ANALYSIS & PDE

Volume 7

No. 2

2014

DANIEL CARANDO, ANDREAS DEFANT AND PABLO SEVILLA-PERIS

BOHR'S ABSOLUTE CONVERGENCE PROBLEM FOR \mathcal{H}_p -DIRICHLET SERIES IN BANACH SPACES

THE REPORT OF THE PROPERTY OF

BOHR'S ABSOLUTE CONVERGENCE PROBLEM FOR \mathcal{H}_p -DIRICHLET SERIES IN BANACH SPACES

DANIEL CARANDO, ANDREAS DEFANT AND PABLO SEVILLA-PERIS

The Bohr–Bohnenblust–Hille theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series $\sum_n a_n n^{-s}$ converges uniformly but not absolutely is less than or equal to $\frac{1}{2}$, and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space \mathcal{H}_{∞} equals $\frac{1}{2}$. By a surprising fact of Bayart the same result holds true if \mathcal{H}_{∞} is replaced by any Hardy space \mathcal{H}_p , $1 \le p < \infty$, of Dirichlet series. For Dirichlet series with coefficients in a Banach space X the maximal width of Bohr's strips depend on the geometry of X; Defant, García, Maestre and Pérez-García proved that such maximal width equals 1 - 1/Cot X, where Cot X denotes the maximal cotype of X. Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space $\mathcal{H}_{\infty}(X)$ equals 1 - 1/Cot X. In this article we show that this result remains true if $\mathcal{H}_{\infty}(X)$ is replaced by the larger class $\mathcal{H}_p(X)$, $1 \le p < \infty$.

1. Main result and its motivation

Given a Banach space X, an ordinary Dirichlet series in X is a series of the form $D = \sum_n a_n n^{-s}$, where the coefficients a_n are vectors in X and s is a complex variable. Maximal domains where such Dirichlet series converge conditionally, uniformly or absolutely are half planes $[Re > \sigma]$, where $\sigma = \sigma_c$, σ_u or σ_a are called the abscissa of conditional, uniform or absolute convergence, respectively. More precisely, $\sigma_\alpha(D)$ is the infimum of all $r \in \mathbb{R}$ such that on [Re > r] we have convergence of D of the requested type $\alpha = c$, u or a. Clearly, we have $\sigma_c(D) \le \sigma_u(D) \le \sigma_a(D)$, and it can be easily shown that $\sup \sigma_a(D) - \sigma_c(D) = 1$, where the supremum is taken over all Dirichlet series D with coefficients in X. To determine the maximal width of the strip on which a Dirichlet series in X converges uniformly but not absolutely is more complicated. The main result of [Defant et al. 2008] states, with the notation given below, that

$$S(X) := \sup \sigma_a(D) - \sigma_u(D) = 1 - \frac{1}{\operatorname{Cot} X}.$$
 (1)

Recall that a Banach space X is of cotype q, $2 \le q < \infty$, whenever there is a constant $C \ge 0$ such that for each choice of finitely many vectors $x_1, \ldots, x_N \in X$ we have

$$\left(\sum_{k=1}^{N} \|x_k\|_X^q\right)^{1/q} \le C \left(\int_{\mathbb{T}^N} \left\|\sum_{k=1}^{N} x_k z_k\right\|_X^2 dz\right)^{1/2},\tag{2}$$

Carando was partially supported by CONICET PIP 0624, PICT 2011-1456 and UBACyT 1-746. Defant and Sevilla-Peris were supported by MICINN project MTM2011-22417. Sevilla-Peris was partially supported by UPV-SP20120700. *MSC2010*: 30B50, 32A05, 46G20.

Keywords: vector-valued Dirichlet series, vector-valued H_p spaces, Banach spaces.

where $\mathbb{T} := \{z \in \mathbb{C} \mid |z| = 1\}$ and \mathbb{T}^N is endowed with the N-th product of the normalized Lebesgue measure on \mathbb{T} ; we denote the best of such constants C by $C_q(X)$. As usual we write

Cot
$$X := \inf\{2 \le q < \infty \mid X \text{ is of cotype } q\},\$$

and, although this infimum in general is not attained, we call it the optimal cotype of X. If there is no $2 \le q < \infty$ for which X has cotype q, then X is said to have no finite cotype, and we put $\text{Cot } X = \infty$. To see an example,

$$\cot \ell_q = \begin{cases} q & \text{for } 2 \le q \le \infty, \\ 2 & \text{for } 1 \le q \le 2. \end{cases}$$

The scalar case $X = \mathbb{C}$ in (1) was first studied over a hundred years ago: Bohr [1913a] proved that $S(\mathbb{C}) \leq \frac{1}{2}$, and Bohnenblust and Hille [1931] that $S(\mathbb{C}) \geq \frac{1}{2}$. Clearly, the equality

$$S(\mathbb{C}) = \frac{1}{2},\tag{3}$$

nowadays called the *Bohr–Bohnenblust–Hille theorem*, fits with (1). Let us give a second formulation of (1). Define the vector space $\mathcal{H}_{\infty}(X)$ of all Dirichlet series $D = \sum_{n} a_n n^{-s}$ in X such that

- $\sigma_c(D) \leq 0$,
- the function $D(s) = \sum_{n} a_n (1/n^s)$ on Re s > 0 is bounded.

Then $\mathcal{H}_{\infty}(X)$ together with the norm

$$||D||_{\mathcal{H}_{\infty}(X)} = \sup_{\text{Re } s > 0} \left\| \sum_{n=1}^{\infty} a_n \frac{1}{n^s} \right\|_X$$

forms a Banach space. For any Dirichlet series D in X we have

$$\sigma_u(D) = \inf \left\{ \sigma \in \mathbb{R} \, \bigg| \, \sum_n \frac{a_n}{n^{\sigma}} \frac{1}{n^s} \in \mathcal{H}_{\infty}(X) \right\}. \tag{4}$$

In the scalar case $X = \mathbb{C}$, this is (what we call) *Bohr's fundamental theorem* [1913b], and for Dirichlet series in arbitrary Banach spaces the proof follows similarly. Together with (4) a simply translation argument gives the following reformulation of (1):

$$S(X) = \sup_{D \in \mathcal{H}_{\infty}(X)} \sigma_a(D) = 1 - \frac{1}{\operatorname{Cot} X}.$$
 (5)

Following an ingenious idea of Bohr each Dirichlet series may be identified with a power series in infinitely many variables. More precisely, fix a Banach space X and denote by $\mathfrak{P}(X)$ the vector space of all formal power series $\sum_{\alpha} c_{\alpha} z^{\alpha}$ in X and by $\mathfrak{D}(X)$ the vector space of all Dirichlet series $\sum_{n} a_{n} n^{-s}$ in X. Let as usual $(p_{n})_{n}$ be the sequence of prime numbers. Since each integer n has a unique prime

number decomposition $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k} = p^{\alpha}$ with $\alpha_j \in \mathbb{N}_0, \ 1 \le j \le k$, the linear mapping

$$\mathfrak{B}_{X}: \mathfrak{P}(X) \to \mathfrak{D}(X),$$

$$\sum_{\alpha \in \mathbb{N}_{0}^{(\mathbb{N})}} c_{\alpha} z^{\alpha} \leadsto \sum_{n=1}^{\infty} a_{n} n^{-s} \quad \text{if } a_{p^{\alpha}} = c_{\alpha},$$
(6)

is bijective; we call \mathfrak{B}_X the *Bohr transform in X*. As discovered by Bayart [2002] this (a priori *very*) formal identification allows us to develop a theory of Hardy spaces of scalar–valued Dirichlet series.

