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Abstract
Increasing evidence indicates that N-fixing symbiosis has evolved several times in the N-fixing clade of angiosperms and that 
this evolution is driven by a single evolutionary innovation. However, the genetics of this ancestral predisposition to N-fixing 
symbiosis remains unclear. A natural candidate for such molecular innovation is the ammonium channel NOD26, the main 
protein component of the symbiosome membrane, which facilitates the plant uptake of the nitrogen fixed by symbiotic bacte-
ria. Here, in concordance with the emergence of N-fixing symbiosis in angiosperms but not in ancestral plants, phylogenetic 
analysis showed that NOD26 belongs to an angiosperm-exclusive subgroup of aquaporins. Integrated genomic, phylogenetic, 
and gene expression analyses supported NOD26 occurrence in the N-fixing clade, the increase in the NOD26 copy number 
by block and tandem duplications in legumes, and the low-copy number or even the loss of NOD26 in non-legume species 
of the N-fixing clade, which correlated with the possibility to lose N-fixing symbiosis in legume and non-legume lineages. 
Metabolic reconstructions showed that retention of NOD26 in N-fixing precursor could represent an adaptive mechanism to 
bypass energy crisis during anaerobic stress by ammonium detoxification. Finally, we discuss the potential use of NOD26 
to transfer N-fixation to non-N-fixing crops as cereals.
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Introduction

Several plant species belonging to the N-fixing clade, a 
monophyletic group of angiosperms, are able to establish 
N-fixing symbiosis in root-derived nodule cells with differ-
ent genera of the bacteria domain. Both the origin and the 
complex diversification of N-fixing symbiosis have puzzled 
biologists for a long time and are still issues under debate 
(Doyle 2011; Geurts et al. 2016; Griesmann et al. 2018). The 
dispersed occurrence of N-fixing symbiosis in the N-fixing 
clade can be explained by the non-homologous origins of 

N-fixing symbiosis (Svistoonoff et al. 2013; Werner et al. 
2014). This point of view is coherent with the predispo-
sition hypothesis, which states that the common ancestor 
of the N-fixing clade evolved a predisposition towards the 
evolution of N-fixing symbiosis (Soltis et al. 1995). Under 
this paradigm, which is in agreement with the traditional 
concept of deep homology (Shubin et al. 2009), in various 
lineages of the N-fixing clade, the emerged predisposition 
has been largely retained in a non-N-fixing symbiosis role 
(e.g., stress response), and the non-homologous origins 
of N-fixing symbiosis represent convergent evolutionary 
events selected by the limitation of fixed nitrogen in many 
ecosystems (Doyle 2016). This is in accordance with the 
emergence of complex traits through incrementally key 
transitions (Oyserman et al. 2016), and with the extraordi-
nary diversity and ecological success of plant species that 
obtain fixed nitrogen from N-fixing symbiosis (Lavin et al. 
2005). Evolutionary reconstructions are normally based 
on observations, and not on the design and performance of 
experiments, and consequently, different scenarios for very 
early evolution events are, by nature, speculative (Cleland 
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and Xa 2002). Exceptionally, the predisposition hypothesis 
makes predictions that are testable and refutable. Specifi-
cally, this hypothesis indicates that it is possible to iden-
tify a cryptic evolutionary innovation that drives symbiotic 
N-fixation evolution by genomic comparisons (Werner et al. 
2014), and to then experimentally recreate the acquisition of 
N-fixing symbiosis by transfer of this genetic novelty to non-
N-fixing plants, including major cereal crops. Therefore, the 
identification of key factors for the emergence of N-fixing 
symbiosis not only is able to bypass the typical epistemo-
logical limitations of evolutionary reconstructions, but also 
has large ecological and economic consequences.

