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Abstract

In this paper we study an inverse problem for weighted second order Sturm-Liouville equations. We show that the zeros of any
subsequence of eigenfunctions, or a dense set of nodes, are enough to determine the weight. We impose weaker hypotheses for
positive weights, and we generalize the proof to include indefinite weights. Moreover, the parameters in the boundary conditions
can be determined numerically by using a shooting method.
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1. Introduction

In this work we will study an inverse problem for the following weighted Sturm-Liouville equation,

−u′′ = λρ(x) u, x ∈ (0, 1) (1)

with homogeneous boundary conditions

cos(α)u(0) − sin(α)u′(0) = 0
cos(β)u(1) − sin(β)u′(1) = 0 (2)

Here, ρ ∈ BV[0, 1] is the unknown weight function, λ is a real parameter, and 0 ≤ α < π, 0 < β ≤ π. We assume also
that
√
ρ ∈ BV[0, 1].

For positive weights it is well known that problem (1)-(2) has a sequence of simple eigenvalues {λn}n≥1, the n-th
eigenvalue λn behaves asymptotically as

λn =

 πn∫ 1
0
√
ρ dx


2

+ o(n2), (3)
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and the associated eigenfunction un has exactly n nodal domains in [0, 1]. By a nodal domain we understand a maximal
connected set in (0, 1) where the solution does not change signs.

A classical inverse problem is to characterize the weight function ρ and the parameters α and β in the boundary
conditions by using some spectral data of the problem. Usually, this function describes the tension or the mass
distribution of a string or a rod, or some physical properties such as diffusivity or conductivity of the material, since a
simple change of variables enable us to consider the related equation

−(σ(x)v′)′ = λv.

The first result for this kind of problems was obtained by Goran Borg [2], who proved that ρ can be determined
from two spectra, for example the sequences of eigenvalues of equation (1) with Dirichlet and Neumann boundary
condition. Later, Gelfand and Levitan showed in [11] that one sequence of eigenvalues is enough, together with a
sequence of constants {an}n, the values of u′n(0) where un is a normalized eigenfunction corresponding to λn.

Of course, in these cases we need a deep knowledge of the eigenvalue problem. From a practical point of view,
when we wish to use two different spectra, we need to change the boundary conditions, and this is not always possible
(think of a tensor of a bridge, or a fixed rod which cannot be removed from some structure). Also, the constants of
normalized eigenfunctions cannot be easily obtained.

However, in several cases, it is possible to observe the zeros of the eigenfunctions. This procedure goes back to
Chladni (see [5]) in the eighteen century, who determined the nodal lines of surfaces by covering them with sand and
then the surfaces were forced to vibrate by stroking them with a violin bow. Also, we can force a string into resonance
by varying a source of sound, and a velocity scanner (as the ones used in traffic control) is enough to determine its
nodal points, see chapter 12 in Gladwell’s book [13].

On the other hand, the full set of nodes has redundant information, and only a part of the nodes is enough to
determine the weight ρ. Usually, two sets of nodes are used:

• The nodes of a subsequence of eigenfunctions.

• A dense subset of pairs of consecutive nodal points xn
j , xn

j+1.

For zero Dirichlet boundary conditions and positive weights, the characterization of the weight was proved inde-
pendently in different ways.

Given the zeros of a subsequence of eigenfunctions, for ρ ∈ C2([0, 1]), Shen in [20] studied the lengths of nodal
domains, and show that the following formula holds:

lim
n→∞

1
n

n∑
j=0

f (x j) =

∫ 1
0 f (x)

√
ρ(x) dx∫ 1

0

√
ρ(x) dx

Now, the weight can be recovered by using the theory of moments, since we can compute the moment cn with
f (x) = xn. Later, Shen and Tsai in [21] obtained ρ ∈ C2([0, 1]) by using both the zeros and a subsequence of
eigenvalues. The regularity condition ρ ∈ C2([0, 1]) cannot be avoided since they use the WKB method in order to
estimate the lengths of the nodal domains. This is a common point with the proof of Martı́nez-Finkelshtein et al. in
[17], since they have used that a solution has the asymptotic formula

u ≈ C1[λρ]−1/4 sin
(
C2 +

∫ x

0

√
λρ(t)dt

)
,

under the extra assumption that

−1
4
ρ′′

λρ2 +
5
16
ρ′

λ2ρ3 ≪ 1,

which holds for λ big enough.
By using a dense set of pairs of consecutive nodes, Hald and McLaughlin in [10] obtained bounds for the lengths

of nodal domains, and gave an algorithm to construct piecewise functions ρn converging to the weight ρ. They
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considered positive functions ρ ∈ BV([0, 1]) bounded away from zero. This last hypothesis is crucial in their proof,
since V[ln(ρ)], the total variation of ln(ρ), is needed in a better asymptotic estimate of eigenvalues than equation (3),