Similarly, we now define Hardy spaces of X-valued Dirichlet series. Denote by dw the normalized Lebesgue measure on the infinite-dimensional polytorus $\mathbb{T}^{\infty} = \prod_{k=1}^{\infty} \mathbb{T}$, that is, the countable product measure of the normalized Lebesgue measure on \mathbb{T} . For any multiindex $\alpha = (\alpha_1, \ldots, \alpha_n, 0, \ldots) \in \mathbb{Z}^{(\mathbb{N})}$ (all finite sequences in \mathbb{Z}) the α -th Fourier coefficient $\hat{f}(\alpha)$ of $f \in L_1(\mathbb{T}^{\infty}, X)$ is given by

$$\hat{f}(\alpha) = \int_{\mathbb{T}^{\infty}} f(w) w^{-\alpha} dw,$$

where we as usual write w^{α} for the monomial $w_1^{\alpha_1} \cdots w_n^{\alpha_n}$. Then, given $1 \leq p < \infty$, the X-valued Hardy space on \mathbb{T}^{∞} is the subspace of $L_p(\mathbb{T}^{\infty}, X)$ defined as

$$H_p(\mathbb{T}^{\infty}, X) = \{ f \in L_p(\mathbb{T}^{\infty}, X) \mid \hat{f}(\alpha) = 0 \text{ for all } \alpha \in \mathbb{Z}^{(\mathbb{N})} \setminus \mathbb{N}_0^{(\mathbb{N})} \}.$$
 (7)

Assigning to each $f \in H_p(\mathbb{T}^\infty, X)$ its unique formal power series $\sum_{\alpha} \hat{f}(\alpha) z^{\alpha}$ we may consider $H_p(\mathbb{T}^\infty, X)$ as a subspace of $\mathfrak{P}(X)$. We denote the image of this subspace under the Bohr transform \mathfrak{B}_X by

$$\mathcal{H}_p(X)$$
.

This vector space of all (so-called) $\mathcal{H}_p(X)$ -Dirichlet series D together with the norm

$$||D||_{\mathcal{H}_p(X)} = ||\mathfrak{B}_X^{-1}(D)||_{H_p(\mathbb{T}^\infty, X)}$$

forms a Banach space; in other words, through Bohr's transform \mathfrak{B}_X from (6) we by definition identify

$$\mathcal{H}_p(X) = H_p(\mathbb{T}^{\infty}, X), \quad 1 \le p < \infty.$$

For $p=\infty$ we this way of course could also define a Banach space $\mathcal{H}_{\infty}(X)$, and it turns out that at least in the scalar case $X=\mathbb{C}$ this definition then coincides with the one given above; but we remark that these two $\mathcal{H}_{\infty}(X)$'s are different for arbitrary X. It is important to note that by the Birkhoff–Khinchin ergodic theorem the following internal description of the $\mathcal{H}_p(X)$ -norm for finite Dirichlet polynomials $D=\sum_{k=1}^n a_k k^{-s}$ holds:

$$||D||_{\mathcal{H}_p(X)} = \lim_{T \to \infty} \left(\frac{1}{2T} \int_{-T}^{T} \left\| \sum_{k=1}^{n} a_k \frac{1}{k^t} \right\|_{X}^{p} dt \right)^{1/p}$$

(see, for example, Bayart [2002] for the scalar case, and the vector-valued case follows exactly the same way).

Motivated by (4) we define for $D \in \mathfrak{D}(X)$ and $1 \le p < \infty$

$$\sigma_{\mathcal{H}_p(X)}(D) := \inf \left\{ \sigma \in \mathbb{R} \, \bigg| \, \sum_n \frac{a_n}{n^{\sigma}} \frac{1}{n^s} \in \mathcal{H}_p(X) \right\}, \tag{8}$$

the so-called $\mathcal{H}_p(X)$ -abscissa of D. In [Aleman et al. ≥ 2014], Aleman, Olsen, and Saksman prove that the sequence (of Dirichlet series) $1/n^s$, $n \in \mathbb{N}$ is a Schauder basis in $\mathcal{H}_p(\mathbb{C})$ for $1 . Hence, for <math>1 and any Dirichlet series <math>D \in \mathfrak{D}(\mathbb{C})$ we have

$$\sigma_{\mathcal{H}_p(\mathbb{C})}(D) = \inf \left\{ \sigma \in \mathbb{R} \left| \left(\sum_{n=1}^N \frac{a_n}{n^{\sigma}} \frac{1}{n^s} \right)_N \text{ is Cauchy in } \mathcal{H}_p(\mathbb{C}) \right\}, \right.$$
 (9)

which (in the scalar case) is the perfect analog of Bohr's fundamental theorem (i.e., the case $p=\infty$ from (4), where uniform convergence is precisely being Cauchy in $\mathcal{H}_p(\mathbb{C})$). In [Defant 2013] it is shown that (9) also holds true for p=1 (although in this case the $1/n^s$ are definitely no Schauder basis in $\mathcal{H}_1(\mathbb{C})$), and even more: The arguments given in [Defant 2013] (inspired by Bohr's original ideas [1913b]) prove that (9) even holds for any $1 \le p \le \infty$ and any X-valued Dirichlet series $D \in \mathcal{H}_p(X)$. In view of (1) and (5), it therefore seems natural to study

$$S_p(X) := \sup_{D \in \mathfrak{D}(X)} \sigma_a(D) - \sigma_{\mathcal{H}_p(X)}(D) = \sup_{D \in \mathcal{H}_p(X)} \sigma_a(D)$$

(for the second equality use again a simple translation argument). The scalar case is completely understood since, by a result of Bayart [2002],

$$S_p(\mathbb{C}) = \frac{1}{2}$$
 for every $1 \le p < \infty$, (10)

which according to Helson [2005] is surprising since $\mathcal{H}_{\infty}(\mathbb{C})$ is much smaller than $\mathcal{H}_{p}(\mathbb{C})$.

The following theorem unifies and generalizes (1), (3) as well as (10), and it is our main result.

Theorem 1.1. For every $1 \le p \le \infty$ and every Banach space X we have

$$S_p(X) = 1 - \frac{1}{\operatorname{Cot} X}.$$

The proof will be given in Section 3. But before we start let us give an interesting reformulation in terms of the monomial convergence of X-valued H_p -functions on \mathbb{T}^{∞} . Fix a Banach space X and $1 \le p \le \infty$, and define the set of monomial convergence of $H_p(\mathbb{T}^{\infty}, X)$:

$$\operatorname{mon} H_p(\mathbb{T}^{\infty}, X) = \left\{ z \in B_{c_0} \, \middle| \, \sum_{\alpha} \| \hat{f}(\alpha) z^{\alpha} \|_X < \infty \text{ for all } f \in H_p(\mathbb{T}^{\infty}, X) \right\}.$$

Philosophically, this is the largest set M on which for each $f \in H_p(\mathbb{T}^\infty, X)$ the definition $g(z) = \sum_{\alpha} \hat{f}(\alpha) z^{\alpha}$, $z \in M$ leads to an extension of f from the distinguished boundary \mathbb{T}^∞ to its "interior" B_{c_0} (the open unit ball of the Banach space c_0 of all null sequences). For a detailed study of sets of monomial convergence in the scalar case $X = \mathbb{C}$ see [Defant et al. 2009], and in the vector-valued case [Defant and Sevilla-Peris 2011].