During N-fixing symbiosis, rhizobia are differentiated 
from bacteroides, which are N-fixing ammonium-excreting 
forms of rhizobia (Jones et al. 2007). Bacteroides inside 
infected root cells are surrounded by a symbiosome mem-
brane, derived from the plant cell plasma membrane, which 
effectively segregates bacteroides from the host cytoplasm 
and controls the movement of metabolites between the two 
symbiotic partners. Rapid movement of ammonium from the 
bacteroid to the plant cytoplasm is facilitated by the nodule-
specific ammonium channel NOD26 (Hwang et al. 2010), 
the main protein component of the symbiosome membrane 
in soybean (Glycine max) (Fortin et al. 1987). Since ammo-
nium is the principal beneficial compound obtained by plants 
during rhizobial symbiosis and because its rapid uptake by 
plants is the outcome of NOD26 activity, this channel is 
a good candidate to be a key molecular innovation for the 
emergence of N-fixing symbiosis.

Methods

Search of Protein Databases and Identification 
of NOD26‑Related Proteins

AQP protein sequences of Arabidopsis thaliana (AtPIP1;1, 
AtTIP1;1, AtNIP1;1, and AtSIP1;1) and Physcomitrella pat-
ens (PpGIP1;1 and PpXIP1;1) were used as query to search 
against genome databases, including Phytozome (https​://
phyto​zome.jgi.doe.gov/pz/porta​l.html), PlantGDB (http://
www.plant​gdb.org/), NCBI (https​://www.ncbi.nlm.nih.
gov/), PLAZA (https​://bioin​forma​tics.psb.ugent​.be/plaza​
/) by using BLASTP (amino acid identity cut-off ≤ 15%). 
Thirty green plant genomes, including genomes from unicel-
lular organisms (Volvox carteri, Coccomyxa subellipsoidea, 
Ostreococcus lucimarinus, and Chlamydomonas reinhardtii) 
as well as genomes from multicellular eukaryotes (Gly-
cine max, Phaseolus vulgaris, Medicago truncatula, Lotus 
japonicus, Cucumis sativus, Fragaria vesca, Prunus per-
sica, Malus domestica, Ricinus communis, Morchella escu-
lenta, Populus trichocarpa, Linum usitatissimum, Arabi-
dopsis thaliana, Solanum tuberosum, Theobroma cacao, 

Vitis vinifera, Paspalum virgatum, Scilla italica, Zea mays, 
Oryza sativa, Brachypodium distachyon, Picea abies, Picea 
sitchensis, Cryptomeria japonica, Selaginella moellendorffii, 
and Physcomitrella patens), were explored for the presence 
of AQPs. Proteins that were not identified by the BLASTP 
analysis but are within the genomes of these green plants and 
contain the PF00230 domain (https​://pfam.xfam.org/famil​y/
PF002​30) were also selected.

Synteny, Phylogenetic, and Expression Analyses

Genomic synteny comparisons among chromosomes of 
plant genomes were performed for dicot species, including 
species belonging to the N-fixing clade (Lotus japonicus, 
Medicago truncatula, Phaseolus vulgaris, Glycine max, 
Arachis ipaensis, Parasponia andersonii, Trema orienta-
lis, and Cucumis sativus), as well as Ricinus communis (a 
close-related species to N-fixing clade), and the model plant 
Arabidopsis thaliana, by using the LASTZ plugin in the 
Geneious v10.1 software (Kearse et al. 2012). A strict crite-
rion to identify homologous proteins among chromosomes 
was used (> 50% of amino acid identity). Protein identities 
were calculated using MatGAT (Campanella et al. 2003). 
AQPs were phylogenetically and molecularly analyzed using 
MEGA version 7.0. (https​://www.megas​oftwa​re.net/). Pro-
tein sequences were aligned using the ClustalW program. 
Phylogenetic trees were constructed using the Neighbor-
Joining (NJ) method with genetic distances computed using 
the p distance model and bootstrap analysis of 500 resamples 
and root on midpoint. Microarray gene expression data were 
collected from Mt-Atlas (Benedito et al. 2008), Gm-Atlas 
(Libault et al. 2010), LjGEA (Verdier et al. 2013), PvGEA 
(O’Rourke et al. 2014), Ai-Atlas (Chopra et al. 2014), and 
Pa-Atlas (van Velzen et al. 2018).