λ1/2
n =

πn∫ 1
0
√
ρ dx

+ O(V[ln(ρ)]). (4)

Also, a very precise estimate on the length of nodal domains was needed; and this estimate depend on a positive lower
bound of the weight, see Lemma 2 in [10].

Let us recall that, for rough coefficients, an arbitrary dense set of nodes is not enough to determine ρ, and in [10]
is required that if xn

j is in the dense set, then xn
j−1 or xn

j+1 is also in the dense set. In [9], Hald and McLaughlin proved
that a dense set of zeros characterizes a smooth positive weight ρ, with a second derivative ρ′′ ∈ L1.

The aim of this work is to show that it is possible to determine the weight function ρ under milder hypotheses,
given the zeros of a subsequence of eigenfunctions or just a dense set of pairs of consecutive nodes. We assume only
that

√
|ρ| ∈ BV([0, 1]), allowing ρ to change sings. Moreover, we show that it is possible to determine numerically

the parameters α, β in the boundary condition. Essentially, the main contributions are the following, and precise
statements of the Theorems can be found in Section 2:

• In previous works, the boundary condition was given. We show that we can compute α and β a posteriori.

• The allowed regularity of the weight is improved. Indeed, it is enough that
√
ρ be Riemann integrable, and a

positive lower bound is not needed.

• We consider sign changing weights, and there are no previous results for them. By allowing ρ to change signs,
we can study problems where the weight is related to the index of refraction of the media, and problems of
population dynamics where the weight represents the intrinsic growth rate of species, and it is positive (resp.,
negative) in the favorable (resp., unfavorable) zone of habitat, see [3, 16]. Recently, Eckhardt and Kostenko
studied the spectral inverse problem for indefinite strings in terms of the Weyl-Titchmarsh function, motivated
by the study of Camassa-Holm and Hunter-Saxton equations, see [7] for details.

• We give a different proof of Theorem 7 in [10], using only the weaker estimate (3) instead of (4), without using
any information of the lengths of nodal domains, and we extend it to indefinite weights.

Let us remark that the method can be used for more general classes of operators, like Krein-Feller operators arising
from general diffusion processes. The inverse problem based on two spectra for these operator can be found in the
book of Dym and McKean [6]. Also, quasilinear problems of p−Laplacian type can be handled in this way.

Our proof was motivated by the theory of orthogonal polynomials. We define a sequence of probability measures
associated to the zeros, and by using the machinery of weak convergence of tight sequences of measures, we obtain
a (weak) limit which is enough to characterize ρ. The existence of a weakly convergent subsequence follows from
Helly’s Selection Theorem (or can be proved by using Prokhorov’s Theorem), and Sturmian type arguments show that
the full sequence converges. As a by product, we give a different proof of Theorem 7 in [10].

The paper is organized as follows: in Section §2 we present our main theorems and we collect some previous
results about the eigenvalue problem that we will need in the proofs. Section §3 is devoted to the proof of the main
Theorems. In Section §4 we show that only a dense set of pairs of nodes is enough to determine the weight. We close
the paper in Section §5 with several remarks.

2. Notations, eigenvalues, and statement of main results

2.1. Notation

Given ρ such that
√
ρ ∈ BV[0, 1], we introduce the positive and negative parts of ρ,

ρ+(x) = max{ρ(x), 0},
3
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ρ−(x) = max{−ρ(x), 0}.
Clearly, ρ = ρ+ − ρ−. Also we denote

Ω+ = {x ∈ (0, 1) : ρ(x) > 0} = supp(ρ+),
Ω− = {x ∈ (0, 1) : ρ(x) < 0} = supp(ρ−),
Ω0 = {x ∈ (0, 1) : ρ(x) ≡ 0}.