We later need the following two basic properties of monomial domains (in the scalar case see [Defant et al. 2008, p. 550; 2014, Lemma 4.3], and in the vector-valued case the proofs follow similar lines).

Remark 1.2. (1) Let $z \in \text{mon } H_p(\mathbb{T}^{\infty}, X)$. Then $u = (z_{\sigma(n)})_n \in \text{mon } H_p(\mathbb{T}^{\infty}, X)$ for every permutation σ of \mathbb{N} .

(2) Let $z \in \text{mon } H_p(\mathbb{T}^\infty, X)$ and $x = (x_n)_n \in \mathbb{D}^\infty$ be such that $|x_n| \le |z_n|$ for all but finitely many n's. Then $x \in \text{mon } H_p(\mathbb{T}^\infty, X)$.

Given $1 \le p \le \infty$ and a Banach space X, the following number measures the size of mon $H_p(\mathbb{T}^\infty, X)$ within the scale of ℓ_r -spaces:

$$M_p(X) = \sup\{1 \le r \le \infty \mid \ell_r \cap B_{c_0} \subset \text{mon } H_p(\mathbb{T}^\infty, X)\}.$$

The following result is a reformulation of Theorem 1.1 in terms of vector-valued H_p -functions on \mathbb{T}^{∞} through Bohr's transform \mathfrak{B}_X . The proof is modeled along ideas from Bohr's seminal article [1913a, Satz IX].

Corollary 1.3. For each Banach space X and $1 \le p \le \infty$ we have

$$M_p(X) = \frac{\operatorname{Cot} X}{\operatorname{Cot} X - 1} \,.$$

Proof. We are going to prove that $S_p(X) = 1/M_p(X)$, and as a consequence the conclusion follows from Theorem 1.1. We begin by showing that $S_p(X) \le 1/M_p(X)$. We fix $q < M_p(X)$ and r > 1/q; then we have that $(1/p_n^r)_n \in \ell_q \cap B_{c_0}$ and, by the very definition of $M_p(X)$, $\sum_{\alpha} \|\hat{f}(\alpha)(1/p^r)^{\alpha}\|_X < \infty$ converges absolutely for every $f \in H_p(\mathbb{T}^\infty, X)$. We choose now an arbitrary Dirichlet series

$$D = \mathfrak{B}_X f = \sum_n a_n n^{-s} \in \mathcal{H}_p(X) \quad \text{with } f \in H_p(\mathbb{T}^\infty, X).$$

Then

$$\sum_{n} \|a_n\|_X \frac{1}{n^r} = \sum_{\alpha} \|a_{p^{\alpha}}\|_X \left(\frac{1}{p^{\alpha}}\right)^r = \sum_{\alpha} \|\hat{f}(\alpha)\|_X \left(\frac{1}{p^r}\right)^{\alpha} < \infty.$$

Clearly, this implies that $S_p(X) \le r$. Since this holds for each r > 1/q, we get that $S_p(X) \le 1/q$, and since this now holds for each $q < M_p(X)$, we have $S_p(X) \le 1/M_p(X)$. Conversely, let us take some $q > M_p(X)$; then there is $z \in \ell_q \cap B_{c_0}$ and $f \in H_p(\mathbb{T}^\infty, X)$ such that $\sum_{\alpha} \hat{f}(\alpha) z^{\alpha}$ does not converge absolutely. By Remark 1.2 we may assume that z is decreasing, and hence $(z_n n^{1/q})_n$ is bounded. We choose now r > q and define $w_n = 1/p_n^{1/r}$. By the prime number theorem we know that there is a universal constant C > 0 such that

$$0 < \frac{z_n}{w_n} = z_n p_n^{1/r} = z_n n^{1/q} \frac{p_n^{1/r}}{n^{1/q}} = z_n n^{1/q} \left(\frac{p_n}{n}\right)^{1/r} \frac{1}{n^{1/q - 1/r}} \le C z_n n^{1/q} \frac{(\log n)^{1/r}}{n^{1/q - 1/r}}.$$

The last term tends to 0 as $n \to \infty$; hence $z_n \le w_n$ but for a finite number of n's. By Remark 1.2 this implies that $\sum_{\alpha} \hat{f}(\alpha) w^{\alpha}$ does not converge absolutely. But then $D = \mathfrak{B}_X f = \sum_n a_n n^{-s} \in \mathcal{H}_p(X)$

satisfies

$$\sum_{n} \|a_{n}\|_{X} \frac{1}{n^{1/r}} = \sum_{\alpha} \|a_{p^{\alpha}}\|_{X} \left(\frac{1}{p^{1/r}}\right)^{\alpha} = \sum_{\alpha} \|\hat{f}(\alpha)\|_{X} w^{\alpha} = \infty.$$

This gives that $\sigma_a(D) \ge 1/r$ for every r > q, hence $\sigma_a(D) \ge 1/q$. Since this holds for every $q > M_p(X)$, we finally have $S_p(X) \ge 1/M_p(X)$.

We shall use standard notation and notions from Banach space theory, as presented, for example, in [Lindenstrauss and Tzafriri 1977; 1979]. For everything needed on polynomials in Banach spaces see, for example, [Dineen 1999; Floret 1997].

2. Relevant inequalities

The main aim here is to prove a sort of polynomial extension of the notion of cotype. Recall the definition of $C_q(X)$ from (2). Moreover, from Kahane's inequality we know that there is a (best) constant $K \ge 1$ such that, for each Banach space X and each choice of finitely many vectors $x_1, \ldots, x_N \in X$,

$$\left(\int_{\mathbb{T}^N} \left\| \sum_{k=1}^N x_k z_k \right\|_X^2 dz \right)^{1/2} \le K \int_{\mathbb{T}^N} \left\| \sum_{k=1}^N x_k z_k \right\|_X dz.$$

As usual we write $|\alpha| = \alpha_1 + \cdots + \alpha_N$ and $\alpha! = \alpha_1! \cdots \alpha_N!$ for every multiindex $\alpha \in \mathbb{N}_0^N$.

Proposition 2.1. Let X be a Banach space of cotype $q, 2 \le q < \infty$, and

$$P: \mathbb{C}^N \to X, \quad P(z) = \sum_{\substack{\alpha \in \mathbb{N}_0^N \\ |\alpha| = m}} c_{\alpha} z^{\alpha}$$

be an m-homogeneous polynomial. Let

$$T: \mathbb{C}^N \times \cdots \times \mathbb{C}^N \to X, \quad T(z^{(1)}, \dots, z^{(m)}) = \sum_{i_1, \dots, i_m = 1}^N a_{i_1, \dots, i_m} z_{i_1}^{(1)} \cdots z_{i_m}^{(m)}$$

be the unique m-linear symmetrization of P. Then

$$\left(\sum_{i_1,\ldots,i_m} \|a_{i_1,\ldots,i_m}\|_X^q\right)^{1/q} \le (C_q(X)K)^m \frac{m^m}{m!} \int_{\mathbb{T}^N} \|P(z)\|_X dz.$$

Before we give the proof let us note that [Bombal et al. 2004, Theorem 3.2] is an m-linear result that, combined with polarization, gives (with the previous notation)

$$\left(\sum_{i_1,\dots,i_m} \|a_{i_1,\dots,i_m}\|_X^q\right)^{1/q} \le C_q(X)^m \frac{m^m}{m!} \sup_{z \in \mathbb{D}^N} \|P(z)\|.$$

Our result allows us to replace (up to the constant K) the $\| \|_{\infty}$ norm with the smaller norm $\| \|_{1}$. We prepare the proof of Proposition 2.1 with three lemmas. The first one is a complex version of [Defant et al. 2010, Lemma 2.2] with essentially the same proof; we include it for the sake of completeness.

