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In this work the magnetic oscillations (MO) in pristine silicene at T ¼ 0 K are studied. Considering a con-
stant electron density we obtain analytical expressions for the ground state internal energy and magne-
tization, under a perpendicular electric and magnetic field, taking in consideration the Zeeman effect. It is
found that the MO are sawtooth-like, depending on the change in the last occupied energy level. This
leads us to a classification of the MO peaks in terms of the Landau level (LL), valley or spin changes.
Using this classification we analyze the MO for different values of the electric field Ez. When Ez ¼ 0,
the energy levels have a valley degeneracy and the MO peaks occur only whenever the last energy level
changes its LL and/or spin. When Ez – 0, the valley degeneracy is broken and newMO peaks appear, asso-
ciated with the valley change in the last energy level. By analyzing the MO peaks amplitude it is possible
to extract information about the Fermi velocity and the spin-orbit interaction strength. Finally we ana-
lyze the MO frequencies, which can also be associated with the change of LL, valley or spin in the last
energy level.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

In the past few years silicene has been gaining considerable
interest in the scientific community [1–3]. Like graphene, silicene
has a 2D hexagonal structure with silicon atoms at each lattice site,
with two interpenetrating sublattices A and B. The reciprocal space
is also a hexagonal lattice in the momentum space, which in turn
defines the Brillouin zone. Silicene is best described with a tight
binding (TB) model, which leads to an effective Dirac-like Hamilto-
nian in the low energy approximation, with the sublattices A and B
acting as a pseudospin degree of freedom [4–6]. Nevertheless, sil-
icene distinguish itself from graphene by two important features.
One is the large spin-orbit interaction (SOI), about 3.9 meV [7]
(compared to 10�3 meV in graphene [8]), which makes silicene a
topological insulator. Moreover, this strong SOI would make possi-
ble the observation of the quantum spin Hall effect [9–12]. The
other characteristic is that the lattice structure in silicene is not
planar but buckled, with a layer separation between the two sub-
lattices [2]. Thus by introducing a potential difference between the
two sublattices one can tune the bandgap [13–16]. These features
imply than in silicene at low energies the electrons behave as
massive Dirac fermions [17], moving with a Fermi velocity of about
5:5� 105 m=s [4,18].

When a magnetic field is applied to silicene, the discrete Landau
levels (LL) are obtained. As in graphene, due to the relativistic-like
dispersion relation these levels are not equidistant [19]. Moreover,
the Landau energy in silicene is smaller than in graphene, due to
the bigger Fermi velocity in the latter. The LL create an oscillating
behavior in the thermodynamics potentials. For instance, the mag-
netization oscillates as a function of the inverse magnetic field, the
so called de Haas van Alphen (dHvA) effect [20]. The different fre-
quencies involved in the oscillations are related to the closed orbits
that electrons perform on the Fermi surface. This effect is purely
quantummechanical and is an useful tool to map the Fermi surface
[21]. In graphene it has been found that, without impurities, the
magnetization oscillates periodically in a sawtooth pattern
[22,23]. It is then expected that in silicene the magnetization also
oscillates in a sawtooth pattern.

Because of the buckled nature of silicene, by applying a perpen-
dicular electric field the spin and valley degeneracy of the LL is
lifted [24]. In this case, in contrast with graphene, the energy levels
of each valley are different and there is no more valley degeneracy.
Moreover, considering the Zeeman effect, the LL for each spin split,
loosing then the spin degeneracy. This loss of valley and spin
degeneracy gives discontinuous changes in the last energy level,
which in turn is expected to produce new magnetization peaks,
as occur in graphene [25]. Motivated by this we have studied the
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1 For the LL n ¼ 0 only the positive root should be taken. See Eq. (7).
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magnetic oscillations (MO) at T ¼ 0 K in a general silicene-like sys-
tem with a conduction electron density ne, which could be due to
an applied gate voltage.

We have organized the work as follow: In Section 2 we
obtain the energy levels of silicene in a perpendicular magnetic
and electric field, considering the intrinsic SOI and the Zeeman
effect. From this we obtain an expression for the ground state
internal energy and magnetization. In Section 3 we study and
classify the MO peaks for different values of perpendicular elec-
tric field. In Section 4 we analyze the MO frequencies by per-
forming a fast Fourier transform (FFT). Finally our conclusions
follow in Section 5.