When we consider indefinite weights, we assume that Ω+ and Ω− are open sets with positive measure.

We call δx0 the Dirac delta function in x0, i.e. the measure such that

δx0 (a, b) =
{

1 x0 ∈ (a, b)
0 x0 < (a, b).

By a nodal domain of an eigenfunction we understand a connected set in [0, 1] between two consecutive zeros, or
between one boundary point and the closest zero.

2.2. Main results

Let us state our main result:

Theorem 2.1 (Definite case). Let ρ be a nonnegative function such that
√
ρ ∈ BV[0, 1]. Let {xn

0, . . . , x
n
n}n≥1 be the

zeros of the n−th. eigenfunction of the following Sturm-Liouville problem:
−u′′ = λρ(x) u, x ∈ [0, 1]
cos(α)u(0) − sin(α)u′(0) = 0
cos(β)u(1) − sin(β)u′(1) = 0

(5)

where xn
0 = 0 and xn

n = 1, being zeros or not. Let Zn be the function

Zn(x) =
#{ j ≥ 0: xn

j ≤ x}
n + 1

.

Then, there exists Z(x) = limn→∞ Zn(x) and

Z(x) =
1∫ 1

0
√
ρ dt

∫ x

0

√
ρ(t) dt. (6)

This theorem implies that the weight ρ can be obtained from the zeros of eigenfunctions:

Corollary 2.2. Let ρ be a nonnegative function such that
√
ρ ∈ BV[0, 1] and

∫ 1
0
√
ρ dt = 1. Given the zeros of any

sequence of eigenfunctions of problem (5), we can recover the weight ρ.

With slight modifications in the method of proof we obtain the following piecewise approximation of ρ:

Algorithm for ρ:

ρn(x) =
1

n2(xn
j − xn

j−1)2 xn
j−1 ≤ x < xn

j . (7)

Observe that this algorithm requires only a dense subset of pairs of nodes converging to x. This approximation
can be compared with Algorithm A in [10], namely

ρn(x) =
π2

λ2
n(xn

j − xn
j−1)2 xn

j−1 ≤ x < xn
j ,

4
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where λ2
n is the n−th. eigenvalue, which must be known in advance. The convergence of the algorithm to the weight

ρ will be proved below, although we can deduce it from the previous algorithm and the asymptotic behavior of
eigenvalues given by equation (3), since

∫ 1
0
√
ρ = 1.

A different approximation is given by Shen and Tsai, see Theorem 2.1 in [21], namely

ρn(x) =
π2

λ2
n

 xn
j+1 − xn

j

xn
j − xn

j−1
− 1

 (x − xn
j−1) + (xn

j − xn
j−1)

−2

, (8)

for x ∈ [xn
j−1, x

n
j ) under the assumptions that λn is known, and ρ ∈ C2([0, 1]). A similar formula can be obtained

replacing π2/λ2
n by n2.

Now, a shooting argument enable us to recover the parameters in the boundary conditions:

Theorem 2.3. Let ρ be a nonnegative function such that
√
ρ ∈ BV[0, 1] and

∫ 1
0
√
ρ dt = 1. Given the zeros of an

eigenfunction which has at least two interior zeros, we can recover the parameters α and β in the boundary condition.

Remark 2.4. As usual, the normalization condition
∫ 1

0
√
ρ dt = 1 cannot be avoided. Observe that the eigenfunctions

of problem (5) with the weight ρ̂ = cρ are the same, and the eigenvalues change to λ/c.

When the weight ρ changes signs, we have the following result:

Theorem 2.5 (Indefinite case). Let ρ such that
√
|ρ| ∈ BV[0, 1] and Ω+, Ω− are open sets with positive measure.

Let {xn,±
0 . . . , x

n,±
n }n≥1 be the zeros of u+n and u−n , the eigenfunctions of problem (5) corresponding to λ+n and λ−n , where

xn,±
0 = 0 and xn,±

n = 1, being zeros or not. Let Z±n be the functions

Z+n (x) =
#
{

j ≥ 0: xn,+
j ≤ x

}
n + 1

, Z−n (x) =
#
{

j ≥ 0: xn,−
j ≤ x

}
n + 1

.

Then, there exist Z±(x) = limn→∞ Z±n (x), and

Z(x)± =
1∫ 1

0

√
ρ(t)± dt

∫ x

0

√
ρ(t)± dt. (9)

As before, from Theorem 2.5 it is easy to prove now that ρ and α, β can be recovered.

