
A
a

D
a

b

a

A
R
A
A

K
C
N
P

1

p
c
c
F
s
a
m
b
i
b
a
i
p
(
t
x
A
u
c
e
a

0
h

Computers and Chemical Engineering 60 (2014) 376– 380

Contents lists available at ScienceDirect

Computers  and  Chemical  Engineering

jo u r n al homep age : www.els evier .com/ locate /compchemeng

lternate  approximation  of  concave  cost  functions  for  process  design
nd  supply  chain  optimization  problems

iego  C.  Cafaroa,∗, Ignacio  E.  Grossmannb

INTEC (UNL – CONICET), Güemes 3450, 3000 Santa Fe, Argentina
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

 r  t  i  c  l e  i  n  f  o

rticle history:
eceived 31 July 2013

a  b  s  t  r  a  c  t

This short  note  presents  an  alternate  approximation  of concave  cost  functions  used  to reflect  economies
of scale  in process  design  and  supply  chain  optimization  problems.  To  approximate  the  original  concave
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function,  we  propose  a logarithmic  function  that  is  exact  and has  bounded  gradients  at  zero  values  in
contrast  to  other  approximation  schemes.  We  illustrate  the  application  and  advantages  of  the  proposed
approximation.

© 2013 Elsevier Ltd. All rights reserved.
rocess synthesis

. Introduction

For preliminary calculations in chemical process design and sup-
ly chain strategic planning problems, the equipment or facility
ost (f(x)) increases non-linearly with the size or capacity (x), as a
oncave function (Biegler, Grossmann, & Westerberg, 1997; Ciric &
loudas, 1991; Szitkai et al., 2003). As a result, power law expres-
ions of the form f(x) = cxr with exponents less than one are usually
dopted for capturing the effects of economies of scale. In such opti-
ization problems, one of the major decisions is whether or not to

uy/construct a certain equipment/facility, as well as determining
ts size or capacity, x (Biegler & Grossmann, 2004). A major draw-
ack of the typical concave cost function f(x) is that its derivative
t x = 0 (a feasible value for x) is unbounded, which causes failures
n the Karush–Kuhn–Tucker conditions of the associated nonlinear
rogram. Common methods for dealing with such difficulties are:
a) approximate the concave function by a piecewise linear func-
ion (Geoffrion, 1977), or (b) add a very small value ε to the variable
, thus slightly displacing the curve toward the negative values of x.
pproximation (a) is computationally costly and rather imprecise
nless a fine discretization of the domain is used. Although in prin-
iple approximation (b) is reasonable, it has a number of drawbacks,
specially if the exponents are small. To overcome such limitations,
n approximation of logarithmic form is proposed in this short note.
∗ Corresponding author. Tel.: +54 342 455 9175; fax: +54 342 455 0944.
E-mail address: dcafaro@fiq.unl.edu.ar (D.C. Cafaro).

098-1354/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.compchemeng.2013.10.001
2. Concave cost function and classical approximation

Given is the concave cost function for economies of scale with
the form: f(x) = cxr, where variable x ≥ 0 is the size of the equipment,
f(x) is the cost of the equipment of size x, c > 0 is a constant param-
eter, and 0 < r < 1 is a real exponent. This function has the property
that its derivative with respect to x becomes unbounded when
x = 0. An approximation that has been used to avoid computational
failures of Non-Linear Programming (NLP) and Mixed-Integer Non-
Linear Programming (MINLP) solvers is to add a small value ε to
the x in the function f(x) (Ahmetović  & Grossmann, 2011; Yee
& Grossmann, 1990), so that: f(x) ≈ h(x) = c(x + ε)r. Although this
approximation yields bounded derivatives at x = 0 and a relatively
good estimation of f(x) when small values of ε are adopted, it has
several drawbacks:

1. The smaller the parameter ε, the more precise the estimation,
but the larger its derivative at x = 0, since: h′(x) = c(x + ε)r−1, and
h′(0) = c/ε1−r. If such derivatives become very large, NLP solvers
can lead to failures since the Karush–Kuhn–Tucker conditions
(Bazaraa, Sherali, & Shetty, 1994; Biegler, 2010) cannot be satis-
fied due to ill conditioning.