2. Magnetic oscillations in silicene

2.1. Energy spectrum

In the low wavelength approximation, with energies near the
Fermi energy, the electrons in silicene are described by a Dirac-
like Hamiltonian in 2D for massive fermions. In a perpendicular
electric field Ez it reads [17]

Hgs ¼ tFðgrxpx þ rypyÞ þ rzDgs; ð1Þ

where tF � 5:5� 105 m/s is the Fermi velocity [18], ri are the Pauli
matrices acting in the sublattices A and B, g ¼ 1 ð�1Þ for the valley K
(K 0), s ¼ �1 for spin and down, and

Dgs ¼ gskSO � elEz; ð2Þ
where kSO is the intrinsic spin-orbit interaction (SOI) strength and l
is the buckle height. We shall consider a perpendicular magnetic
field B, so that B ¼ Bez. In the Landau gauge we have A ¼ �Byex,
and the momentum changes following the Peierls substitution
[26] p ! p� eA. Considering the Zeeman effect [27], the term
l � B ¼ lBgBsz=2 is added to H, where sz ¼ 2Sz=�h is the Pauli matrix
acting in the spin state. We omit the nearest- and next-nearest
neighbor Rashba SOIs, denoted as kR1 and kR2 in [11], since they
are negligible in comparison to the intrinsic SOI kSO. Then Eq. (1)
becomes

Hgs ¼ tF grx px þ eByð Þ þ rypy

� �þ rzDgs � l � B: ð3Þ
Because H only depends on the y coordinate, we can express the
wave function as w ¼ e�ikxðwA wB Þ, with wA=B depending only on
y. Then, introducing the ladder matrices r� ¼ rx � iry and making

the change of variable [28] y0 ¼ ��hkþ eByð Þ=
ffiffiffiffiffiffiffiffi
�heB

p
, the equation

Hw ¼ Ew becomes

tF
ffiffiffiffiffiffiffiffiffi
�heB

p rþ
2

gy0 � @y0
� �þr�

2
gy0 þ @y0
� �h i

þrzDgs �l �B
n o

wgs ¼ Ewgs:

ð4Þ
Defining the ladder operators ay ¼ y0 � @y0

� �
=

ffiffiffi
2

p
and

a ¼ y0 þ @y0
� �

=
ffiffiffi
2

p
we get

g
�hxL

2
rþay

g þ r�ag
� �

þ rzDgs � �hxZsz

	 

wgs ¼ Ewgs; ð5Þ

where a1 ¼ a, a�1 ¼ ay and xL ¼ tF
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2eB=�h

p
, xZ ¼ lBgB=2�h. The

energies can be calculated by writing the wave function for each
valley and spin as

wg
s

�� � ¼ bgs n;A; sj i þ cgs n� g; B; sj i; ð6Þ
where bgs and cgs are constants, n is the Landau level (LL) index and
sj i ¼ �j i represents the spin state, so that sz sj i ¼ s sj i. Then, given
that rþ Aj i ¼ 0;rþ Bj i ¼ 2 Aj i,r� Aj i ¼ 2 Bj i, r� Bj i ¼ 0, rz Aj i ¼ Aj i,
rz Bj i ¼ � Bj i and ay nj i ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

nþ 1j i; a nj i ¼ ffiffiffi
n

p
n� 1j i, solving

Eq. (5) the energy spectrum results
E0;g;s ¼ skSO � gelEz � s�hxZ n ¼ 0ð Þ; ð7Þ

En;g;s;b ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
skSO � gelEzð Þ2 þ �hxLð Þ2n

q
� s�hxZ n P 1ð Þ; ð8Þ

where b ¼ �1 for the valence band (VB) and b ¼ 1 for the conduc-
tion band (CB). When Ez ¼ 0, the LL have a doubly valley degener-
acy, whereas when Ez – 0 this degeneracy vanishes. Notice that
without the Zeeman effect the LL n ¼ 0 is always twice less degen-
erate than the LL n P 1, regardless of Ez [24]. Therefore the Zeeman
effect gives an equal degeneracy for all LL. Moreover, as in the clas-
sical case, each LL has a degeneracy due to the free direction (x in
this case) which is not quantized. This degeneracy comes by impos-
ing periodical boundary conditions and is given by D ¼ AB=u, where
A is the silicene sheet area and u ¼ h=e is the magnetic unit flux.