Finally, it is well known that a dense set of pairs of consecutive nodes are enough to determine ρ ∈ BV when it is
bounded away from zero, see Theorem 7 in [10]. We can extend this result to the class of weights considered here,
and we prove the following theorem:

Theorem 2.6. Let ρ be a function continuous from the right and at x = 1, such that
√
ρ± ∈ BV[0, 1]. Then ρ+ and ρ−

are uniquely determined up to multiplicative constants by a dense subset of pairs of consecutive nodes xn
j , xn

j+1 from
eigenfunctions of the following Sturm-Liouville problem:

−u′′ = λρ(x) u, x ∈ [0, 1]
cos(α)u(0) − sin(α)u′(0) = 0
cos(β)u(1) − sin(β)u′(1) = 0.

(10)
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2.3. Eigenvalues

The eigenvalue problem (1) with positive weights has a sequence of nonnegative eigenvalues,

0 ≤ λ1 < λ2 < · · · < λn < · · · ↗ +∞,

which are simple, so we can choose un and any other eigenfunction corresponding to λn is a multiple of un.
The eigenfunction un has n nodal domains, although the number of zeros of solutions depends on the boundary

conditions. Two particular cases are the following ones:

• Dirichlet boundary conditions, u(0) = 0 = u(1): the n−th eigenfunction has n + 1 zeros, counting both 0 and 1.
In this case, the first eigenvalue is strictly positive.

• Neumann boundary conditions, u′(0) = 0 = u′(1): the n−th eigenfunction has n − 1 zeros. In this case, the first
eigenvalue is zero and the associated eigenfunction is constant.

For general homogeneous boundary conditions, the n-th eigenfunction has n − 1 or n zeros.
Let us note that 0 is an eigenvalue only for the Neumann boundary condition.
The classical Sturm-Liouville theory states several important facts, we will need the following quantitative esti-

mate on the number of zeros of solutions, where ⌊x⌋ denotes the largest integer not greater than x:

Lemma 2.7. Let r, R ∈ R such that r ≤ ρ(x) ≤ R for x ∈ [a, b]. Given λ > 0 and any solution u of

−u′′ = λρu,

then u has at least ⌊
√
λr(b − a)/π⌋ zeros, and at most ⌊

√
λR(b − a)/π⌋ + 1 zeros in [a, b].

Proof. The proof follows directly by comparing with the number of zeros of v = sin(
√
λr(x−a)) and w = sin(

√
λR(x−

a)), two solutions of
−v′′ = λrv, −w′′ = λRw

in [a, b].

The eigenvalues can be obtained by using the Rayleigh quotient and one of the variants of the Courant-Fischer
minimax method in some subspace H ⊂ H1(0, 1) where the boundary condition are imposed if necessary. Alterna-
tively, we can obtain the sequence of eigenvalues by using the shooting method, based on the Prufer’s transform,
which represents the solution of problem (1)-(2) in polar coordinates:

u(x) = r(x) sin(θ(x)),
u′(x) = r(x) cos(θ(x)),

where θ and r are solutions of the system {
θ′ = cos2(θ) + λρ sin2(θ),
r′ = r(1 − λρ) sin(θ) cos(θ)

(11)

with θ(0) = αmod(π), and θ(1) = βmod(π).
Now, the eigenvalues can be found solving for λ for each n ∈ N, the problem

θ′ = cos2(θ) + λρ sin2(θ),

with θ(0) = α and θ(1) = β + (n − 1)π.

6
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2.4. Indefinite weights

For indefinite weights ρ = ρ+ − ρ− the eigenvalue problem (1) is similar, see the book of Ince [15]. However,
certain differences arise: now there are two sequences of eigenvalues,

λ+1 < λ
+
2 < · · · < λ+n < · · · ↗ +∞,

λ−1 > λ
−
2 > · · · > λ−n > · · · ↘ −∞,

and the variational characterization of eigenvalues includes an additional condition:

u ∈ H1(0, 1) :
∫ 1

0
ρ(x)u2(x)dx > 0

for positive eigenvalues, and

u ∈ H1(0, 1) :
∫ 1

0
ρ(x)u2(x)dx < 0

for the negative ones. We have now the following asymptotic formula for the eigenvalues

λ±n =

 πn∫ 1
0

√
ρ± dx


2

+ o(n2), (12)

see for instance [8].