Results and Discussion

NOD26 is a member of the aquaporin (AQP) superfamily, 
a group of highly diversified channel proteins that facilitate 
the bidirectional transport of water, small solutes, ions, and/
or dissolved gases across cell membranes in passive man-
ner (Perez Di Giorgio et al. 2014). To begin to analyze the 
origin of NOD26, in the present study, we examined the 
phylogenetic relationships of AQPs from 30 whole genome-
sequenced species of plants representing major branches of 
the plant kingdom. As expected for being the archetype, 
NOD26 clustered within the NIP (NOD26-like intrinsic 
proteins) AQP subfamily (Fig. 1), and not into the TIP, PIP, 
XIP, SIP, and GIP AQP subfamilies. In addition, NOD26 
showed high phylogenetic affinity with the angiosperm-
exclusive subgroup NIP 1 (Fig. 1), which is consistent with 
the need to have NOD26 to evolve N-fixing symbiosis. Thus, 
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Fig. 1   NOD26 belongs to NIP 1, an angiosperm-exclusive subgroup 
of the NIP AQP subfamily. Large-scale phylogenetic analysis of 
NOD26 from Glycine max (boxed) based on the NJ method. The GIP, 
SIP, XIP, PIP, TIP, and NIP subfamilies of AQPs with focus on the 
classical NIP 1 to NIP 4 subgroups of NIPs (bold types) and the tax-
onomy of species (different colors) are shown. Angiosperms: Fabids 
(orange): Lotus japonicus, Medicago truncatula, Phaseolus vulgaris, 
Glycine max, Cucumis sativus, Ricinus communis, Fragaria vesca, 
Prunus persica, Malus domestica, Morchella esculenta, Populus 
trichocarpa, and Linum usitatissimum; Malvidae (red): Arabidopsis 

thaliana, Solanum tuberosum, Theobroma cacao, and Vitis vinifera; 
Panicoideae (light blue): Paspalum virgatum, Scilla italic, and Zea 
mays; Ehrhartoideae (blue): Oryza sativa and Brachypodium dis-
tachyon; Ancestral green plants: Gymnosperms (green): Picea abies, 
Picea sitchensis, and Cryptomeria japonica; Spikemosses (gray): 
Selaginella moellendorffii; Mosses (fuchsia): Physcomitrella patens; 
and Chlorophyta (black): Volvox carteri, Coccomyxa subellipsoidea, 
Ostreococcus lucimarinus, and Chlamydomonas reinhardtii. (Color 
figure online)
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N-fixing symbiosis might not have emerged in ancestral 
green plants because these plants did not have NOD26.

To better understand when NOD26 appeared into the 
angiosperm lineage, we restricted the evolutionary studies 
to well-characterized species of the Fabids clade and the 
model species Arabidopsis thaliana belonging to the Fabids 
sister clade Malvids (Fig. 2). Regarding the Fabids clade, we 
selected both N-fixing species (Lotus japonicus, Medicago 
truncatula, Phaseolus vulgaris, Glycine max, Arachis ipaen-
sis, and Parasponia andersonii) and non-N-fixing species 
(Trema orientalis and Cucumis sativus) from the N-fixing 
clade, and their related species Ricinus communis from the 
Malpighiales (Fig. 2). N-fixing species were selected based 
on the availability of both robust genomic sequences and 
global expression analyses which endorsed the integra-
tion of bioinformatic and empirical studies. Comparison of 
the nucleotide sequence of the region around the NOD26 
(Glyma08g12650) of G. max with other genomes of phylo-
genetically related plant species showed a conserved synteny 
without large-scale DNA rearrangements (Fig. 3). This chro-
mosomal region, which we named the Biological Nitrogen 
Fixation (BNF) region, is duplicated in L. japonicus, M. 
truncatula, P. vulgaris, and A. ipaensis, and quadrupled in 
G. max, which is in accordance with ancestral and recent 
events of genome duplications in the ancestors of Legumes 
and G. max, respectively (Bertioli et al. 2009; Schmutz et al. 
2010). In addition to the increase in the NOD26 copy num-
ber (paralogous genes) in Legumes via block duplication 
events, tandem duplications of NOD26 were observed in 
the BNF regions of species belonging to the families Leg-
umes (L. japonicus, M. truncatula, P. vulgaris, G. max, and 
A. ipaensis) and Rosales (P. andersonii and T. orientalis), 
but not in C. sativus, which belongs to the family Cucur-
bitales, and control species R. communis and A. thaliana 
(Fig. 3). In agreement with the predisposition hypothesis, the 
most parsimonious explanation for the synteny results is the 