2.2. Ground state magnetization

We shall study the ground state magnetization (T ¼ 0 K) for this
system, under the influence of a perpendicular magnetic and elec-
tric field, where the energy levels are given by Eqs. (7) and (8). We
consider a constant electron density ne ¼ N=A, which may due to
an applied gate voltage, such that valence band is full and only
the conduction band is available. The valence band would still
make a continuous (non-oscillatory) contribution to the magneti-
zation, but since we are interested only in the MO, we will not take
this contribution into account. The internal energy at T ¼ 0 K for
the N conduction electrons can be computed as the sum of the
filled Landau levels. The number of totally filled levels is q ¼ qc½ �,
where qc ¼ N=D is the filling factor, and the brackets means the
biggest integer less or equal to qc (Floor function). It is worth not-
ing that we assume that N is constant, instead of the the chemical
potential l (Fermi energy) being constant. However, for both cases
the results are similar (see the Appendix for details).

In order to compute the ground state internal energy we have to
sort the energy levels. We call nm the decreasing sorted energy
levels, m ¼ 0;1;2 . . . being the label index. In general we write1

nm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smkSO � gmelEzð Þ2 þ �hxLð Þ2nm

q
� sm�hxZ ; ð9Þ

where sm ¼ �1 gives the spin, nm ¼ 0;1;2 . . . the LL and gm ¼ �1 the
valley for the m position. If we denote h ¼ qc � q ¼ N=D� N=D½ � to
the occupancy factor of the last unfilled Landau level, the internal
energy at T ¼ 0 K is

U ¼
Xq�1

m¼0

Dnm þ Dhnq: ð10Þ

In Eq. (9) we separate nm ¼ n0m � sm�hxZ , with

n0m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smkSO � gmelEzð Þ2 þ �hxLð Þ2nm

q
. Replacing in Eq. (10) we can

write

U ¼ U0 � D�hxZ

Xq�1

m¼0

sm þ hsq

" #
; ð11Þ

where

U0 ¼
Xq�1

m¼0

Dn0m þ Dhn0q : ð12Þ

The last term in Eq. (11) can be related to the Pauli paramagnetism
associated with the spin population. This can be seen by considering
Nþ and N� total number of spin up and down, respectively. For q
levels filled, let kþ be the number of (+1) values and k� the number
of (-1) values in the sorting function sm, with m ¼ 0;1; . . . ; q� 1
(thus kþ and k� represents the number of spin up and down states
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totally filled, respectively). Consequently, kþ þ k� ¼ q andPq�1
m¼0sm ¼ kþ � k�. For the last unfilled level there could be two

cases: (i) it is spin up or (ii) spin down. For spin up, sq ¼ 1 and there-
fore we can write the total number of spin up and down as

Nþ ¼ Dkþ þ Dhsq and N� ¼ Dk�. Thus using that
Pq�1

m¼0sm ¼ kþ � k�

we have Nþ � N� ¼ D
Pq�1

m¼0sm þ hsq
h i

. The same result holds if the

last unfilled level is spin down. Therefore the Pauli magnetization is

MP ¼ lB Nþ � N�ð Þ ¼ lBD
Xq�1

m¼0

sm þ hsq

" #
: ð13Þ

Notice that this result is independent of how the energy levels are
sorted, so that the last term in Eq. (11) is always related to the Pauli
paramagnetism. Consequently, because �hxZ ¼ lBB, Eq. (11)
becomes

U ¼ U0 � BMP : ð14Þ
The magnetization at T ¼ 0 K is M ¼ �@U=@B. From Eq. (14) we
have

M ¼ M0 þMP þ B
@MP

@B
; ð15Þ

where M0 ¼ �@U0=@B. Given that @D=@B ¼ D=B; @h=@B ¼ �N=ðDBÞ
and @n0m=@B ¼ �hxLð Þ2nm=2Bn0m ¼ n0m � smkSO � gmelEzð Þ2=n0m

h i
=2B,

we have

M0 ¼ 1
B

Nn0q �
3
2
U0

 �
þM0; ð16Þ

where

M0 ¼ D
2B

Xq�1

m¼0

smkSO � gmelEzð Þ2
n0m

þ h
sqkSO � gqelEz

� �2

n0q

2
64

3
75: ð17Þ

This new contribution M0 to the magnetization is not present in
graphene [25] due to the negligible SOI and zero buckle height.
On the other hand, from Eq. (13) we get @MP=@B ¼ MP=Bþ
lBDsq@h=@B ¼ MP � lBNsq