Lemma 2.2. Let X be a Banach space of cotype $q, 2 \le q < \infty$. Then, for every m-linear form

$$T: \mathbb{C}^N \times \cdots \times \mathbb{C}^N \to X, \quad T(z^{(1)}, \dots, z^{(m)}) = \sum_{i_1, \dots, i_m = 1}^N a_{i_1, \dots, i_m} z_{i_1}^{(1)} \cdots z_{i_m}^{(m)},$$

we have

$$\left(\sum_{i_1,\dots,i_m=1}^N \|a_{i_1,\dots,i_m}\|_X^q\right)^{1/q} \leq \left(C_q(X)\,K\right)^m \int_{\mathbb{T}^N} \dots \int_{\mathbb{T}^N} \|T(z^{(1)},\dots,z^{(m)})\|_X\,dz^{(1)}\dots dz^{(m)}.$$

Proof. We prove this result by induction on the degree m. For m=1 the result is an immediate consequence of the definition of cotype q and Kahane's inequality. Assume that the result holds for m-1. By the continuous Minkowski inequality we then conclude that for every choice of finitely many vectors $a_{i_1,...,i_m} \in X$ with $1 \le i_j \le N$, $1 \le j \le m$ we have

$$\sum_{i_{1},...,i_{m}} \|a_{i_{1},...,i_{m}}\|_{X}^{q} = \sum_{i_{1},...,i_{m-1}} \sum_{i_{m}} \|a_{i_{1},...,i_{m}}\|_{X}^{q} \\
\leq C_{q}(X)^{q} K^{q} \left(\sum_{i_{1},...,i_{m-1}} \left(\int_{\mathbb{T}^{N}} \left\| \sum_{i_{m}} a_{i_{1},...,i_{m}} z_{i_{m}}^{(m)} \right\|_{X} dz^{(m)} \right)^{q} \right)^{q/q} \\
\leq C_{q}(X)^{q} K^{q} \left(\int_{\mathbb{T}^{N}} \left(\sum_{i_{1},...,i_{m-1}} \left\| \sum_{i_{m}} a_{i_{1},...,i_{m}} z_{i_{m}}^{(m)} \right\|_{X}^{q} \right)^{1/q} dz^{(m)} \right)^{q} \\
\leq C_{q}(X)^{qm} K^{qm} \left(\int_{\mathbb{T}^{N}} \underbrace{\int_{\mathbb{T}^{N}} \cdots \int_{\mathbb{T}^{N}} \left\| \sum_{i_{1},...,i_{m-1}} a_{i_{1},...,i_{m-1}} z_{i_{1}}^{(1)}, \ldots, z_{i_{m-1}}^{(m-1)} \right\|_{X} dz^{(1)} \cdots dz^{(m-1)} dz^{(m)} \right)^{q},$$

which is the conclusion.

The following two lemmas are needed to produce a polynomial analog of the preceding result.

Lemma 2.3. Let X be a Banach space, and $f: \mathbb{C} \to X$ a holomorphic function. Then for $R_1, R_2, R \ge 0$ with $R_1 + R_2 \le R$ we have

$$\int_{\mathbb{T}} \int_{\mathbb{T}} \|f(R_1 z_1 + R_2 z_2)\|_X dz_1 dz_2 \le \int_{\mathbb{T}} \|f(Rz)\|_X dz.$$

Proof. By the rotation invariance of the normalized Lebesgue measure on $\mathbb T$ we get

$$\int_{\mathbb{T}} \int_{\mathbb{T}} \|f(R_1 z_1 + R_2 z_2)\|_X dz_1 dz_2 = \int_{\mathbb{T}} \int_{\mathbb{T}} \|f(R_1 z_1 z_2 + R_2 z_2)\|_X dz_1 dz_2
= \int_{\mathbb{T}} \int_{\mathbb{T}} \|f(z_2 (R_1 z_1 + R_2))\|_X dz_1 dz_2 = \int_{\mathbb{T}} \int_{\mathbb{T}} \|f(z_2 |R_1 z_1 + R_2|)\|_X dz_2 dz_1
= \int_{\mathbb{T}} \int_{\mathbb{T}} \|f(z_2 r(z_1) R)\|_X dz_2 dz_1 = \int_0^{2\pi} \int_0^{2\pi} \|f(r(e^{is}) R e^{it})\|_X \frac{dt}{2\pi} \frac{ds}{2\pi},$$

where $r(z) = (1/R)|R_1z + R_2|, z \in \mathbb{T}$. We know that for each holomorphic function $h : \mathbb{C} \to X$ we have

$$\int_{\mathbb{T}} \|h(z)\|_X \, dz = \sup_{0 \le r \le 1} \int_0^{2\pi} \|h(re^{it})\|_X \, \frac{dt}{2\pi}$$

(see, for example, Blasco and Xu [1991, p. 338]). Define now h(z) = f(Rz), and note that $0 \le r(z) \le 1$ for all $z \in \mathbb{T}$. Then

$$\int_{\mathbb{T}} \int_{\mathbb{T}} \|f(R_1 z_1 + R_2 z_2)\|_{X} dz_1 dz_2 = \int_{0}^{2\pi} \int_{0}^{2\pi} \|h(r(e^{is})e^{it})\|_{X} \frac{dt}{2\pi} \frac{ds}{2\pi}$$

$$\leq \int_{0}^{2\pi} \int_{\mathbb{T}} \|h(z)\|_{X} dz \frac{ds}{2\pi} = \int_{\mathbb{T}} \|f(Rz)\|_{X} dz.$$

This completes the proof.

A sort of iteration of the preceding result leads to the next:

Lemma 2.4. Let X be a Banach space, and $f: \mathbb{C}^N \to X$ a holomorphic function. Then, for every m,

$$\int_{\mathbb{T}^N} \cdots \int_{\mathbb{T}^N} \|f(z^{(1)} + \cdots + z^{(m)})\|_X dz^{(1)} \cdots dz^{(m)} \le \int_{\mathbb{T}^N} \|f(mz)\|_X dz.$$

Proof. We fix some m, and do induction with respect to N. For N=1 we obtain from Lemma 2.3 that

$$\int_{\mathbb{T}} \cdots \int_{\mathbb{T}} \int_{\mathbb{T}} \int_{\mathbb{T}} \| \underbrace{f(z^{(1)} + \cdots + z^{(m-2)} + z^{(m-1)} + z^{(m)})}_{=:g_{z^{(1)}, \dots, z^{(m-2)}}(z^{(m-1)} + z^{(m)})} \|_{X} dz^{(m-1)} dz^{(m)} dz^{(1)} \cdots dz^{(m-2)}$$

$$\leq \int_{\mathbb{T}} \cdots \int_{\mathbb{T}} \int_{\mathbb{T}} \| g_{z^{(1)}, \dots, z^{(m-2)}}(2w) \|_{X} dw dz^{(1)} \cdots dz^{(m-2)}$$

$$= \int_{\mathbb{T}} \cdots \int_{\mathbb{T}} \int_{\mathbb{T}} \int_{\mathbb{T}} \| f(z^{(1)} + \cdots + z^{(m-2)} + 2w) \|_{X} dw dz^{(m-2)} dz^{(1)} \cdots dz^{(m-3)}$$