occurrence of a single AQP in the BNF region in ancestral 
angiosperms, the emergence of NOD26 in the N-fixing clade 
by a tandem duplication event, the amplification of NOD26 
in the N-fixing clade by both block and tandem duplication 
events, and the loss of NOD26 in the ancestor of C. sativus. 
Analogously, we have recently reported the emergence of the 
pollen-specific AQPs NIP4;1 and NIP4;2 in angiosperms by 
a tandem duplication event, which is associated with accel-
erated pollen tube growth rates (Di Giorgio et al. 2016), a 
critical novelty for the rapid diversification of angiosperms 
(Williams 2008).

Although the synteny analysis is consistent with the 
predisposition hypothesis, an integrated phylogenetic 
and expression analysis is important to support the origin 
of NOD26 in the N-fixing clade, and necessary to better 
understand the diversification of NOD26 within Legumes. 
In line with this, we examined the expression and evolu-
tion patterns of all paralogous copies of NOD26 included 
in the BNF regions of N-fixing species (Table 1; Fig. 4). 
The expression analysis showed that at least one copy of 
NOD26 is highly upregulated in inoculated roots or nodules 
of Legumes (LJ4g029020 in L. japonicus, Medtr8g087710 
and Medtr8g087720 in M. truncatula, Phvul.002G242300 in 
P. vulgaris, Glyma08g12650 in G. max, and LOC107621874 
in A. ipaensis) and non-Legume (PanWU01 × 14_248030 in 
P. andersonii) N-fixing species, supporting an essential and 
ancestral role of NOD26 in N-fixing symbiosis (Table 1). 
Considering that these active copies of NOD26 are in dif-
ferent localizations within BNF regions in Legume species 
(Fig. 3), we inferred the coexistence of different active copies 
of NOD26 in the ancestor of Legumes, and the inactivation 
of most of these copies during the evolution of the N-fix-
ing clade. On the other hand, refined phylogenetic analysis 
supported the emergence of NOD26 in the N-fixing clade, 
and clarified the order of NOD26 duplications in Legumes 
(Fig. 4). Specifically, the phylogenetic tree suggests that the 

Galegoids

Phaseoleae

CA-clade

D-clade N-fixing 
clade

Legumes

Rosales

Cucurbitales
Malpighiales

Fabids

Malvids

Lotus japonicus
Medigago truncatula
Phaseolus vulgaris
Glycine max
Arachis ipaensis
Parasponia andersonii
Trema orientalis
Cucumis sativus
Ricinus communis
Arabidopsis thaliana

Fig. 2   Schematic representation of the phylogenetic relationship 
among angiosperm species. This scheme shows the largely accepted 
evolutionary relationship among different angiosperm species, where 
the monophyletic N-fixing clade, which contains both N-fixing (Lotus 

japonicus, Medicago truncatula, Phaseolus vulgaris, Glycine max, 
Arachis ipaensis, and Parasponia andersonii) and non-N-fixing spe-
cies (Trema orientalis and Cucumis sativus), is closely related to Rici-
nus communis and related to the model species Arabidopsis thaliana 
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Fig. 3   Emergence of NOD26 in the N-fixing clade and its large 
expansion in Legumes. The NOD26 from Glycine max is situated 
within a conserved region of the angiosperm genome. This genomic 
region, which is particularly expanded in Legumes by duplicated 
blocks on the different chromosomes (Ch6 and Ch4 in Lotus japoni-
cus; Ch2 and Ch8 in Medicago truncatula; Ch6 and Ch2 in Phaseo-
lus vulgaris; Ch15, Ch13, Ch5, and Ch8 in Glycine max; and Ch10 
and Ch3 in Arachis ipaensis), contains only one AQP in control spe-
cies related to the N-fixing clade (Ricinus communis and Arabidop-
sis thaliana), and large tandem duplications of AQPs in all species 
belonging to the N-fixing clade (Lotus japonicus, Medicago trunca-
tula, Phaseolus vulgaris, Glycine max, Arachis ipaensis, Trema ori-
entalis, and Parasponia andersonii), with the exception of the non-
N-fixing species Cucumis sativus. Orthologous genes are shown in 
the same color (orange = Pfam:00810; green = Pfam:02469; light 
blue = Pfam:04564; pink = Pfam:04844; dark blue = Pfam:00447; 