2.5. Prokhorov and Helly’s theorems

The key point in our proofs are the following results due to Prokhorov and Helly. We state it only for probability
measures in the real line, although they hold for separable metric spaces and also for finite signed measures.

Definition 2.8. A family {µi}i∈I of Borel probability measures on R is called tight if for every ε > 0 there exists a
compact set Kε such that

µi(Kε) ≥ 1 − ε
for all i ∈ I.

Definition 2.9. A sequence {µn}n≥1 of Borel probability measures on R converges weakly to a measure µ if∫
R

f dµn →
∫
R

f dµ

for all f ∈ Cb(R).

Theorem 2.10 (Prokhorov). A family {µi}i∈I of Borel probability measures on R is tight if and only if its closure is
weakly compact.

This theorem can be stated in terms of the distribution functions Fµi (x) = µi(−∞, x], and it was proved by Helly:

Theorem 2.11 (Helly’s selection theorem). Let {Zn}n≥1 be a sequence of non-decreasing real functions on R satisfy-
ing 0 ≤ Zn(x) ≤ 1 for all x ∈ R and n ≥ 1. Then, there exists a subsequence {Zn j } j≥1 converging to a real function
Z.

Moreover, for any f ∈ Cb(R), we have

lim
n→∞

∫
R

f (x)dZn(x)→
∫
R

f (x)dZ(x).

We refer the interested reader to [19] or the classical book of Billingsley [1] for more details.
7
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3. Proof of the main results

3.1. The nodal inverse problem

Proof of Theorem 2.1. The existence of a limit Z follows directly from Helly’s Theorem 2.11, or by defining the
family of probability measures

dZn =
1

n + 1

n∑
j=0

δxn
j
.

This family of probability measures {dZn}n≥1 is tight, being supported in [0, 1], and Prokhorov’s Theorem 2.10 implies
that there exists a measure dZ such that some subsequence {dZnk }k≥1 converges weakly to dZ.

Now we will prove that
dZ =

√
ρdx.

Indeed, we will show that the limit does not depend on a particular convergent subsequence {dZnk }k≥1. So, the full
sequence converges weakly to dZ.

Let us assume first that ρ is a continuous function.
We fix ε > 0, and taking M big enough, we can subdivide the interval [0, 1] in M subintervals of length h = M−1,

such that
h ·max

√
ρ <
ε

2
,

0 ≤
√

Ri −
√

ri <
ε

2
for 1 ≤ i ≤ M, where

ri = inf{ρ(x) : x ∈ [(i − 1)h, ih)},
Ri = sup{ρ(x) : x ∈ [(i − 1)h, ih)}.

Let us call yn,i the number of zeros of un in the interval [(i − 1)h, ih) for 1 ≤ i < M, and let yn,M be the number of
zeros of un in the interval [1 − h, 1]. We have n + 1 =

∑
i yn,i.

Let us fix x ∈ (0, 1), and let us estimate Zn(x) for n big enough. There exists some I0 such that x ∈ [(I0 − 1)h, I0h),
so

I0−1∑
i=1

yn,i ≤ (n + 1)Zn(x) ≤
I0∑

i=1

yn,i.

From Lemma 2.7 we can bound each yn,i,

I0−1∑
i=1

√
λnrih
π

− 1 ≤ (n + 1)Zn(x) ≤
I0∑

i=1

√
λnRih
π

+ 1,

and we get

−M +
√
λn

π

I0−1∑
i=1

√
rih ≤ (n + 1)Zn(x) ≤ M +

√
λn

π

I0∑
j=1

√
Rih.

Let us observe that
I0−1∑
i=1

√
rih ≤

∫ x

0

√
ρ(t)dt ≤

I0∑
I=1

√
Rih,

and the hypothesis on h implies

I0∑
I=1

√
Rih −

I0−1∑
i=1

√
rih ≤ h ·max ρ +

I0−1∑
i=1

(
√

Ri −
√

ri)h < ε.

8
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Finally, we use now the asymptotic formula for the eigenvalues given by equation (3) obtaining

lim
n→∞
± M

n + 1
+

√
λn

π(n + 1)
=

1∫ 1
0
√
ρdx
,

which implies the desired result,

Zn(x)→ 1∫ 1
0
√
ρdx

∫ x

0

√
ρdx.

