040416G> T) c.(950G> T) p.(R317L) ND ND New et al., 2013

g.(32040431T>C) c.(965T>C) p.(L322P) ND ND Haider et al., 2013

g.32040469del c.1003del p.(V335fs) SW ND ND Krone et al., 2013

g.32040521A> T c.1055A> T p.(E352V) SW-SV ND ND Carvalho et al.,
2016

g.32040562C>A c.1096C>A p.(H366N) NC ND ND Khajuria et al.,
2017

g.32040566G>A c.1100G>A p.(R367H) ND ND Haider et al., 2013

g.(32040693G>A) c.(1144G>A) p.(G382S) ND ND Haider et al., 2013

g.32040709C> T c.1160C> T p.(P387L) ND ND Haider et al., 2013

g.32040715T>G c.1166T>G p.L389R SW 1.1± 0.6 ND Brønsta et al.,
2014

g.32040717_32040725
del

c.1168_1176del p.Q390_A392del SW 0± 0 <1±ND De Paula
Michelatto
et al., 2016

g.32040764C> R c.1215C>R p.(F405L) ND ND New et al., 2013

g.32040872G>A c.1226G>A p.(R409H) SW-SV ND ND Finkielstain et al.,
2011

g.32040918_32040922
del

c.1272_1276del p.(G425fs) SW ND ND Finkielstain et al.,
2011

g.32040919_32040927
del

c.1273_1281del p.(G425_R427del) ND ND New et al., 2013

g.32040926G>C c.1280G>C p.(R427P) ND ND Finkielstain et al.,
2011

g.32040931T>C c.1285T>C p.(C429R) SW ND ND Wang et al., 2016

g.(32040947T>C) c.(1301T>C) p.(L434P) SW ND ND New et al., 2013

g.(32040980G>C) c.(1334G>C) p.(R445P) ND ND Haider et al., 2013

(Continues)
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TABLE 2 (Continued)

Rare variants

In vitro activity

g.(GRCh38.p7) c.(GRCh38.p7) p.(GRCh38.p7)
Allele associated
phenotype 17OHP P References

g.32040998C> T c.1352C> T p.T451M NC 78± 6 43± 5 De Paula
Michelatto et al.,
2016

g.32041025C> T c.1379C> T p.(P460L) SW-SV ND ND Wang et al., 2016

g.32041039del c.1393del p.(L465fs) SW ND ND Wang et al., 2016

g.32041047dup c.1401dup p.(C468fs) SW ND ND Bruque et al., 2016

g.32041090C> T c.1444C> T p.Q482* SW 2.98± 4.08 0.07± 0.35 Massimi et al., 2014

g.32041129dup c.1483dup p.(Q495fs) SW ND ND Kirac et al., 2014

GVswith updated information

g.32039109G>A c.308G>A p.R103K Normal 119.7± 22.5 ND Rodrigues et al.,
1987; Brønsta
et al., 2014

g.32039198C> T c.397C> T p.R133C NC 35.40± 7.4 15.5± 2.7 0 Minutolo et al.,
2011; Taboas
et al., 2014

g.32039220T>A c.419T>A p.V140E SW 0.7± 1.3 0.5± 0.6 Barbaro et al.,
2012; Robins
et al., 2006

g.32039243T>C c.442T>C p.C148R SV-NC 4.3± 0.9 3.6± 1.8 Barbaro et al.,
2012; Robins
et al., 2006

g.32039356C> T c.448C> T p.R150C NC 35.8± 14.6 47.3± 12.9 Minutolo et al.,
2011; Taboas
et al., 2014

g.32039797A>G c.700A>G p.R234G NC 8± 2 2± 1 Robins et al.,
2006; Barbaro
et al., 2014

g.32040116A>G c.850A>G p.M284V NC 16.2± 9.3 19± 6.8 Minutolo et al.,
2011; Taboas
et al., 2014

g.32040140G>C c.874G>C p.G292R SW 0.5± 0.7 0.7± 0.2 Barbaro et al.,
2012;
Stikkelbroeck
et al., 2003

g.32040153C>A c.887C>A p.T296N SW-SV 5.0± 1.6 0.8± 0.4 Barbaro et al.,
2012; Robins
et al., 2006