2. The function h(x) at x = 0 is not exactly equal to zero but h(x) = cεr.
If ε is not small enough, the decision “not to install”, i.e. x = 0, may
incur a non-negligible cost, particularly if r is small.

To illustrate some limitations with the approximation h(x) with

smaller values of r, consider the simple example presented in Fig. 1.
There are i = 1. . .8 potential sites for locating one plant (denoted by
“X”), and j = 1. . .9 markets (represented by “O”). The plant produces
a single liquid product that is supplied by dedicated pipelines to

dx.doi.org/10.1016/j.compchemeng.2013.10.001
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
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Fig. 1. An illustrative example.

he selected markets. The plant capacity is given, and the fixed and
ariable charges for the plant installation (˛i, ˇi) are independent
n its location.

The aim of the problem is to determine the optimal location for
he plant (denoted by the binary yi) and the amount of product
ourly supplied to every market (qi,j), so as to maximize the annual
enefits: b(yi, qi,j) =

∑
i,j(pri,j − oci,j)qi,j −

∑
i(˛iyi + ˇi

∑
jqi,j) − z(qi,j)

sales income − operation costs − plant installation costs − pipeline
osts). Since: (a) the product price and operation costs are indepen-
ent of the plant location and markets supplied (pri,j = pr;  oci,j = oc
i,j), (b) only one plant will be selected (

∑
iyi = 1), (c) the plant

apacity Cap, is given (
∑

i,jqi,j = Cap), and (d) fixed and variable costs
or the plant installation are independent of the location (˛i = ˛;
i =  ̌ ∀i), it yields b(yi, qi,j) = (pr − oc)  Cap −  ̨ −  ̌ Cap − z(qi,j), and

he only variable terms in the objective function are pipeline costs
(qi,j).

The pipeline flow (equal to the variable qi,j) is proportional to
he pipeline section, i.e. qi,j = K1d2

i,j
, where d (m) is the pipeline

iameter and K1 has a value of 4239 m/h  (�/4 × 3600 s/h × 1.5 m/s).
or simplicity, pipeline diameters are treated as continuous vari-
bles. Pipeline installation costs follow an economy of scale
unction of the form: z(Li,j, di,j) = K2Li,jd

0.60
i,j

, where Li,j (km)
s the distance between i and j (a given parameter) and
2 = 1,132,500$ km−1 m−0.60. Thus, the MINLP model is as follows:

Min  z =
∑

i ∈ I,j ∈ J

K2Li,jd
0.60
i,j

S.t.
∑
j ∈ J

qi,j = Cap yi ∀i ∈ I

∑
i  ∈ I

yi = 1 qi,j = K1d2
i,j ∀i ∈ I, j ∈ J qi,j ≤ Demj ∀i ∈ I, j ∈ J

qi,j, di,j≥0 yi ∈ {0, 1}

(1)

By substituting for di,j in the objective function with the pipeline
ow equation in the constraints, i.e. di,j = (qi,j/K1)0.50, we  obtain:

Min  z =
∑

i ∈ I,j ∈ J

f (qi,j) =
∑

i ∈ I,j ∈ J

(K2/K0.30
1 )Li,jq

0.30
i,j

S.t.
∑
j ∈ J

qi,j = Cap yi ∀i ∈ I
(2)
∑

i  ∈ I

yi = 1 qi,j ≤ Demj ∀i ∈ I, j ∈ J

0 ≤ qi,j, yi ∈ {0, 1}
Fig. 2. Hypothetic solution for the example.

Note that the exponents of qi,j in the non-linear terms of the objec-
tive function are only 0.30.