light yellow = Pfam:00230; white = hypothetical protein; 
gray = Pfam:06775; yellow = Pfam:11721; purple = Pfam:01031; 
brown = Pfam:00854; very light blue = Pfam:01680; 
light green = Pfam:01486; dark gray = Pfam:00657; olive 
green = Pfam:01823; blue = Pfam:07823; light orange = Pfam:00931; 
very light green = Pfam:01398; dark green = Pfam:03031; 
dark pink = Pfam:01363; ocean blue = Pfam:05915; cinna-
mon = Pfam:00069; red = Pfam:00012; light gray = Pfam:00560; 
light brown = pfam09262). The orthologous block of genes is repre-
sented with gray shadows. Arrows and squares represent gene orien-
tation and transposons, respectively. The genomic blocks containing 
NOD26 and their related AQPs, which is named the BNF (Biological 
Nitrogen Fixation) region, are shown in light yellow, whereas homol-
ogous genomic blocks upstream and downstream of the BNF region 
are shown in gray. In the bottom panel, schematic representations of 
both block and tandem duplications are shown. (Color figure online)
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block duplication event (originating clusters G1.1.1 and 
G1.1.2) preceded the tandem duplication event (originat-
ing clusters G1.1.2A and G1.1.2B), indicating that genome 
duplication in the common ancestor of Legumes could be 
critical for the consolidation of a stable N-fixing precursor. 
In addition, clusters G1.1.2A and G1.1.2B exhibited a com-
plete congruence with the organismal tree at species levels, 
whereas cluster G1.1.1 showed congruence only with the 
evolution of the CA- and D-clades of Legumes (Fig. 4). This 
partial congruence pattern has been described in other AQP 
clusters and is normally the consequence of the differential 
and large duplications of paralogous copies within different 
plant species or plant lineages (Abascal et al. 2014). In the 
case described here, the presence of several transposons next 

to the AQP grouping within cluster G1.1.1 (Fig. 3) suggests 
that the high rate of duplication of these AQPs could be 
mediated by these mobile elements. Figure 5 schematically 
summarizes the integration of syntenic, gene expression, 
and phylogeny analyses of all the AQPs localized within the 
BNF region in species of the N-fixing clade and in their phy-
logenetically related species R. communis and A. thaliana, 
focusing on the emergence of NOD26 in the N-fixing clade 
and highlighting the prediction of at least three functional 
copies of NOD26 in the ancestor of Legumes.

After defining that NOD26 emerged in the N-fixing clade 
via tandem duplication and was consolidated in Legumes via 
block and tandem duplications, and under the premise that 
this symbiotic ammonium channel has an angiosperm origin 

Table 1   Expression of AQPs within the BNF region in different tissues of N-fixing plants

NOD26 copies highly upregulated in inoculated roots or nodules are in italics
All values are the mean of three to six independent experiments
ND not determined

Locus Seed Flower Pod Petiole Shoot Leaf uninoc.root inoc.root Nodule

L. japonicus LJ6g016720 192 862 1721 1757 1175 534 59 70 43
LJ6g016710 22 319 25 26 29 31 30 42 31
LJ6g016700 156 6773 174 559 488 309 51 43 27
Lj6g016680 1435 507 976 15 14 14 13 14 14
Lj6g016670 22 319 25 26 29 31 30 42 31
LJ4g029020 19 16 22 20 17 18 17 19 153
LJ4g029030 14 14 14 12 16 14 13 13 14