g.32040191C> T c.925C> T p.L309F SV 0.2± 0.3 0.1± 0.3 Barbaro et al.,
2012; Robins
et al., 2006

g.32040490C> T c.1024C> T p.R342W SV-NC 5± 0.4 4± 3 Gunn, Sherman, &
Therrell, 1993;
Barbaro et al.,
2014

g.32040565C> T c.1099C> T p.R367C NC 37± 7 28± 4 Robins et al.,
2006; Barbaro
et al., 2014

g.32040940G>A c.1294G>A p.E432K NC 26.2± 3.8 24.2± 7.4 Dain et al., 2006;
Taboas et al.,
2014

g.32040952C> T c.1306C> T p.R436C NC ND 6.5± 0.9 Deneux et al.,
2001; Krone
et al., 2013

g.32040997A>C c.1351A>C p.T451P SW <1±ND <1±ND Baradaran-Heravi
et al., 2007:
Michelatto
et al., 2016

(Continues)
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TABLE 2 (Continued)

GVswith updated information

In vitro activity

g.(GRCh38.p7) c.(GRCh38.p7) p.(GRCh38.p7)
Allele associated
phenotype 17OHP P References

g.32041068G> T c.1422G> T p.M474I NC-Normal 85± 7 66± 12 Barbaro et al.,
2012; Robins
et al., 2006

g.32041096C> T c.1450C> T p.R484W SW ND 2.9± 1.5 Jiang et al., 2012;
Kharrat et al.,
2004

GVs in promoter, introns, and 3´UTR

g.(GRCh38.p7) c.(GRCh38.p7) p.(GRCh38.p7)
Allele associated
phenotype Functional assay References

g.32038320A>G c.-103A>G p.? Yes Chin et al., 1998

g.32038297C> T c.-126C> T p.? NC Yes Araújo et al., 2007

g.32038812G>A c.292+1G>A p.? SW Yes Lee et al 2001

g.32039087C>G c.293-7C>G p.? SW Yes Rubtsov et al., 2011

g.32039249G>A c.447+1G>A p.? SW No Raisingani et al., 2016

g.32039458G>C c.549+1G>C p.? SW No Wang et al., 2016

g.32039545G>A c.550-1G>A p.? SW No Concolino et al., 2017

g.32039741T>A c.652-8T>A p.? CL No Concolino et al., 2017

g.32039747A>G c.652-2A>G p.? SW Yes Taboas et al., 2014

g.32040585G>A c.1118+1G>A p.? SW No Finkielstain et al., 2011

g.32040666A>G c.1119-2A>G p.? SW No Concolino et al., 2017

g.32040772G>C c.1222+1G>C p.? No Krone et al., 2013

g.32040860C>A c.1223-9C>A p.? SW Yes Katsumata, Shinagawa,
Horikawa, & Fujikura,
2010

g.32040868G>A c.1223-1G>A p.? SW No Finkielstain et al., 2011

g.32041147G>A c.*13G>A p.? NC Yes Cargill et al., 1999;Menabò
et al., 2012

For eachGV, theposition and substitution for the genomicDNA, the codingDNA, and theprotein sequence level are shown (RefSeq forDNA:NC_000006.12;
cDNA: NM_000500.7; Protein: NP_000491.4). When available, the allele associated phenotype and the in vitro activity (expressed as the percentage of
activity relative to the wild-type enzyme) are also shown. ND, not determined; SW, salt wasting; SV, simple virilizing; CL, classic (when there is no certainty
about the effect of a GV as either SW or SV); NC, non-classical; empty cells, GVs whose effect on the phenotype could not be deduced due to the lack of a
reported in vitro activity and the patient phenotype, or because the phenotype is explained by mutations present in the homologous allele. ?, The question
mark sign in the “Allele associated phenotype” column refers to GVs that have a published in vitro activity but there is uncertainty regarding its effect on
human health due to the lack of information regarding the second allele, the patient phenotype is absent, or is not concordant with the in vitro activities, or
the in vitro activities are inconclusive. 17OHP, 17-hydroxyprogesterone; P, progesterone.

repository of this information and a linkage to known mutations

require both, specialized bioinformatics and clinical expertise to spe-

cific pathologies. Therefore, development of an efficient tool to com-

pile and join this information, as well as trustworthy DBs, are highly

important and could assist physicians in the near future connecting

sequence information to their phenotypic effects.
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TABLE 3 Compilation of double mutants in cis found in the clinic that have not been uploaded or updated in CYPAlleles