Let us consider now
√
ρ ∈ BV[0, 1]. We fix ε > 0, and there exist finitely many points of discontinuity z1, · · · , zk(ε)

in [0, x], if any, such that ∣∣∣∣∣ √ρ(z+i ) −
√
ρ(z−i )

∣∣∣∣∣ > ε.
We can split [0, x] as

[0, x] = [0, z1] ∪
k(ε)∪
s=2

[zs−1, zs] ∪ [zk(ε), x].

Now, by subdividing each interval in M intervals {Ii}Mi=1 such that

sup{
√
ρ(x) : x ∈ Ii} − inf{

√
ρ(x) : x ∈ Ii} <

ε

2
for 1 ≤ i ≤ M, and reducing its lengths if necessary, such that

|Ii| ·max ρ <
ε

2
,

we can repeat now the previous arguments, and the proof is finished.

Proof of Corollary 2.2. Let us observe that, being
√
ρ ∈ BV[0, 1], we have

lim
ε→0+

1
ε

∫ x

x−ε

√
ρ(y)dy =

√
ρ(x)

almost everywhere.

3.2. An algorithm for ρ
In the previous proof we have constructed a sequence of measures dZn by using the familiy {δxn

j
}0≤ j≤n. However,

since
∫ x

0 dZn is an step function, its derivative is just the original sum of deltas, which is not a convenient way to
approximate

√
ρ.

So, we can introduce fn defined as follows:

fn(x) =
1

n(xn
j − xn

j−1)
xn

j−1 ≤ x < xn
j ,

and we have a new sequence of measures µn = fn(x)dx.
Let us call Fn(x) =

∫ x
0 fn(t)dt. Clearly,∫ x

0
dZn −

1
n
≤

∫ x

0
dµn ≤

∫ x

0
dZn,

and therefore they converge to
∫ x

0
√
ρdt.

Now, the sequence { fn}n≥1 converges in L1 to some f ∈ L1, and a subsequence converge to f almost everywhere;
and, from Theorem 2.1, the full sequence converges as n→ ∞.

Since Fn(x)→
∫ x

0 f (t)dt, it follows that

f (x) =
√
ρ(x),

and fn →
√
ρ as n→ ∞ almost everywhere.

9
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3.3. Boundary conditions

The parameters α and β in the boundary conditions can be obtained numerically by using a shooting argument, by
solving the Prufer’s system (11).

Proof of Theorem 2.3. Given the zeros of un and ρ, we can compute with arbitrary accuracy the first eigenvalue of

−u′′ = µ1ρu, u(xn
j ) = u(xn

j+1) = 0

where xn
j and xn

j+1 are two consecutive zeros of un.
Since µ1 = λn, and we know ρ, the zeros of un and λn, we can solve the initial boundary value problem backwards

−u′′ = λnρ(x) u, x ∈ [0, xn
1]

u(xn
1) = 0

u′(xn
1) = 1,

starting the shooting at xn
1, and compute the values u(0), u′(0). Therefore,

α = tan−1
(

u(0)
u′(0)

)
,

or α = π/2 if u′(0) = 0.
In much the same way, we solve the initial boundary value problem forward from xn

n−1
−u′′ = λnρ(x) u, x ∈ [xn

n−1, 1]
u(xn

n−1) = 0
u′(xn

n−1) = 1,

and we obtain

β = tan−1
(

u(1)
u′(1)

)
,

or β = π/2 if u′(1) = 0, and the proof is finished.

3.4. Indefinite weights

Let us prove now Theorem 2.5. Although it is very similar to the one of Theorem 2.1, it includes some technical
points. We prove it only for ρ+, the other case being identical.

Proof of Theorem 2.5. Let us recall that Ω±, the positivity and negativity regions of ρ, are open sets. So, we have a
denumerable partition of Ω−, say {J−k }k≥1, where J−k are open intervals, and ρ < 0 in J−k for any k ≥ 1.