$$\leq \int_{\mathbb{T}} \cdots \int_{\mathbb{T}} \int_{\mathbb{T}} \| f(z^{(1)} + \cdots + z^{(m-3)} + 3w) \|_{X} dz^{(1)} \cdots dz^{(m-3)} dw$$

$$\leq \cdots \leq \int_{\mathbb{T}} \| f(mz) \|_{X} dz.$$

We now assume that the conclusion holds for N-1 and write each $z \in \mathbb{T}^N$ as z = (u, w), with $u \in \mathbb{T}^{N-1}$ and $w \in \mathbb{T}$. Then, using the case N=1 in the first inequality and the inductive hypothesis in the second,

we have

$$\int_{\mathbb{T}^{N}} \cdots \int_{\mathbb{T}^{N}} \| f(z^{(1)} + \cdots + z^{(m)}) \|_{X} dz^{(1)} \cdots dz^{(m)}
= \int_{\mathbb{T}^{N-1}} \cdots \int_{\mathbb{T}^{N-1}} \left(\int_{\mathbb{T}} \cdots \int_{\mathbb{T}} \| f((u^{(1)}, w_{1}) + \cdots + (u^{(m)}, w_{m})) \|_{X} dw_{1} \cdots dw_{N} \right) du^{(1)} \cdots du^{(m)}
\leq \int_{\mathbb{T}^{N-1}} \cdots \int_{\mathbb{T}^{N-1}} \left(\int_{\mathbb{T}} \| f((u^{(1)}, mw) + \cdots + (u^{(m)}, mw)) \|_{X} dw \right) du^{(1)} \cdots du^{(m)}
= \int_{\mathbb{T}} \left(\int_{\mathbb{T}^{N-1}} \cdots \int_{\mathbb{T}^{N-1}} \| f((u^{(1)}, mw) + \cdots + (u^{(m)}, mw)) \|_{X} du^{(1)} \cdots du^{(m)} \right) dw
\leq \int_{\mathbb{T}} \left(\int_{\mathbb{T}^{N-1}} \| f((mu, mw) + \cdots + (mu, mw)) \|_{X} du \right) dw
= \int_{\mathbb{T}^{N}} \| f(mz) \|_{X} dz,$$

as desired.

Proof of the inequality from Proposition 2.1. By the polarization formula we know that for every choice of $z^{(1)}, \ldots, z^{(m)} \in \mathbb{T}^N$ we have

$$T(z^{(1)}, \dots, z^{(m)}) = \frac{1}{2^m m!} \sum_{\varepsilon_i = \pm 1} \varepsilon_i \cdots \varepsilon_m P\left(\sum_{i=1}^N \varepsilon_i z^{(i)}\right)$$

(see, for example, [Dineen 1999] or [Floret 1997]). Hence we deduce from Lemma 2.4

$$\begin{split} \int_{\mathbb{T}^{N}} \cdots \int_{\mathbb{T}^{N}} \|T(z^{(1)}, \dots, z^{(m)})\|_{X} dz^{(1)} \cdots dz^{(m)} &\leq \frac{1}{2^{m} m!} \sum_{\varepsilon_{i} = \pm 1} \int_{\mathbb{T}^{N}} \cdots \int_{\mathbb{T}^{N}} \left\| P\left(\sum_{i=1}^{N} \varepsilon_{i} z^{(i)}\right) \right\|_{X} dz^{(1)} \cdots dz^{(m)} \\ &= \frac{1}{2^{m} m!} \sum_{\varepsilon_{i} = \pm 1} \int_{\mathbb{T}^{N}} \cdots \int_{\mathbb{T}^{N}} \left\| P\left(\sum_{i=1}^{N} z^{(i)}\right) \right\|_{X} dz^{(1)} \cdots dz^{(m)} \\ &= \frac{1}{m!} \int_{\mathbb{T}^{N}} \cdots \int_{\mathbb{T}^{N}} \left\| P\left(\sum_{i=1}^{N} z^{(i)}\right) \right\|_{X} dz^{(1)} \cdots dz^{(m)} \\ &\leq \frac{1}{m!} \int_{\mathbb{T}^{N}} \|P(mz)\|_{X} dz = \frac{m^{m}}{m!} \int_{\mathbb{T}^{N}} \|P(z)\|_{X} dz. \end{split}$$

Then by Lemma 2.2 we obtain

$$\left(\sum_{i_{1},...,i_{m}}^{N} \|a_{i_{1},...,i_{m}}\|_{X}^{q}\right)^{1/q} \leq \left(C_{q}(X)K\right)^{m} \int_{\mathbb{T}^{\infty}} \cdots \int_{\mathbb{T}^{\infty}} \|T(z^{(1)},\ldots,z^{(m)})\|_{X} dz^{(1)} \cdots dz^{(m)}$$

$$= \left(C_{q}(X)K\right)^{m} \frac{m^{m}}{m!} \int_{\mathbb{T}^{N}} \|P(z)\|_{X} dz,$$

which completes the proof of Proposition 2.1.

A second proposition is needed which allows us to reduce the proof of our main result (Theorem 1.1) to the homogeneous case. It is a vector-valued version of a result of [Cole and Gamelin 1986, Theorem 9.2] with a similar proof (here only given for the sake of completeness).

Proposition 2.5. There is a contractive projection

$$\Phi_m: H_p(\mathbb{T}^N, X) \to H_p(\mathbb{T}^N, X), \quad f \mapsto f_m,$$

such that, for all $f \in H_p(\mathbb{T}^N, X)$,

$$\hat{f}(\alpha) = \hat{f}_m(\alpha) \quad \text{for all } \alpha \in \mathbb{N}_0^N \text{ with } |\alpha| = m.$$
 (11)

Proof. Let $\mathfrak{P}(\mathbb{C}^N, X) \subset H_p(\mathbb{T}^N, X)$ be the subspace of all finite polynomials $f = \sum_{\alpha \in \Lambda} c_{\alpha} z^{\alpha}$; here Λ is a finite set of multiindices in \mathbb{N}_0^N and the coefficients $c_{\alpha} \in X$. Define the linear projection Φ_m^0 on $\mathfrak{P}(\mathbb{C}^N, X)$ by

$$\Phi_m^0(f)(z) = f_m(z) = \sum_{\alpha \in \Lambda, |\alpha| = m} \hat{f}(\alpha) z^{\alpha};$$

clearly, we have (11). In order to show that Φ_m^0 is a contraction on $(\mathcal{P}(\mathbb{C}^N, X), \|\cdot\|_p)$ fix some function $f \in \mathcal{P}(\mathbb{C}^N, X)$ and $z \in \mathbb{T}^N$, and define

$$f(z \cdot) : \mathbb{T} \to X, \quad w \mapsto f(zw).$$

Clearly, we have

$$f(zw) = \sum_{k} f_k(z)w^k,$$

and hence

$$f_m(z) = \int_{\mathbb{T}} f(zw) w^{-m} dw.$$

Integration, Hölder's inequality and the rotation invariance of the normalized Lebesgue measure on \mathbb{T}^N give

$$\begin{split} \int_{\mathbb{T}^{N}} \|f_{m}(z)\|_{X}^{p} dz &= \int_{\mathbb{T}^{N}} \left\| \int_{\mathbb{T}} f(zw)w^{-m} dw \right\|_{X}^{p} dz \\ &\leq \int_{\mathbb{T}^{N}} \left(\int_{\mathbb{T}} \|f(zw)\|_{X} dw \right)^{p} dz \\ &\leq \int_{\mathbb{T}} \int_{\mathbb{T}^{N}} \|f(zw)\|_{X}^{p} dz dw = \int_{\mathbb{T}^{N}} \|f(z)\|_{X}^{p} dz, \end{split}$$

which proves that Φ_m^0 is a contraction on $(\mathcal{P}(\mathbb{C}^N,X),\|\cdot\|_p)$. By Fejér's theorem (vector-valued) we know that $\mathcal{P}(\mathbb{C}^N,X)$ is a dense subspace of $H_p(\mathbb{T}^N,X)$. Hence Φ_m^0 extends to a contractive projection Φ_m on $H_p(\mathbb{T}^N,X)$. This extension Φ_m still satisfies (11) since the mapping $H_p(\mathbb{T}^N,X) \to X$, $f \mapsto \hat{f}(\alpha)$ is continuous for each multiindex α .