M. truncatula Medtr2g017570 520 358 162 482 611 299 28 61 69
Medtr2g017590 79 39 26 74 26 162 72 37 20
Medtr2g017610 520 358 162 482 611 299 28 61 69
Medtr2g017620 79 39 26 74 26 162 72 37 20
Medtr2g017660 11 14 32 26 20 49 83 47 15
Medtr8g087710 18 130 233 725 372 1351 335 452 19,156
Medtr8g087720 7192 344 449 124 119 257 1863 1004 18,568

P. vulgaris Phvul.006G171000 19 ND 171 ND 1133 155 109 825 118
Phvul.006G170900 28 ND 7 ND 67 14 11 26 3
Phvul.002G242200 16 ND 8 ND 19 4 30 68 18
Phvul.002G242300 60 ND 2 ND 7 2 139 342 54

G. max Glyma15g09370 ND 11 ND ND ND 16 ND 2 < 1
Glyma13g29590 ND 48 ND ND ND 30 ND 4 < 1
Glyma05g29500 ND 1 ND ND ND < 1 ND 3 13
Glyma05g29510 ND 2 ND ND ND < 1 ND 4 2
Glyma08g1265 (NOD26) ND < 1 ND ND ND < 1 ND 90 3686
Glyma08g12660 ND 2 ND ND ND < 1 ND 2 < 1

A. ipaensis LOC107621874 < 1 2 < 1 ND < 1 < 1 36 ND 119
LOC107634829 4 < 1 < 1 ND < 1 < 1 < 1 ND < 1
LOC107632157 1 1 2 ND 4 2 2 ND 1

P. andersonii PanWU01 × 14_247960 ND ND ND ND ND ND < 0.1 < 0.1 < 0.1
PanWU01 × 14_247980 ND ND ND ND ND ND < 0.1 < 0.1 < 0.1
PanWU01 × 14_247990 ND ND ND ND ND ND < 0.1 < 0.1 < 0.1
PanWU01 × 14_248030 ND ND ND ND ND ND < 0.1 0.47 6.21
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related to non-symbiotic plant-beneficial functions, we here 
recreated the genomic and functional transitions that can 
lead to the emergence of the original N-fixing precursor and 
its stabilization in Legumes (Fig. 6). Under aerobic condi-
tions, root respiration provides the proton-motive force for 
the flux of large solutes, including sugars and nitrogen com-
pounds (Fig. 6a). Under anaerobic conditions, angiosperm 

roots maintain some ATP synthesis through catabolic pro-
cesses, including lactate and ammonium fermentations 
(Fig. 6a). Thus, the expression of genes involved in this type 
of anaerobic processes, such as lactate dehydrogenase (Shin-
gaki-Wells et al. 2014) and nitrate reductase (Allegre et al. 
2004), is a critical factor for the tolerance of plants to root 
anoxia. However, under long-term root anoxia, fermentation 
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Fig. 4   Origin of NOD26 in the N-fixing clade and its complex evo-
lution in Legumes. Phylogeny of all AQPs included in the BNF 
region from angiosperms based on the NJ method. Bootstrap per-
centages are indicated at the branch points (only values above 
50% are indicated). Current NOD26 copies highly upregulated in 
inoculated roots or nodules in N-fixing species (LJ4g029020 in L. 
japonicus, Medtr8g087710 and Medtr8g087720 in M. truncatula, 
Phvul.002G242300 in P. vulgaris, Glyma08g12650 in G. max, and 
LOC107621874 in A. ipaensis and PanWU01 × 14_248030 in P. 
andersonii, see Table 1) and branches connecting these sequences are 