� �
=B. Therefore, from Eqs. (9), (14) and

(16), the total ground state magnetization given by Eq. (15) can
be written as

M ¼ 1
B

Nnq �
3
2
U

 �
þM0 þ 1

2
MP : ð18Þ

This is the fundamental equation for our analysis. It shows that the
MO peaks are produced whenever nq, M

0 or MP changes discontinu-
ously, U being continuous always. Thus the magnetization in pris-
tine silicene at T ¼ 0 K oscillates in a sawtooth pattern, as in
graphene [23,25] and in general 2DEG with a Dirac-like spectrum
[22]. This is also in agreement with the results found in [29], where
the MO at T ¼ 0 K in a pristine buckled honeycomb lattice are
expressed as an infinite sum of harmonics k of the form sinðkÞ=k,
which gives a sawtooth oscillation. From Eq. (18) we write the
MO peak amplitude DM as

DM ¼ N
B
Dnq þ DM0 þ 1

2
DMP: ð19Þ

The first contribution Dnq comes directly from the discontinuous
change in the last energy level, which occurs only when the filling
factor q changes. On the other hand, by analyzing Eqs. (13) and
(17) we see that the MO peaks produced by DM0 and/or DMP occur
when the parameters gq and sq change but nq remains continuous.
This would happen if the change in gq and sq does not come from
a change in the filling factor q.
Eq. (18) also allows an intuitive interpretation of the effect
that impurities have in the magnetization. In the pristine case,
the discontinuities in nq; M0 or MP are essentially a product of
the discrete LL, which gives a delta-like density of states
(DOS) and causes the MO to be sawtooth-like. But when
impurities are added to the system, the DOS is broaden and
the discontinuities in nq; M0 or MP disappear. Consequently,
the MO are also broaden and the oscillations are no more
sawtooth like.

2.3. LL, valley and spin mixing

We are interested in how the parameters nq, gq and sq vary with
B for different values of elEz. We recall that nq may takes values
0;1;2; . . ., while gm ¼ 1 ð�1Þ for the K ðK 0Þ valley and sm ¼ 1 ð�1Þ
for spin up (down). The value of these parameters depends on
the sorted position q, which in turn depends in the mixing of the
LL, valley and spin. We consider a conduction electron density
ne ¼ 0:01 nm�2 and an area A ¼ 1000 nm2. In Fig. 1 we show the
parameters nq;gq and sq as a function of B for different values of
elEz.

In Fig. 1(a) we can see the case Ez ¼ 0, where there is no
parameter gq because each energy level in Eq. (9) has a doubly
valley degeneracy. The last energy level nq changes discontinu-
ously only whenever the LL nq, the spin sq or both change.
When Ez – 0, the valley degeneracy is broken and the energy
levels start to depend on gq. This can be seen in Fig. 1(b),
where for elEz ¼ 5 meV the parameters start to vary differently.
Nevertheless, it should be noted that in both Fig. 1(a) and (b)
there is no appreciable mixing of the parameters. This means
that in each case nq is always decreasing (as B is increased),
while gq and sq always alternate in the same way between

�1 and 1. Moreover, in either case both M0 and Mp are always
continuous because every change in the parameters is pro-
duced by a change in the filling factor q, so DM0 ¼ 0 ¼ DMp

in Eq. (19). As Ez increases, the parameters start to vary in a
more complicated way. This can be seen in Fig. 1(c), in the
case elEz ¼ 64 meV, where there is a notorious mixing of the
parameters, which implies that M0 and Mp may not be always
continuous. In such case all three contributions in Eq. (19) will
be present.
3. Classification of MO peaks

We showed in Eq. (18) that the MO peaks are produced by the
discontinuous changes in nq,M

0 orMP , which in turn depends on nq,
gq and sq. This allows a classification of the MO peaks according to
the parameters that change. We can define seven general types of
peaks, considering the change of LL, valley or spin and its combina-
tions. This can be seen in Table 1.