3. Proof of the main result

We are now ready to prove Theorem 1.1. Let $1 \le p < \infty$, and recall from (1) that

$$1 - \frac{1}{\cot X} = S_{\infty}(X) \le S_p(X);$$

see Remark 3.1 for a direct argument. Hence it suffices to concentrate on the upper estimate in Theorem 1.1: Since we obviously have $S_p(X) \leq S_1(X)$, we are going to prove that

$$S_1(X) \le 1 - \frac{1}{\cot X}.\tag{12}$$

Suppose first that X has no finite cotype, i.e., $\operatorname{Cot} X = \infty$. For $D = \sum_n a_n n^{-s} \in \mathcal{H}_1(X)$ we take $f \in H_1(\mathbb{T}^\infty, X)$ with $D = \mathfrak{B}_X f$. Note that

$$\|\hat{f}(\alpha)\|_X \le \int_{\mathbb{T}^\infty} \|f(w)w^{-\alpha}\|_X dw = \|f\|_{L_1(\mathbb{T}^\infty, X)} < \infty;$$

hence, by the definition of \mathfrak{B}_X , the coefficients of D are also bounded by $||f||_{L_1(\mathbb{T}^\infty,X)}$. As a consequence, for every $\sigma > 1$ we have

$$\sum_{n=1}^{\infty} \|a_n\|_X \frac{1}{n^{\sigma}} \le \sum_{n=1}^{\infty} \|f\|_{L_1(\mathbb{T}^{\infty}, X)} \frac{1}{n^{\sigma}} < \infty.$$

This means that $S_1(X) \le 1$ and as a consequence (12) holds.

Now if X has finite cotype, take $q > \operatorname{Cot} X$ and $\varepsilon > 0$, and put $s = (1 - 1/q)(1 + 2\varepsilon)$. Choose an integer k_0 such that $p_{k_0}^{\varepsilon/q'} > eC_q(X)K\left(\sum_{j=1}^{\infty} 1/p_j^{1+\varepsilon}\right)^{1/q'}$ and define

$$\tilde{p} = (\underbrace{p_{k_0}, \dots, p_{k_0}}_{k_0 \text{ times}}, p_{k_0+1}, p_{k_0+2}, \dots).$$

We are going to show that there is a constant $C(q, X, \varepsilon) > 0$ such that for every $f \in H_1(\mathbb{T}^\infty, X)$ we have

$$\sum_{\alpha \in \mathbb{N}_{\alpha}^{(\mathbb{N})}} \|\hat{f}(\alpha)\|_{X} \frac{1}{\tilde{p}^{s\alpha}} \le C(q, X, \varepsilon) \|f\|_{H_{1}(\mathbb{T}^{\infty}, X)}. \tag{13}$$

This finishes the argument: By Remark 1.2 the sequence $1/p^s$ is in mon $H_1(\mathbb{T}^\infty, X)$. But in view of Bohr's transform from (6), this means that for every Dirichlet series $D = \sum_n a_n n^{-s} = \mathfrak{B}_X f \in \mathcal{H}_1(X)$ with $f \in H_1(\mathbb{T}^\infty, X)$ we have

$$\sum_{n=1}^{\infty} \|a_n\|_X \frac{1}{n^s} = \sum_{\alpha \in \mathbb{N}_0^{(\mathbb{N})}} \|\hat{f}(\alpha)\|_X \frac{1}{p^{s\alpha}} < \infty.$$

Therefore $\sigma_a(D) \le (1 - 1/q)(1 + 2\varepsilon)$ for each such D which, since $\varepsilon > 0$ was arbitrary, is what we wanted to prove.

It remains to check (13); the idea is to show first that (13) holds for all X-valued H_1 -functions which only depend on N variables: There is a constant $C(q, X, \varepsilon) > 0$ such that for all N and every

 $f \in H_1(\mathbb{T}^N, X)$ we have

$$\sum_{\alpha \in \mathbb{N}_0^N} \|\hat{f}(\alpha)\|_X \frac{1}{\tilde{p}^{s\alpha}} \le C(q, X, \varepsilon) \|f\|_{H_1(\mathbb{T}^N, X)}. \tag{14}$$

In order to understand that (14) implies (13) (and hence the conclusion), assume that (14) holds and take some $f \in H_1(\mathbb{T}^\infty, X)$. Given an arbitrary N, define

$$f_N: \mathbb{T}^N \to X, \quad f_N(w) = \int_{\mathbb{T}^\infty} f(w, \tilde{w}) d\tilde{w}.$$

Then it can be easily shown that $f_N \in L_1(\mathbb{T}^N, X)$, $||f_N||_1 \le ||f||_1$, and $\hat{f}_N(\alpha) = \hat{f}(\alpha)$ for all $\alpha \in \mathbb{Z}^N$. If we now apply (14) to this f_N , we get

$$\sum_{\alpha \in \mathbb{N}_{0}^{N}} \|\hat{f}(\alpha)\|_{X} \frac{1}{\tilde{p}^{s\alpha}} \leq C(q, X, \varepsilon) \|f\|_{H_{1}(\mathbb{T}^{\infty}, X)},$$

which, after taking the supremum over all possible N on the left side, leads to (13).

We turn to the proof of (14), and here in a first step will show the following: For every N, every m-homogeneous polynomial $P: \mathbb{C}^N \to X$ and every $u \in \ell_{a'}$ we have

$$\sum_{\substack{\alpha \in \mathbb{N}_0^N \\ 1 \text{ odd}}} \|\hat{P}(\alpha)u^{\alpha}\|_X \le (eC_q(X)K)^m \int_{\mathbb{T}^N} \|P(z)\|_X \, dz \left(\sum_{j=1}^\infty |u_j|^{q'}\right)^{m/q'}. \tag{15}$$

Indeed, take such a polynomial $P(z) = \sum_{\alpha \in \mathbb{N}_0^N, |\alpha| = m} \hat{P}(\alpha) z^{\alpha}, \ z \in \mathbb{T}^N$, and look at its unique *m*-linear symmetrization

$$T: \mathbb{C}^N \times \cdots \times \mathbb{C}^N \to X, \quad T(z^{(1)}, \dots, z^{(m)}) = \sum_{i_1, \dots, i_m = 1}^N a_{i_1, \dots, i_m} z_{i_1}^{(1)}, \dots, z_{i_m}^{(m)}.$$

Then we know from Proposition 2.1 that

$$\left(\sum_{i_1,\dots,i_m=1}^N \|a_{i_1,\dots,i_m}\|_X^q\right)^{1/q} \le (eC_q(X)K)^m \int_{\mathbb{T}^N} \|P(z)\|_X dz.$$