highlighted, showing the origin of NOD26 in the N-fixing clade. The 
tree topology shows that the increase in the NOD26 copy number in 
Legumes occurred firstly by block duplication (clusters G.1.1.1 and 
G.1.1.2) and secondly by tandem duplication (clusters G.1.1.2A and 
G.1.1.2B). A congruent pattern between orthologous clusters and 
organisms (see Fig. 2) is found on the right. Whereas clusters G.1.1.1 
and G.1.1.2 showed a complete congruence with the organismal tree, 
cluster G.1.1.1 showed congruence only with the CA- and D-clades, 
which is in accordance with the particular expansion of AQPs in clus-
ter G.1.1.1 probably mediated by mobile elements (see Fig. 3)
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products are accumulated in the cytoplasm, reducing the rate 
of glycolysis and further decreasing ATP production, which 
can cause an energy crisis and consequently cell death. 
These lethal effects can be accelerated by the intrinsic tox-
icity of ammonium on cytoplasmic enzymes (Esteban et al. 
2016) (Fig. 6a).

During the energy crisis induced by anoxia, the cost of 
the active export of fermentation products is unsustainable, 
and, consequently, a selection pressure is exerted for the 
emergence of passive channels (such as AQPs) induced in 
anaerobic root cells able to facilitate the diffusion of these 
reduced compounds in favor of the concentration gradient 
(from the cytoplasm to the extracellular space). Arabidopsis 
AQP AtNIP2;1, a lactate channel specifically induced in root 
cells during anoxic stress (Choi and Roberts 2007), and the 
ammonium channel NOD26 probably emerged under this 

selective pressure, improving the NAD+ recycling necessary 
to continue with the glycolysis process (Fig. 6a, b). Interest-
ingly, the gene that codifies for AtNIP2;1 (AT2G34390) is 
within the BNF region (Fig. 3), and, consequently, AtNIP2;1 
is the most well-characterized orthologous protein of 
NOD26 in angiosperms. Considering that the phylogenetic 
analysis supported the emergence of AtNIP2;1 before that of 
NOD26 (Fig. 4), we can explain the retention, long-term per-
sistence, and conservation of NOD26 in the N-fixing clade 
as a mechanism to maximize the amount of recycled NAD+, 
improving the tolerance to anaerobic stress (Fig. 6b). It is 
important to note that the emergence of an ammonium chan-
nel induced in anaerobic roots, i.e., the critical evolutionary 
innovation for the emergence of N-fixing plants proposed 
in this work, needs few evolutionary events, which consist 
of a tandem duplication of an AQP (including its promoter) 
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Fig. 5   Schematic representation of the evolution of angiosperm spe-
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gration of synteny (see Fig.  3), gene expression (see Table  1), and 
phylogeny (see Fig. 4) analyses of AQPs within the BNF region from 
angiosperm species suggests the origin of NOD26 in the N-fixing 
clade by tandem duplication, a particular expansion of NOD26 in leg-

umes by both block and tandem duplications, and the loss of NOD26 
in the non-N-fixing species Cucumis sativus. Similar to that shown 
in Fig.  4, current NOD26 copies highly upregulated in inoculated 
roots or nodules in N-fixing species and branches connecting these 
sequences are highlighted
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and low amino acid (80% similar) and functional (small pro-
tonated solutes) divergences between homologous protein 
AtNIP2;1 and NOD26 in the ancestor of the N-fixing clade 
(Fig. 6b). In addition, AtNIP2;1 and NOD26 show the same 
pattern of transport activation induced by acidification (e.g., 
from pH 7.6 to pH 5.0–6.0) (Choi and Roberts 2007), which 
is consistent with the rapid cytoplasmic acidification dur-
ing anoxic stress and the relevance of exporting fermented 
products under this stress condition (Felle 2005).