In the closure of any of these intervals we cannot have two zeros of an eigenfunction u+n corresponding to a positive
eigenvalue. If not, suppose that xa and xb are two consecutive zeros of u+n in J̄−k for some k ≥ 1. Hence,

−u+n
′′ = λ+nρ(x)u+n x ∈ (xa, xb),

and integrating by parts after multiplying by u+n we get

0 ≤
∫ xb

xa

(u+n
′)2dx = λ+n

∫ xb

xa

ρ(x)(u+n )2dx < 0,

a contradiction, since λ+n > 0 and ρ < 0 in (xa, xb). Therefore, for any J−k ⊂ Ω− we have∫
J−k

dZ+n ≤
1

n + 1
, (13)

10
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and given any subsequence dZ+n j
which converges weakly to some dZ+, we have∫

J−k

dZ+ = 0,

that is, Z+ is constant in any connected component of Ω−.

Let us prove now that dZ+ =
√
ρ+dx. Given x ∈ [0, 1], we fix ε > 0 and there exist at most finitely many points of

discontinuity z1, · · · , zk(ε) ∈ [0, x] such that ∣∣∣∣∣ √ρ+(z+i ) −
√
ρ+(z−i )

∣∣∣∣∣ > ε.
Again, we split [0, x] as

[0, x] = [0, z1] ∪
k(ε)∪
s=2

[zs−1, zs] ∪ [zk(ε), x],

and we can refine the partition obtaining M intervals {Ii}Mi=1 such that

|Ii| ·max ρ <
ε

2
, and sup

{√
ρ(x) : x ∈ Ii

}
− inf

{√
ρ(x) : x ∈ Ii

}
<
ε

2

for 1 ≤ i ≤ M. Repeating the arguments on the proof of Theorem 2.1, we call yn,i the number of zeros of u+n in Ii, and
we get the bound √

λ+n r+i |Ii|
π

− 1 ≤ yn,i ≤
√
λ+n R+i |Ii|
π

+ 1,

where
r+i = inf{ρ+(x) : x ∈ Ii},
R+i = sup{ρ+(x) : x ∈ Ii},

Observe that, when Ii ⊂ Ω−, the bound is trivially satisfied due to (13).
Now,

1
n + 1

M∑
i=1

yn,i −
1∫ 1

0

√
ρ+dt

∫ x

0

√
ρ + (t)dt ≤

√
λ+n

π(n + 1)

M∑
i=1

√
R+i |Ii| +

M
n + 1

− 1∫ 1
0

√
ρ+dt

M∑
i=1

r+i |Ii|,

1
n + 1

M∑
i=1

yn,i −
1∫ 1

0

√
ρ+dt

∫ x

0

√
ρ + (t)dt ≥

√
λ+n

π(n + 1)

M∑
i=1

√
r+i |Ii| −

M
n + 1

− 1∫ 1
0

√
ρ+dt

M∑
i=1

R+i |Ii|,

and the result follows, since √
λ+n

π(n + 1)
→ 1∫ 1

0

√
ρ+dt
,

M
n + 1

→ 0

as n→ ∞, and
M∑

i=1

(R+i − r+i )|Ii| <
ε

2
.

The theorem is proved.

11
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4. A dense set of pairs of nodes

Let us prove now that a dense set of pairs of consecutive zeros is enough to characterize the weight ρ.

Proof of Theorem 2.6. We consider only the positive part of ρ, the other one being similar.
Suppose that there exist two weights ρ1 and ρ2 with the same dense set of pairs of nodal points, satisfying∫ 1

0

√
ρ+1 dt =

∫ 1

0

√
ρ+2 dt.

Let x be a continuity point of both ρ+1 and ρ+2 . Let us suppose that

ρ1(x) − ρ2(x) = a > 0.

Hence, there exists δ > 0 and some constant c > 1 such that cρ2 < ρ1 in [x − δ, x + δ].
Let us take now a sequence of nodal domains In = [xn

j(n), x
n
j(n)+1] with extremes in the given dense set, such that

lim
n→∞

xn
j(n) = lim

n→∞
xn

j(n)+1 = x.