Doublemutants in cis in theCYP21A2 translated region

In vitro
activity

g.(GRCh38.p7) c.(GRCh38.p7) p.(GRCh38.p7)

Allele
associated
phenotype 17OHP P References

g.[32038459C>A;32040421C> T] c.[37C>A;955C> T] p.[L13M;(Q319*)] SW ND ND De PaulaMichelatto et al., 2016

g.[32038481G>A;32040110G> T] c.[59G>A;844G> T] p.[(W20*);V282L] SW ND ND Carvalho et al., 2016

g.[32038514C> T;32040110G> T] c.[92C> T;844G> T] p.[P31L;V282L] ND ND New et al., 2013

g.[32038514C> T;32041006C> T] c.[92C> T;1360C> T] p.[P31L;P454S] SW ND ND Milacic et al., 2015

g.[32038610A> T;32038727G> T] c.[188A> T;208G> T] p.[H63L;(V70L)] SV ND ND Wang et al., 2016

g.[32039133_32039140del;32039807T>

A; 32039810T>A32039816T>A]
c.[332_339del;710T>A;
713T>A;719T>A]

p.[(G111fs);I237N;
V238E;M240K]

SW ND ND New et al., 2013

g.[32039133_32039140del;32040110G> T] c.[332_339del;844G> T] p.[(G111fs);V282L] SW ND ND Finkielstain et al., 2011

g.[32039199G>A;32040110G> T] c.[398G>A;844G> T] p.[(R133H);V282L] ND ND Bruque et al., 2016

g.[32039444G>C;32040110G> T] c.[536G>C;844G> T] p.[G179A;V282L] CL ND ND Lobato, Ordóñez-Sánchez, Tusié-Luna, &
Meseguer, 1999; Nunez et al., 1999

g.[32039426T>A;32040189dup] c.[518T>A;923dup] p.[I173N;(F307fs)] SW ND ND Krone et al., 2000

g.[32039426T>A;32040535C> T] c.[518T>A;1069C> T] p.[173N;R357W] SW ND ND Krone et al., 2000

g.[32039426T>A;32040110G> T] c.[518T>A;844G> T] p.[I173N;V282L] SW ND ND Deneux et al., 2001; New et al., 2013

g.[32039426T>A;32040421C> T] c.[518T>A;955C> T] p.[I173N;(Q319*)] SW ND ND New et al., 2013

g.[32039630G>A;32040110G> T] c.[634G>A;844G> T] p.[V212M;V282L] SV-NC ND ND Brønstad et al., 2014

g.[32039807T>A;32039810T>A;
32039816T>A;32040421C> T]

c.[710T>A;713T>A;
719T>A; 955C> T]

p.[I237N;V238E;M240K;
(Q319*)]

SW ND ND Jiang et al., 2012

g.[32040110G> T;32040185T>G] c.[844G> T;919T>G] p.[V282L;(F307V)] CL ND ND New et al., 2013

g.[32040110G> T;32040421C> T] c.[844G> T;955C> T] p.[V282L;(Q319*)] SW ND ND Vrlazalová et al., 2010

g.[32040110G> T;.32040473C> T] c.[844G> T;1007C> T] p.[V282L;(P336L)] NC ND ND Bruque et al., 2016

g.[32040110G> T;32040535C> T] c.[844G> T;1069C> T] p.[V282L;R357W] SW ND ND Krone et al., 2000

g.[32040110G> T;32040872G>A] c.[844G> T;1226G>A] p.[V282L;(R409H)] SW ND ND New et al., 2013

g.[32040110G> T;32041006C> T] c.[844G> T;1360C> T] p.[V282L;P454S] SW ND ND Bidet et al., 2009; New et al., 2013

g.[32040110G> T;32041097G>A] c.[844G> T;1451G>A] p.[V282L;R484Q] ND ND Bidet et al., 2009

g.[32040189dup;32040535C> T] c.[923dup;1069C> T] p.[(L307fs);R357W] SW ND ND Wang et al., 2016

g.[32040421C> T;32041096C> T] c.[955C> T;1450C> T] p.[(Q319*);R484W] SW ND ND Loidi et al., 2006