Assume that the optimal solution is the one depicted in Fig. 2,
where yi1 = 1, qi1,j = 175 m3/h for j = j1, j2, j3; di1,j = 0.2032 m (8
inches) for j = j1, j2, j3; while all the other variables take a zero
value. Using the ε-approximation of f(qi,j) with a reasonable value
for ε = 0.01, the cost of the selected pipelines will be: h(qi1,j1) =
h(qi1,j3) = 92,440 × 70.71 × (175 + 0.01)0.30 = 30.77936 MM$;
h(qi1,j2) = 92,440 × 50 × (175 + 0.01)0.30 = 21.76451 MM$;  which is
quite close to the actual values: f(qi1,j1) = f(qi1,j3) = 92,440 × 70.71 ×
1750.30 = 30.77884 MM$;  f(qi1,j2) = 92,440 × 50 × 1750.30 = 21.76413
MM$.

However, for all the non-selected pipelines featuring qi,j = 0
(totaling 69 non-used arcs i − j) the approximate installation cost
is h(qi,j) = h(0) = 92,440 Li,j (0 + 0.01)0.30 = 23,220 Li,j. Summing the
lengths of the non-selected pipelines (9032 km)  yields a total
of 209.72194 MM$  instead of zero! In fact, the total pipeline
cost in the optimal solution is

∑
i,jf(qi,j) = 83.32181 MM$,  while

the approximation with ε = 0.01 results in the incorrect value
of

∑
i,jh(qi,j) = 2 × 30.77936 + 21.76451 + 209.71906 = 293.04517

(252% error!). If we try a very small value for ε, say ε = 10−9, this
results in

∑
i,jh(qi,j) = 84.98768 (2% error). However, the derivatives

of every term h(qi,j) at qi,j = 0 increase to h′(0) = 1.844 × 1011Li,j
(over 9.220 × 1012), i.e. an unacceptably large value for NLP solvers.
The new approximation proposed in the next section is intended
to overcome such limitations, especially for concave cost functions
with r < 0.5.

3. Logarithmic approximation of the concave cost function

We propose the following approximation function g(x) for
f(x): f(x) = cxr ≈ g(x) = k ln(bx + 1), where x is the size of the equip-
ment, f(x) is the actual cost of the equipment of size x, g(x) is
the estimated cost, and k, b > 0 are real numbers selected to fit
f(x) as closely as possible. The proposed function has two main
advantages:

1. The cost of x = 0 is exactly zero: g(0) = k ln(b0 + 1) = k ln(1) = 0.
2. The derivatives of g(x) for all x ≥ 0 are positive (bounded) val-
ues, given by g′(x) = bk/(bx + 1). In particular at the origin (x = 0),
g′(x) = bk.
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In order to find appropriate values for b and k, a simple approach
s to select two non-zero values for the variable x (0 < x1 < x2) and
olve the following system of non-linear equations:

cxr
1 = k ln(bx1 + 1)

cxr
2 = k ln(bx2 + 1)

}
(3)

here k and b are the two values to be determined. Since
, r, x1, x2 > 0, we can divide both expressions to obtain:
x1/x2)r = ln(bx1 + 1)/ln(bx2 + 1), which in turn can be rearranged as:
r
1 ln(bx2 + 1) − xr

2 ln(bx2 + 1) = 0. The implicit equation for vari-
ble b can be easily solved, for instance, using Newton’s method,
o find the value of b and by extension the value of k that satisfies:
(x1) = g(x1) and f(x2) = g(x2).