Hence (15) follows by Hölder's inequality:

$$\sum_{\substack{\alpha \in \mathbb{N}_0^N \\ |\alpha| = m}} \|\hat{P}(\alpha)u^{\alpha}\|_X = \sum_{i_1, \dots, i_m = 1}^N \|a_{i_1, \dots, i_m}\|_X |u_{i_1} \cdots u_{i_N}| \le (eC_q(X)K)^m \int_{\mathbb{T}^N} \|P(z)\|_X dz \left(\sum_{j=1}^\infty |u_j|^{q'}\right)^{m/q'}.$$

We finally give the proof of (14): Take $f \in H_1(\mathbb{T}^N, X)$, and recall from Proposition 2.5 that for each integer m there is an m-homogeneous polynomial $P_m : \mathbb{C}^N \to X$ such that $\|P_m\|_{H_1(\mathbb{T}^N, X)} \le \|f\|_{H_1(\mathbb{T}^N, X)}$

and $\hat{P}_m(\alpha) = \hat{f}(\alpha)$ for all $\alpha \in \mathbb{N}_0^N$ with $|\alpha| = m$. From (15), the definition of s, and the fact that $\max\{p_{k_0}, p_j\} \leq \tilde{p}_j$ for all j we have

$$\begin{split} \sum_{\alpha \in \mathbb{N}_{0}^{N}} \| \hat{f}(\alpha) \|_{X} \frac{1}{\tilde{p}^{s\alpha}} &= \sum_{m=1}^{\infty} \sum_{\alpha \in \mathbb{N}_{0}^{N}} \| \hat{P}_{m}(\alpha) \|_{X} \frac{1}{\tilde{p}^{s\alpha}} \\ &\leq \sum_{m=1}^{\infty} (eC_{q}(X)K)^{m} \| P_{m} \|_{H_{1}(\mathbb{T}^{N},X)} \left(\sum_{j=1}^{\infty} \frac{1}{\tilde{p}^{sq'}_{j}} \right)^{m/q'} \\ &= \sum_{m=1}^{\infty} (eC_{q}(X)K)^{m} \| f \|_{H_{1}(\mathbb{T}^{N},X)} \left(\sum_{j=1}^{\infty} \frac{1}{\tilde{p}^{1+2\varepsilon}_{j}} \right)^{m/q'} \\ &= \sum_{m=1}^{\infty} (eC_{q}(X)K)^{m} \| f \|_{H_{1}(\mathbb{T}^{N},X)} \left(\sum_{j=1}^{\infty} \frac{1}{\tilde{p}^{1+\varepsilon}_{j}} \frac{1}{\tilde{p}^{\varepsilon}_{j}} \right)^{m/q'} \\ &\leq \| f \|_{H_{1}(\mathbb{T}^{N},X)} \sum_{m=1}^{\infty} \left(\underbrace{eC_{q}(X)K(\sum_{j=1}^{\infty} p^{-(1+\varepsilon)}_{j})^{1/q'}}_{p^{\varepsilon/q'}_{k_{0}}} \right)^{m}. \end{split}$$

This completes the proof of Theorem 1.1.

Remark 3.1. We end this note with a direct proof of the fact

$$1 - \frac{1}{\operatorname{Cot} X} \le S_p(X), \quad 1 \le p < \infty, \tag{16}$$

in which we do not use the inequality

$$1 - \frac{1}{\operatorname{Cot} X} \le S_{\infty}(X) \tag{17}$$

from [Defant et al. 2008] (here repeated in (1)). The proof of (17) given in that reference shows in a first step that $1 - 1/\Pi(X) \le S_{\infty}(X)$ where

$$\Pi(X) = \inf\{r > 2 \mid id_X \text{ is } (r, 1)\text{-summing}\},\$$

and then, in a second step, applies a fundamental theorem of Maurey and Pisier stating that $\Pi(X) = \text{Cot } X$. The following argument for (16) is very similar to the original one from [Defant et al. 2008] but does not use the Maurey–Pisier theorem (since we here consider $\mathcal{H}_p(X)$, $1 \le p < \infty$ instead of $\mathcal{H}_\infty(X)$): By the proof of Corollary 1.3, inequality (16) is equivalent to

$$M_p(X) \le \frac{\operatorname{Cot} X}{\operatorname{Cot} X - 1}.$$

Take $r < M_p(X)$, so that $\ell_r \cap B_{c_0} \subset \text{mon } H_p(\mathbb{T}^{\infty}, X)$. Let $H_p^1(\mathbb{T}^{\infty}, X)$ be the subspace of $H_p(\mathbb{T}^{\infty}, X)$ formed by all 1-homogeneous polynomials (i.e., linear operators). We can define a bilinear operator

 $\ell_r \times H^1_p(\mathbb{T}^\infty, X) \to \ell_1(X)$ by $(z, f) \mapsto (z_j f(e_j))_j$ which, by a closed graph argument, is continuous. Therefore, there is a constant M such that for all $z \in \ell_r$ and all $f \in H^1_p(\mathbb{T}^\infty, X)$ we have

$$\sum_{j} |z_{j}| \|f(e_{j})\|_{X} \leq M \|z\|_{\ell_{r}} \|f\|_{H_{p}(\mathbb{T}^{\infty},X)}.$$

Taking the supremum over all $z \in B_{\ell_r}$ we obtain for all $f \in H^1_p(\mathbb{T}^\infty, X)$

$$\left(\sum_{j} \|f(e_{j})\|_{X}^{r'}\right)^{1/r'} \leq M \|f\|_{H_{p}(\mathbb{T}^{\infty},X)}.$$

Now, take $x_1, \ldots, x_N \in X$, define $f \in H^1_p(\mathbb{T}^\infty, X)$ by

$$f(e_j) = \begin{cases} x_j & \text{if } 1 \le j \le N, \\ 0 & \text{if } j > N \end{cases}$$

and extend it by linearity. By the previous inequality and Proposition 2.5 we have

$$\left(\sum_{j=1}^{N} \|x_j\|_X^{r'}\right)^{1/r'} \le M \left(\int_{\mathbb{T}^N} \left\|\sum_{j=1}^{N} x_j z_j\right\|_X^{r'} dz\right)^{1/r'}.$$

By Kahane's inequality, X has cotype r', which means that r' > Cot X or, equivalently, $r < \frac{\text{Cot } X}{\text{Cot } X - 1}$. Since $r < M_p(X)$ was arbitrary, we obtain (16).