Furthermore, each type of MO peak has its own subpeaks, cor-
responding to different possible ways in which the parameters
can change. The type of subpeak can be identified from the change

in nq, gq and sq. In general we label the subpeaks as Xn
g; s, where

X ¼ L; LV; LS; LVS; V; VS; Sf g identifies the type of MO peaks,
as classify in Table 1, and n, g and s indicate the change (or not)
of the parameters. For example, consider an LS peak corresponding
to a change of LL n ¼ 5 ! 4 and spin "!#, in the valley K. Then we
identify this peak with LS5!4

K;"!#.
The defined classification of MO peaks provides a systematic

way of recognizing them in a magnetization graph. One procedure
could be to first analyze how the energy levels are sorted (as done
in Section 2.3), from which one could predict which type of MO



Fig. 1. Parameters nq (LL), gq (valley) and sq (spin) as a function of the magnetic
field B, for (a) Ez ¼ 0, (b) elEz ¼ 5 meV and (c) elEz ¼ 64 meV.

Table 1
Classification of MO peaks according to the change in the parameters nq (LL),
gq (valley) and sq (spin).

LL change Valley change Spin change Type of MO peak

U � � L
U U � LV
U � U LS
U U U LVS
� U � V
� U U VS
� � U S
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peak appear and in which order. We shall do this first for the case
elEz � 1 eV, and then for the general case in which elEz may take
any value. In all cases we shall take 0:6 < B½T� < 0:685, as in Fig. 1.
3.1. Limit elEz � 1 eV

We consider low elEz such that the parameters change only
when the filling factor q does it. Hence in this regime both M0

and Mp are continuous and only Dnq contributes to the MO peaks
in Eq. (19). We will consider the cases Ez ¼ 0 and elEz ¼ 5 meV,
when the sorting of the parameters is given by Fig. 1. Then, follow-
ing the classification of Table 1, we see in Fig. 1(a) that the possible
type of MO peaks at Ez ¼ 0 are LS and S, with the order LS, S, LS,
S,. . .On the other hand, we see in Fig. 1(b) that at elEz ¼ 5 meV
the MO peaks are LS, VS and S, with the order LS, VS, S, VS,
LS. . .These results can be seen in Fig. 2, where we plot the magne-
tization (18) for Ez ¼ 0 and elEz ¼ 5 meV.

For Ez ¼ 0 we effectively see that only the peaks LS and S
appear. The S peaks always correspond to a change of spin down
to up, so its amplitude is always DMs ¼ 2NlB at Ez ¼ 0. When
elEz ¼ 5 meV, the VS peak appears, and the order of the peaks is
LS, VS, S, VS, S,. . ., as expected. The LS peak always correspond to
a change of spin up to down in a K valley. The VS peak corresponds
to K ! K 0; #!"� �

or K 0 ! K; #!"� �
, while the S peak always corre-

spond to a change of spin up to down in the K 0 valley. Thus, from
Eqs. (9) and (19) we can write the corresponding peaks amplitude

DMLS ¼ N
B
v nq;�elEz
� �� v nq � 1;þelEz

� �� �� 2NlB; ð20Þ
DMVS ¼ 2NlB; ð21Þ
DMS ¼ N
B
v nq;þelEz
� �� v nq;�elEz

� �� �� 2NlB; ð22Þ

where v nq;�elEz
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kSO � elEzð Þ2 þ �hxLð Þ2nq

q
, with nq being the

corresponding LL level, as indicated in Fig. 2. The VS peak always
has the same amplitude 2NlB, which is equal to DMs in the case
Ez ¼ 0. In the limit elEz � 1 we can approximate the subpeaks
amplitude in Eqs. (20) and (22) by

B
N
DMLS ’ .þ � 2�hxZ � kSOelEz.�; ð23Þ
B
N
DMS ’ c�1

q kSO;xLð Þ2kSO
h i

elEz � 2�hxZ ; ð24Þ

where .� ¼ c�1
q kSO;xLð Þ 	 c�1

q�1 kSO;xLð Þ, with cq kSO;xLð Þ 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2SO þ �hxLð Þ2nq

q
.