Returning to the general aspects of the evolutionary 
reconstruction of N-fixing symbiosis genesis, the evolu-
tion of the original N-fixing precursor (Fig. 6b) would have 
resulted in stable (Legumes) and unstable (non-legumes) 
N-fixing precursors, which differ mainly in the number of 
copies of NOD26 (Fig. 6c). Specifically, the ancestor of 
Legumes increased the number of copies of NOD26, thus 
improving the stability of this key genetic preadaptation for 
the emergence of N-fixing symbiosis (Fig. 6c, d), whereas 
non-legume lineages maintained only the original number 
or a low number of copies of NOD26, and therefore, were 
more susceptible to lose this N-fixing symbiosis prerequisite 
by chance (Fig. 6c, d). Lastly, different lineages from the 
N-fixing clade that retained at least one copy of NOD26 
were able to acquire N-fixing symbiosis independently, 
whereas this acquisition is negatively selected in plants from 
the N-fixing clade that lost NOD26 (Fig. 6d). In this context, 
the probable induction of cell division by ancient N-fixing 
symbionts (Geurts et al. 2016), with the consequent decrease 
in free oxygen in root cells (Ott et al. 2005), possibly played 
a critical role in the initial induction of NOD26 expression.

Considering that bacterial N-fixation is an anaerobic pro-
cess and that common free-living N-fixing strains do not 
release the fixed nitrogen to the environment, the emergence 
of the current and well-known ammonium-excreting N-fix-
ing symbiotic rhizobia seems to need the same single evolu-
tionary innovation as their plant hosts: the acquisition of an 
efficient ammonium channel. Horizontal gene transfer is the 
main mechanism of bacterial evolution, and genes related to 
the N-fixation process in rhizobia are normally within con-
jugative elements able to convert non-symbiotic strains into 
N-fixing symbionts (Haskett et al. 2016). For example, the 
genome of the alfalfa-symbiont model strain Sinorhizobium 
meliloti 1021 includes three replicons, consisting of a cir-
cular chromosome (SMc) encoding housekeeping functions, 
the rhizosphere colonization-related megaplasmid B (SMb), 
and the N-fixation-related megaplasmid A (SMa) (Galardini 
et al. 2013). Within the SMa replicon, we found an AQP-
like protein produced by SMa0627, which is very similar 
to NOD26 (68% of amino acid similarity) and is next to fix 
genes (SMa0612–SMa0626). Considering that fix genes are 
essential factors for N-fixing symbiosis (Bobik et al. 2006) 
and that bacterial genes involved in the same pathway are 
normally co-localized in the genome, SMa0627 is a natural 

candidate to promote the release of ammonium from bacteria 
to plants during N-fixing symbiosis.

In biotechnological terms, the results here presented sug-
gest that the NOD26 from N-fixing plants, and maybe the 
NOD26-like AQPs from their N-fixing symbiont, could be 
useful tools to improve N-fixation in N-fixing plants and to 
transfer N-fixation to non-N-fixing plants such as cereals. 
Constitutive expression of active ammonium channels in 
almost any microorganism or plant tissue, including rhizo-
bial and root cells, has probably a strong negative fitness. 
Consequently, ammonium channels for microbial and plant 
engineering could be used with specific anaerobic-induced 
promoters, such as the model non-N-fixing plant Arabidop-
sis expressing NOD26 from G. max under the control of 
the AtNIP2;1 promoter from Arabidopsis. Since there is a 
strong framework for the deregulation of transgenic crops, 
these types of transgenic plants with greater capacity for 
ammonium interchange under anaerobic conditions could 
be used to improve the uptake of ammonium produced by 
N-fixing bacteria in future commercial crops. Contrary to 
sexual organisms like animals and plants, which exhibit a 
robust containment of transgene flow, microorganisms show 
extremely promiscuous gene flow, and consequently, there 
are no genetically modified bacteria in the market. However, 
domesticated mutant plant-growth-promoting strains are 
commonly accepted as inoculants to improve crop produc-
tion. In this framework, and considering that the substitution 
of a single amino acid residue can alter the transport profiles 
of some AQPs (Azad et al. 2012; Krenc et al. 2014), we pro-
pose bacterial genome editing with CRISPR-Cas9 over cur-
rent AQPs to mimic the ammonium channel, as a strategy to 
produce novel ammonium-excreting N-fixing non-transgenic 
inoculants to improve the nitrogen content in legumes and 
cereal crops. Finally, future characterizations of transgenic 
plants and edited N-fixing bacteria overexpressing ammo-
nium channels in roots under anoxia can contribute not only 
to improve crop production but also to empirically recapitu-
late the origin of N-fixing symbiosis.
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