Let us reconsider the illustrative example, where f (qi,j) =
2, 440Li,jq

0.30
i,j

, with 0 ≤ qi,j ≤ 525. Since the first two  factors are

iven, we analyze �(qi,j) = q0.30
i,j

, and following the procedure
xplained above, we can formulate the following system of equa-
ions:

q0.30
1 = k ln(bq1 + 1)

q0.30
2 = k ln(bq2 + 1)

}
(4)

Regarding the values of q1 and q2, we can make the selec-
ion based on our knowledge on the problem. Suppose that
f a pipeline is installed, it is unlikely to supply less than

lo = 50 m3/h, while qup = 525 m3/h (the plant capacity) is the
aximum possible flow. Then, we may  simply set q1 = 50

nd q2 = 525 to obtain: b = 0.158815; k = 1.47613, which leads
o �(q) = q0.30 ≈ �(q) = 1.47613 ln(0.158815q + 1). Alternatively, less

Fig. 4. Absolute and relative errors of the appro
 logarithmic approximations (�).

extreme values (for instance, q1 = 145, q2 = 430), may  yield better
approximations (�(q) = 1.64756 ln(0.095853q + 1)). Fig. 3 shows the
comparison of the two  proposed approximations with the actual
function, as well as the values of the derivatives at the origin, which
in fact are rather small.

By determining the absolute and relative errors of the latter
option (see Fig. 4) it can be seen that close to the origin the
estimations are not very accurate as expected, but in the origin
the estimation is exact. Relative errors are below 2% in the set
x ∈ {0} ∪ [105; 525].

Revisiting the optimal solution assumed for the problem (yi1 = 1,
qi1,j = 175 m3/h for j = j1, j2, j3; di1,j = 0.2032 m (8′′) for j = j1, j2, j3;
and all the other variables with a zero value), the estimated cost
of the selected pipelines is: g(qi1,j1) = g(qi1,j3) = 92,440 × 70.71 ×
[1.64756 × ln(0.095853 × 175 + 1)] = 30.99099 MM$; g(qi1,j2) =
92,440 × 50 × [1.64756 × ln(0.095853 × 175 + 1)] = 21.91415 MM$;
which is close to the actual values: f(qi1,j1) = f(qi1,j3) = 92,440 ×
70.71 × 1750.30 = 30.77884 MM$;  f(qi1,j2) = 92,440 × 50 × 1750.30 =
21.76413 MM$  (only 0.6893% error!).

Perhaps even more important, all the pipelines that are not
selected (qi,j = 0) feature the exact value of g(qi,j) = g(0) = f(0) =
0. Therefore, the total pipeline installation cost (

∑
i,jf(qi,j) =

83.32181 MM$)  is very close to that one found through the
proposed approximation, given by:

∑
i,jg(qi,j) = 2 × 30.99099 +

21.91415 = 83.89613 MM$  (0.6893% error).
3.1. Other approaches for parameter estimation

Another approach for estimating parameters k and b in the
proposed function g(x) = k ln(bx + 1) is to consider a set of n

ximation �(q) = 1.64756 ln(0.095853q + 1).
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Table  1
Representative values for q and �(q), and approximation errors of �(q) using least squares.

q 50 150 250 350 450 525
�(q)  = q0.30 3.23364 4.49601 5.24061 5.79723 6.25121 6.54708
e  = �(q) − �(q) −0.121 0.122 0.110 0.042 −0.045 −0.115

Table 2
Computational results for the heat exchanger network synthesis problem (SYNHEAT).

MINLP solver Approximate solution Actual solution Approximation error Deviation from the optimum CPUs

No-approx DICOPT 110,170 110,170 0% 0% 0.272
BARON 110,170 110,170 0% 0% 348.61

ε-approx
ε  = 10−6

DICOPT 117,629 117,629 2.6 × 10−4% 6.8% 0.296
BARON 110,170 110,170 3.1 × 10−4% 0% 30.68

ε-approx
ε  = 10−2

DICOPT 115,757 115,670 0.08% 5.0% 0.521
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BARON 110,257 110,170 

Log-approx DICOPT 109,531 110,170 

BARON 109,531 110,170 

epresentative values for variable x (x1, x2, . . .,  xn) together with
he actual values of the function f(x) at that points (f1, f2, . . .,  fn) and
olve a least squares NLP problem of the form:

Min
k,b

z =
n∑

i=1

(gi − fi)
2

s.t. gi = k ln(bxi + 1) ∀i = 1, . . .,  n

(5)

ote that the values of the function f(x) at the reference points can
e obtained either from the original expression f(x) = cxr, or from
he real-world costs of equipments of size x.