Thus the peaks amplitude is linear with Ez, with both the slope
and the y-intercept depending on kSO and xL. By studying how the
amplitude of the peaks vary with Ez, one could obtain the parame-
ters kSO and xL, provided that the magnetic field B and nq of the
peaks are known. It is important to notice that for each peak the
magnetic field B and nq are different. The Landau level nq could
be inferred knowing at which B the type of peak occur, and how
is the sorting of the energy levels. For instance, when
elEz ¼ 5 meV, we know that the sorting is given by Fig. 1(b). Thus,
the second peak LS in Fig. 2(b) corresponds to a change of LL from
n ¼ 16 ! 15, so we put nq ¼ 16 in Eq. (23).

This way of obtaining kSO andxL from the MO peaks could be an
useful alternative to the other available methods. The Landau
energy xL gives the Fermi velocity, since we define
xL ¼ tF

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2eB=�h

p
. In silicene, the Fermi velocity has usually been

obtained using DFT or TB models, with the result of a lower value
than in graphene [4,6,18]. This can be easily understood from the
reduced hopping in silicene since the Si atoms are more distant
from each other. Likewise, the SO parameter kSO is usually obtained
from TB models using the hopping parameters [7].



Fig. 3. Magnetization given by Eq. (18) for elEz ¼ 64 meV.

Fig. 2. Magnetization given by Eq. (18) for (a) Ez ¼ 0 and (b) elEz ¼ 5 meV.

2 Nevertheless we can see that the slope of nq slightly changes when M0 or MP are
discontinuous. The reason for this is that the variation of the parameters in this places
do modify nq , but in a continuous way, giving a different dependence with B without
any discontinuous jump.
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3.2. General case

In the general case the mixing of the parameters nq, gq and sq
depends on the specific value of elEz. We saw in Fig. 1(c) that these
parameters vary in a complicated way as elEz increases. Thus for
any specific value of electric field one should see how the energy
levels are sorted in order to identify the MO peaks. Moreover, in
the general case M0 and MP may no longer be continuous, and
the contributions DM0 and DMp should be taken into account in
Eq. (19).

We consider elEz ¼ 64 meV, in which case nq, gq and sq as a
function of B are given in Fig. 1(c). Then we can identify ten MO
peaks for 0:6 < B½T� < 0:685. For instance, the first is a LS peak cor-
responding to K; "!#f g, while the sixth is a VS peak corresponding
to K ! K 0; #!"� �

.
In the same way one can classify the other peaks, leading to the

magnetization for elEz ¼ 64 meV shown in Fig. 3.
As we see, the mixing of the parameters alters drastically the
magnetization. In particular we note that in the two peaks
LV18!14

K0!K;# and LS18!14
K;"!# the magnetization increases, which is opposite

to all other peaks, where the magnetization always decreases. This
feature suggests that the peaks LV18!14

K0!K;# and LS18!14
K;"!# are not pro-

duced by the change Dnq, but come from the discontinuities in
M0 and Mp. Indeed, the contribution Dnq always lower the magne-
tization because it comes from the discontinuous change in the last
energy level nq as B increases. To see this we plot in Fig. 4 the vari-
ation of nq, M

0 and MP with respect to B, for elEz ¼ 64 meV.
We can clearly appreciate two discontinuities inM0 and one dis-

continuity in MP . We also see that when this discontinuities occur
nq is continuous,

2 which implies Dnq ¼ 0. Thus the peaks LV18!14
K0!K;# and

LS18!14
K;"!# are effectively produced by DM0 and DMp. The first peak

LV18!14
K0!K;# only has contribution from DM0 because only the valley

changes. This can be seen in Fig. 4, where when the first discontinu-
ity occurs in M0 we see that MP is continuous. On the other hand, the
peak LS18!14

K;"!# has both contributions DM0 and DMp, as can be seen in

Fig. 4, where bothM0 andMP have a discontinuity. In this way we can
say, in general, that the MO peaks that increase the magnetization
are not produced by the discontinuous change in the last energy
level nq, but rather by the discontinuous change in M0 and/or MP .
4. MO frequencies

So far we have analyzed only the MO peaks amplitude, but we
can also obtain information from their frequencies. For simplicity
we shall consider the cases Ez ¼ 0 and elEz ¼ 5 meV, such that
the only contribution in Eq. (19) is given by Dnq and all the MO
peaks can occur only when the filling factor q changes. Given that
q ¼ N=D½ � ¼ neu=B½ �, it is clear that the magnetization oscillates
periodically as a function of 1=B, in agreement with the Onsager



Fig. 5. Magnetization and fast Fourier transform (FFT) for Ez ¼ 0.