References

[Aleman et al. ≥ 2014] A. Aleman, J.-F. Olsen, and E. Saksman, "Fourier multipliers for Hardy spaces of Dirichlet series", *Int. Math. Res. Not.* arXiv 1210.4292

[Bayart 2002] F. Bayart, "Hardy spaces of Dirichlet series and their composition operators", *Monatsh. Math.* **136**:3 (2002), 203–236. MR 2003i:42032 Zbl 1076.46017

[Bayart et al. 2014] F. Bayart, A. Defant, L. Frerick, M. Maestre, and P. Sevilla-Peris, "Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables", preprint, 2014. arXiv 1405.7205

[Blasco and Xu 1991] O. Blasco and Q. H. Xu, "Interpolation between vector-valued Hardy spaces", *J. Funct. Anal.* **102**:2 (1991), 331–359. MR 93e:46042 Zbl 0759.46066

[Bohnenblust and Hille 1931] H. F. Bohnenblust and E. Hille, "On the absolute convergence of Dirichlet series", *Ann. of Math.* (2) **32**:3 (1931), 600–622. MR 1503020 Zbl 0001.26901

[Bohr 1913a] H. Bohr, "Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reihen $\sum (a_n/n^s)$ ", Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. **1913** (1913), 441–488. JFM 44.0306.01

[Bohr 1913b] H. Bohr, "Über die gleichmäßige Konvergenz Dirichletscher Reihen", J. Reine Angew. Math. 143 (1913), 203–211. JFM 44.0307.01

[Bombal et al. 2004] F. Bombal, D. Pérez-García, and I. Villanueva, "Multilinear extensions of Grothendieck's theorem", Q. J. Math. 55:4 (2004), 441–450. MR 2005i:47032 Zbl 1078.46030

[Cole and Gamelin 1986] B. J. Cole and T. W. Gamelin, "Representing measures and Hardy spaces for the infinite polydisk algebra", *Proc. London Math. Soc.* (3) **53**:1 (1986), 112–142. MR 87j:46102 Zbl 0624.46032

[Defant 2013] A. Defant, "Bohr's fundamental theorem for H_p -Dirichlet series", manuscript, 2013.

[Defant and Sevilla-Peris 2011] A. Defant and P. Sevilla-Peris, "Convergence of Dirichlet polynomials in Banach spaces", *Trans. Amer. Math. Soc.* **363**:2 (2011), 681–697. MR 2012a:46079 Zbl 1220.46029

[Defant et al. 2008] A. Defant, D. García, M. Maestre, and D. Pérez-García, "Bohr's strip for vector valued Dirichlet series", *Math. Ann.* **342**:3 (2008), 533–555. MR 2010b:46096 Zbl 1154.32001

[Defant et al. 2009] A. Defant, M. Maestre, and C. Prengel, "Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables", *J. Reine Angew. Math.* **634** (2009), 13–49. MR 2011b:46070 Zbl 1180.32002

[Defant et al. 2010] A. Defant, D. Popa, and U. Schwarting, "Coordinatewise multiple summing operators in Banach spaces", *J. Funct. Anal.* **259**:1 (2010), 220–242. MR 2011d:47046 Zbl 1205.46026

[Dineen 1999] S. Dineen, *Complex analysis on infinite-dimensional spaces*, Springer, London, 1999. MR 2001a:46043 Zbl 1034.46504

[Floret 1997] K. Floret, "Natural norms on symmetric tensor products of normed spaces", *Note Mat.* **17** (1997), 153–188. MR 2001g:46038 Zbl 0961.46013

[Helson 2005] H. Helson, Dirichlet series, Henry Helson, Berkeley, CA, 2005. MR 2005h:40001 Zbl 1080.30005

[Lindenstrauss and Tzafriri 1977] J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces*, *1: Sequence spaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete **92**, Springer, Berlin, 1977. MR 58 #17766 Zbl 0362.46013

[Lindenstrauss and Tzafriri 1979] J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces*, *II: Function spaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete **97**, Springer, Berlin, 1979. MR 81c:46001 Zbl 0403.46022

Received 9 Sep 2013. Accepted 2 Jan 2014.

DANIEL CARANDO: dcarando@dm.uba.ar

Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria - Pabellón I, C1428EGA Buenos Aires, Argentina

ANDREAS DEFANT: defant@mathematik.uni-oldenburg.de

Institut für Mathematik, Universität Oldenburg, D-26111 Oldenburg, Germany

PABLO SEVILLA-PERIS: psevilla@mat.upv.es

Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 València, Spain

Analysis & PDE

msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski
zworski@math.berkeley.edu
University of California
Berkeley, USA

BOARD OF EDITORS

Nicolas Burq	Université Paris-Sud 11, France nicolas.burq@math.u-psud.fr	Yuval Peres	University of California, Berkeley, USA peres@stat.berkeley.edu
Sun-Yung Alice Chang	Princeton University, USA chang@math.princeton.edu	Gilles Pisier	Texas A&M University, and Paris 6 pisier@math.tamu.edu
Michael Christ	University of California, Berkeley, USA mchrist@math.berkeley.edu	Tristan Rivière	ETH, Switzerland riviere@math.ethz.ch
Charles Fefferman	Princeton University, USA cf@math.princeton.edu	Igor Rodnianski	Princeton University, USA irod@math.princeton.edu
Ursula Hamenstaedt	Universität Bonn, Germany ursula@math.uni-bonn.de	Wilhelm Schlag	University of Chicago, USA schlag@math.uchicago.edu
Vaughan Jones	U.C. Berkeley & Vanderbilt University vaughan.f.jones@vanderbilt.edu	Sylvia Serfaty	New York University, USA serfaty@cims.nyu.edu
Herbert Koch	Universität Bonn, Germany koch@math.uni-bonn.de	Yum-Tong Siu	Harvard University, USA siu@math.harvard.edu
Izabella Laba	University of British Columbia, Canada ilaba@math.ubc.ca	Terence Tao	University of California, Los Angeles, USA tao@math.ucla.edu
Gilles Lebeau	Université de Nice Sophia Antipolis, France lebeau@unice.fr	Michael E. Taylor	Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu
László Lempert	Purdue University, USA lempert@math.purdue.edu	Gunther Uhlmann	University of Washington, USA gunther@math.washington.edu
Richard B. Melrose	Massachussets Institute of Technology, USA rbm@math.mit.edu	András Vasy	Stanford University, USA andras@math.stanford.edu
Frank Merle	Université de Cergy-Pontoise, France Da Frank.Merle@u-cergy.fr	n Virgil Voiculescu	University of California, Berkeley, USA dvv@math.berkeley.edu
William Minicozzi II	Johns Hopkins University, USA minicozz@math.jhu.edu	Steven Zelditch	Northwestern University, USA zelditch@math.northwestern.edu
Werner Müller	Universität Bonn, Germany		

PRODUCTION

production@msp.org Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

mueller@math.uni-bonn.de

The subscription price for 2014 is US \$180/year for the electronic version, and \$355/year (+\$50, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

nonprofit scientific publishing

http://msp.org/

© 2014 Mathematical Sciences Publishers

ANALYSIS & PDE

Volume 7 No. 2 2014

Two-phase problems with distributed sources: regularity of the free boundary DANIELA DE SILVA, FAUSTO FERRARI and SANDRO SALSA	267
Miura maps and inverse scattering for the Novikov–Veselov equation PETER A. PERRY	311
Convexity of average operators for subsolutions to subelliptic equations ANDREA BONFIGLIOLI, ERMANNO LANCONELLI and ANDREA TOMMASOLI	345
Global uniqueness for an IBVP for the time-harmonic Maxwell equations PEDRO CARO and TING ZHOU	375
Convexity estimates for hypersurfaces moving by convex curvature functions BEN ANDREWS, MAT LANGFORD and JAMES MCCOY	407
Spectral estimates on the sphere JEAN DOLBEAULT, MARIA J. ESTEBAN and ARI LAPTEV	435
Nondispersive decay for the cubic wave equation ROLAND DONNINGER and ANIL ZENGINOĞLU	461
A non-self-adjoint Lebesgue decomposition MATTHEW KENNEDY and DILIAN YANG	497
Bohr's absolute convergence problem for \mathcal{H}_p -Dirichlet series in Banach spaces DANIEL CARANDO, ANDREAS DEFANT and PABLO SEVILLA-PERIS	513