For the illustrative example, we propose the representative val-
es for q and �(q) presented in Table 1. The NLP model proposed

n (5) is solved to global optimality in 0.16 CPUs and 25 iterations
sing GAMS/BARON 9.0.6 (in an AMD  Phenom Dual Core Processor
t 2.90 GHz), setting 0 and 100 as lower and upper bounds for k
nd b. The optimal results yield b = 0.142310; k = 1.48658, with the
otal sum of square errors equal to 0.059, and the error distribution
hown in Table 1. By minimizing the squared errors, the approxi-
ate function matches the actual function at lower values (q = 75).

n this way, the error at qlo = 50 is bounded more tightly.
Alternatively, model (5) can be solved using 1-norm for the devi-

tions between the approximate and the actual values. This leads to
 = 0.092164; k = 1.66748, yielding the best approximation for the
riginal problem with a total error of 0.51% in the pipeline costs.

. Computational results

The proposed approximation has been implemented in the
bjective function of an MINLP model for optimizing the design and
evelopment of the shale gas supply chain (Cafaro & Grossmann,
013) with very promising results, particularly when applied to
he estimation of gas and liquid pipeline costs, whose economies
f scale exponents (with regards to the fluid flows) are typically
.225 and 0.300, respectively. Very good results are also obtained

n MINLP models of chemical process design problems, like the
eat exchanger network synthesis (Yee & Grossmann, 1990) and
he optimal design of process water networks (Ahmetović  &
rossmann, 2011). In both cases, economies of scale functions with

arger exponents (0.60–0.70) are effectively handled, always find-
ng the optimal solution in short CPU times. In fact, the proposed
pproximation differs less than 0.70% from the actual equipment
osts.

In particular, the heat exchanger network synthesis problem,

YNHEAT, contributed by T. F. Yee to the GAMS model library
McCarl, 2011) is studied. By assuming that the exponent “aexp”
s equal to 0.60 and implementing the proposed logarithmic
pproximation, the global optimum is found in 0.227 CPUs by
0.08% 0% 71.68
0.58% 0% 0.227
0.58% 0% 77.07

solving GAMS/DICOPT2x-C. On the contrary, when applying the ε-
approximation with ε = 10−6, DICOPT can only find a suboptimal
solution that is 6.8% worse, starting from the same initial point
given by default (see Table 2). If the value of ε is increased to 10−2, an
improved suboptimal solution is found, and the CPU time increases
by a factor of 2.

When no approximation in the objective function is imple-
mented and the outer-approximation algorithm (DICOPT) is used,
the optimal solutions of the MILP steps in iterations 1 and 2 are
3.3 × 1013 and 6.3 × 1013, respectively. These are very large num-
bers that reflect the unbounded gradients of exchangers with zero
size. By chance, even under these circumstances, the MILP model
finds an integer solution that is solved in the NLP step yielding a
value that is exactly the global optimum. However, it can be con-
cluded that using directly the concave functions in the algorithm is
not reliable. On the other hand, from Table 2 we can see that with
the proposed logarithmic approximation values within 0.60% of the
global optimum are found with DICOPT and BARON.

5. Conclusions

An alternate approximation of concave cost functions that
captures economies of scale in process design and supply chain
optimization problems has been presented. The proposed logarith-
mic  expression is very simple, fits quite well to the original power
law functions, and overcomes the drawbacks of large derivatives
and large estimation errors that are experienced with small expo-
nents using approximations that add the tolerance ε. Promising
results are obtained when applying the approach to well-known
process design problems and real-size case studies related to the
strategic planning of natural gas supply chains. The proposed
approximation is particularly useful when large superstructures
and small exponents (as for pipeline costs) are considered.

Acknowledgments

Financial support from Fulbright Commission Argentina, CON-
ICET and CAPD at Carnegie Mellon University is gratefully
appreciated.

References
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