Fig. 4. nq , M
0 and MP given by Eqs. (9), (13) and (17), as a function of B, in the case

elEz ¼ 64 meV.
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relation [21]. The period of oscillation is in general given by
D 1=Bð Þ ¼ 1=B2 � 1=B1, where B1 ¼ neu=q1 and B2 ¼ neu=q2

(u ¼ h=e). Thus we can write

D
1
B

 �
¼ e

2p�hne
Dq; ð25Þ

where Dq ¼ q2 � q1. Because the MO are sawtooth like, there will be
many frequencies involved in its Fourier expansion. Nevertheless
we are interested only in the fundamental frequencies, for the
others are just harmonics of these ones. To obtain the frequency
spectrum we performed a fast Fourier transform (FFT) in the mag-
netization as a function of 1=B.

In Fig. 5 we can appreciate the case Ez ¼ 0, where the MO are a
combination of two sawtooth oscillations (SO) with different fre-
quencies, as can be inferred in the FFT spectrum, where two main
frequencies x1 ¼ 10:33 T and x2 ¼ 20:7 T can be recognized. This
can be explained if we decompose the term nq in Eq. (18), which
causes the SO with its discontinuous change. When Ez ¼ 0 we have,
from Eq. (9), nq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2SO þ �hxLð Þ2nq

q
� sq�hxZ ¼ nLq � nSq, where we

separated

nLq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2SO þ �hxLð Þ2nq

q
; ð26Þ

nSq ¼ sq�hxZ : ð27Þ

The term nLq is only related to the LL, while the term nSq is only
related to the spin. Then, considering the parameters sorting given
by Fig. 1(a), and taking into account the valley degeneracy at Ez ¼ 0,
we get that nLq changes periodically when q changes by four, so
Dq ¼ 4 in Eq. (25), giving the frequency x1 ¼ p�hne=2e. On the other
hand, nSq changes periodically when q changes by two, so Dq ¼ 2 in
Eq. (25), giving the frequency x2 ¼ p�hne=e. Thus the magnetization
in Eq. (18) can be decomposed in two SO with two different funda-
mental frequencies. For the considered electron density
ne ¼ 0:01 nm�2 we obtain x1 ¼ 10:34 T and x2 ¼ 20:68 T, in agree-
ment with Fig. 5.

When elEz ¼ 5 meV the valley degeneracy is broken, which
gives rise to another MO frequency x3 ¼ 41:37 T, as seen in
Fig. 6. The origin of this can be explained by first approximating

nq for low elEz, so nq ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2SO þ �hxLð Þ2nq

q
� sq�hxZ � elEzkSOsqgq

k2SO þ �hxLð Þ2nq

h i�1=2
. This can be separated as nq ¼ nLq � nSq � nVSq ,

where nLq and nSq are given by Eqs. (26) and (27), while

nVSq ¼ elEz
kSOgqsqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2SO þ �hxLð Þ2nq

q : ð28Þ



Fig. 6. Magnetization and fast Fourier transform (FFT) for elEz ¼ 5 meV.
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For elEz ¼ 5 meV, the sorting of the parameters nq, gq and sq is given

by Fig. 1(b). Hence nq still changes only q changes by four, so nLq
gives the frequency x1 ¼ p�hne=2e ¼ 10:34 T. On the other hand,
now sq changes whenever q changes, so for nSq we have Dq ¼ 1 in
Eq. (25). This gives a new frequency x3 ¼ 2p�hne=e which implies
x3 ¼ 41:36 T for ne ¼ 0:01 nm�2. Finally, the new defined term nVSq
in Eq. (28) changes discontinuously when Dq ¼ 2, as can be easily
seen in Fig. 1(b). Therefore we also have the frequency
x2 ¼ p�hne=e ¼ 20:68 T.
5. Conclusions