g.[32040434A>G;32040940G>A] c.[968A>G;1294G>A] p.[D323G;E432K] SV 2.1± 1.1 5.6± 3.3 Minutolo et al., 2011; Taboas et al., 2014

g.[32040675G>A;32041006C> T] c.[1126G>A;1360C> T] p.[G376S;P454S] SW 0± 1 0± 1 Lajic et al., 2002

g.[32040723G>A;32041025C>A] c.[1174G>A;1379C>A] p.[A392T;P460H] SV ND ND Jiang et al., 2012

g.[32040766G>A;32041006C> T] c.[1217G>A;1360C> T] p.[(W406*);P454S] SW ND ND New et al., 2013

g.[32041006C> T;32041097G>C] c.[1360C> T;1451G>C] p.[P454S;R484P] SW ND ND New et al., 2013

(Continues)



1
6

SIM
O
N
E
T
T
I
E
T
A
L.

TABLE 3 (Continues)

Doublemutants in cis including GVs inCYP21A2 non-translated region

g.(GRCh38.p7) c.(GRCh38.p7) p.(GRCh38.p7)

Associated
allele
phenotype

Functional
assay References

g.32033649A>G c.[-4774A>G;1360C> T] p.[?;P483S] No Fernández et al., 2015

g.[32038297C> T;32038310G>A; 32038313T>

C;32038320A>G; 32039081C>G]
c.[-126C> T;-113G>A;
-110T>C;-103A>G; 290-13C>G]

p.[?;?;?;?;?] SW No Tardy et al., 2010

g.[32038297C> T;32038310G>A; 32038313T>C] c.[-126C> T;-113G>A; -110T>C] p.[?;?;?] Yes Araujo et al., 2007; Zhang et al., 2009

g.[32038310G>A;32038313T>C] c.[-113G>A;-110T>C] p.[?;?] SV No New et al., 2013

g.[32038310G>A;32038313T>C;
32039081C>G]

c.[-113G>A;-110T>C; 290-13C>G] p.[?;?;?] CL No New et al., 2013

g.[g.32038419C> T;32040421C> T] c.[-4C> T;955C> T] p.[?;(Q319*)] SW No Charfeddine., et al 2012

g.[32039081C>G;32040189dup] c.[293-13C>G>G;923dup] p.[?;(L307fs)] SW No Loke, Lee, Lee, & Poh, 2001

g.[32039081C>G;32040535C> T] c.[293-13C>G;1069C> T] p.[?;R357W] SW No Loke et al., 2001

g.[32039081C>G;32041006C> T] c.[290-13C>G;1360C> T] p.[?;P454S] SW No Pinto et al., 2003

g.[32039081C>G;32039807T>A; 32039810T>

A;32039816T>A]
c.[290-13C>G;710T>A;
713T>A;719T>A] p.[?;I237N;V238E;M240K]

SW No New et al., 2013

g.[32039081C>G;32040871C> T] c.[290-13C>G;1225C> T] p.[?;R409C] SW No Carvalho et al., 2016

g.[32039081C>G;32039172C> T] c.[290-13C>G;371C> T] p.[?;(T124I)] SW No Wang et al., 2016

g.[32040110G> T;32041186C> T; 32041574C>

T;32041577T>C]
c.[844G> T;*52C> T; *440C> T;*443T>C] p.[V282L;?;?;?] NC No Neocleous et al., 2017

g.[32040421C> T;32041146C> T; 32041186C> T] c.[955C> T;*12C> T;*52C> T] p.[(Q319*);?;?] NC No Neocleous et al., 2017

For each doublemutant, the position and substitution for the genomicDNA, the codingDNA, and the protein sequence level are shown (RefSeq forDNA:NC_000006.12; cDNA:NM_000500.7; Protein: NP_000491.4).
When available, the allele associated phenotype and the in vitro activity (expressed as the percentage of activity relative to the wild-type enzyme) are also shown. ND, not determined; SW, salt wasting; SV, simple
virilizing; CL, classic (when there is no certainty about the effect of aGV as either SWor SV); NC, non-classical; empty cells, GVswhose effect on the phenotype could not be deduced. 17OHP, 17-hydroxyprogesterone;
P, progesterone. The three GVs that compose the common cluster E6 (p.[I237N;V238E;M240K]) are considered as a single mutation.
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