Clearly, for n big enough, In ⊂ [x − δ, x + δ].
Let us consider now the following eigenvalue problems,{

−u′′ = µ(1)ρ1 u,
u(xn

j(n)) = u(xn
j(n)+1) = 0 (14)

{
−v′′ = µ(2)ρ2 v,
v(xn

j(n)) = v(xn
j(n)+1) = 0 (15)

The first eigenvalues µ(1)
1 and µ(2)

1 coincide with λ(1)
n and λ(2)

n , the n−th. eigenvalues of problem (10) with the
weights ρ1 and ρ2 respectively. The Sturmian comparison theorem implies

µ(2)
1 > cµ(1)

1 ,

and then we get

1 < c <
µ(2)

1

µ(1)
1

=
λ(2)

n

λ(1)
n

→ 1

as n→ ∞, since the estimate (12) implies

λ(1)
n =

π2n2( ∫ 1
0

√
ρ+1 dt

)2 + o(n2),

λ(2)
n =

π2n2( ∫ 1
0

√
ρ+2 dt

)2 + o(n2),

and both integrals are equal, a contradiction.
Hence, ρ1 and ρ2 coincide in those points where both functions are continuous. Since they have at most a countable

number of discontinuities, and are both continuous from the right, ρ1 = ρ2 in [0, 1] and the proof is finished.

12
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5. Concluding remarks

Several comments are in order.

Remark 5.1. The proof can be easily modified to handle the eigenvalue problem

−(σ(x)v′)′ = λv.

Moreover, for
−(σ(x)u′)′ = λρ(x)u,

if σ is known, the nodal domains of a sequence of eigenfunctions or a dense set of zeros determine ρ. Also, we can
determine σ given ρ and the zeros of a sequence of eigenfunctions or a dense set of zeros.

Remark 5.2. Given ρ, the determination of a potential q for

−u′′ + q(x)u = λρ(x)u, x ∈ [a, b]

in terms of nodal data has attracted a great deal of interest, see for example [4, 9, 12, 18, 14]. Usually, ρ is assumed
constant, although an indefinite problem was studied in [22], with ρ > 0 in [a, c) and ρ > 0 in (c, b]. We are not sure
that the ideas behind the proof of Theorem 2.1 can be applied to this problem. However, it is known that this problem
needs less nodal data, just a dense set of nodes in part of the interval.

Remark 5.3. An additional problem arises for indefinite weights if the zeros of u+n and u−n are given as two sequences
of sets {xn

j }, {x̂n
j }, and we need to know which ones correspond to the positive and the negative eigenvalues.

To this end, if ρ ≥ c > 0 in some neighborhood of x, say (x − ε, x + ε), the number of zeros of the positive
eigenfunctions u+n goes to infinity as n → ∞, as a consequence of Lemma 2.7. Moreover, given a negative eigenvalue
λ−n , the corresponding eigenfunction u−n has at most a single zero in (x − ε, x + ε).

So, for n big enough, we take an arbitrary x ∈ (0, 1), ε > 0, and just one of the two sets (x − ε, x + ε) ∩ {xn
j } and

(x − ε, x + ε) ∩ {x̂n
j } can contain two or more zeros. If both sets contains two or more elements, we need to take a

smaller value of ε. Nevertheless, the zeros of positive and negative eigenvalues will concentrate on different subsets
of (x − ε, x + ε), and it is possible to classify the sequences.

Let us recall that for positive weights we can recover ρ by imposing the extra condition
∫ 1

0
√
ρ = 1. Needless to

say, the same problem is present for indefinite weights, and worse, since we do not know which sequence correspond to
the positive and the negative eigenvalues. As before, since λρ = cλρ/c, the negative eigenvalues of ρ are the positive
ones of −ρ. In this case, we are able to determine two functions corresponding to ρ+ and ρ−, although we cannot
decide which one is the positive part.

Remark 5.4. The proof of Theorem 2.1 suggest a possible way to deal with higher dimensional inverse problems. Let
Ω ⊂ RN be a bounded domain, and let us consider the following eigenvalue problem:{

−∆u = λρu Ω

u = 0 ∂Ω

Given an eigenfunction λn with k nodal domains, we can define a probability measure µn on Ω,

µn =

k∑
j=1

µ j

k · |Ω j|

where µ j is the Lebesgue measure restricted to the nodal domain Ω j, and |A| denotes the Lebesgue measure of a set A.
Now, Prokhorov Theorem implies that there exists a weak limit µ, and the Weyl formula for the eigenvalue distri-

bution suggest that ∫
A

dµ =
∫

A
ρN/2(x)dx.

However, given the complex patterns of nodal domains corresponding to higher eigenvalues, we believe it would be
very difficult to prove it.
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