We studied the magnetic oscillations (MO) in pristine silicene at
T ¼ 0 K. We considered a constant electron density, such that the
valence band is full and only the conduction band is available.
Under a perpendicular electric and magnetic field, we found ana-
lytical expressions for the ground state internal energy and magne-
tization. We obtained that the MO are sawtooth-like and are
entirely produced by the change in the last energy level occupied.
This lead us to a classification of the MO peaks in terms of the
parameters nq (LL), gq (valley) and sq (spin) which define the last
energy level. In general we defined seven types of MO peaks, as
indicated in Table 1. Using this classification we analyzed the MO
in the case of low electric field (elEz � 1 eV), and the general case
in which Ez may take any value. In each case we were able to clas-
sify the type of MO present, and in which order. When Ez ¼ 0 the
energy levels have a valley degeneracy and the MO peaks occur
only when the last occupied level changes its LL and/or spin. On
the other hand, when Ez – 0 the valley degeneracy is broken and
new MO peaks appear, associated with the change of valley in
the last energy level. Furthermore, we found that analyzing the
MO peak amplitude one could extract information about the Fermi
velocity and the spin–orbit interaction strength, which could be an
useful alternative to the other available methods. For the general
case of Ez the last energy level varies in a complicated way and
therefore so does it the MO peaks. Nevertheless one can still clas-
sify the peaks by studying the change in the parameters nq, gq and
sq at any particular Ez. Finally we analyzed the MO frequencies,
where we found that the magnetization effectively oscillates peri-
odically a function of 1=B. We performed the fast Fourier transform
spectrum of the sawtooth-like MO oscillations. When Ez ¼ 0 we
found two fundamental frequencies, corresponding to the change
of LL or spin in the last energy level. When elEz ¼ 5 meV a new fun-
damental frequency appears, associated with the broken valley
degeneracy.
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Appendix A. Magnetization for constant Fermi energy

We shall analyze the case in which the Fermi energy l is held
constant, instead of the conduction electron density ne. We con-
sider l > 0 such that last energy level filled always correspond
to the CB. The valence band is not taken into account since it is full
and thus will not contribute to the MO. Because we consider l
fixed, whereas the number of electrons N may change, we work
with the grand potential X. For a Fermi energy l, all energies levels
m ¼ 0;1;2 . . . ;mF all filled, where mF is such that nmF

6 l 6 nmFþ1
.

Then the grand potential X at T ¼ 0 K is

X ¼
XmF

m¼0

D nm � lð Þ; ðA:1Þ

where nm is given by Eq. (9). Separating nm ¼ n0m � sm�hxZ , with

n0m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smkSO � gmelEzð Þ2 þ �hxLð Þ2nm

q
, we get

X ¼ X0 � D�hxZ

Xq�1

m¼0

sm; ðA:2Þ

where

X0 ¼
XmF

m¼0

D n0m � l
� �

: ðA:3Þ

As in the case with N constant, the last term in Eq. (A.2) is related to
the Pauli paramagnetism associated with the spin population, with
the difference that this time all the energy levels below the Fermi
energy are completely filled. Thus the Pauli paramagnetism is
MP ¼ lB Nþ � N�ð Þ ¼ lBD

PmF
m¼0sm, and Eq. (A.2) becomes

X ¼ X0 � BMP: ðA:4Þ
This result is similar to the one obtained in Eq. (14), with U being
replaced by X. Therefore, similar expressions are obtained for the
magnetization, given by M ¼ � @X=@Bð Þl. From Eq. (A.4) we obtain
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M ¼ � 1
2B

3Xþ Nlð Þ þM0 þ 1
2
MP; ðA:5Þ

where N ¼ PmF
m¼0D ¼ D mF � 1ð Þ is the number of electrons, and

M0 ¼ D
2B

XmF

m¼0

smkSO � gmelEzð Þ2
n0m

: ðA:6Þ

Eq. (A.5) shows that, when l is constant, the MO peaks are pro-
duced whenever N, M0 or MP changes discontinuously, with X being
continuous always. Then in general we write the MO peak ampli-
tude DM as

DM ¼ � l
2B

DN þ DM0 þ 1
2
DMP : ðA:7Þ

This last equation is similar to Eq. (19), with each contribution DN,
DM0 and DMP being still defined by the discontinuous change in the
parameters nq, gq and sq. The main difference is that in this case,

with l constant, all the three functions N, M0 and MP have discon-
tinuities at any Ez. Nevertheless, one could still classify the MO
peaks as done in Table 1, which accounts for the main results found
in the case when N is constant.
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