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In the present work the classification of dairies additives in a rapid and simple way, is proposed.
Measurements were made by means of an Electronic Nose developed in our laboratories, which
we named ‘Patagonia E-Nose.’ This E-Nose is composed of SnO2 sensors located in a thermally
stabilized chamber which improves the repeatability of the measurements. Samples of various
hydrolyzed dairies were measured using air as a reference gas. Then, the integrals of the signals
were analyzed using a combination of different multivariate chemometric methods such as linear
discriminant analysis (LDA), principal components analysis (PCA), back-propagation neural network
and different classifiers. Also, different algorithms were implemented and compared by calculating
the number of correctly classified samples of each method. 99.4% of correct classifications were
obtained by using cross-validation and selecting the most appropriate algorithms. The results indi-
cate that the samples were correctly classified through the implementation of a simple and low cost
measurement protocol.

Keywords: Dairies Ingredients, Electronic Nose, Metal Oxide Gas Sensors, Protein
Hydrolysates Cheese, Multivariate Analysis.

1. INTRODUCTION
Dairy Ingredients such as hydrolysates are additives used
extensively in food industry due to their nutritional or
functional properties (solubility, emulsifying power, foam-
ing capacity). In the hydrolysis of proteins to peptides or
amino acids, by the action of proteolytic enzymes, the final
composition and hence the use of the hydrolysates will
depend on the protein source, the type of protease used, the
hydrolysis conditions and the hydrolysis grade obtained in
the reaction.1

In protein hydrolysates, a variety of functional charac-
teristics, such as low viscosity, higher capacity stirring,
dispersion and high solubility are enhanced, which give
advantages for using them in many food products.2–6

One of the most important uses of protein hydrolysates
is presently as a nitrogen source in the formulation of diets
intended for infant and sick adults. These enteric products
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are designed to be absorbed in the intestine without prior
digestion in the stomach and are essential to the treatment
of stomach disorders or problems of the intestinal mucosa,
as well as infants with malabsorption or malnutrition syn-
dromes with allergy symptoms in most cases.7

The characteristics that must satisfy these proteins
hydrolysates in the case of an enteric diet are not to pro-
duce osmotic imbalances or allergies, have a high nutri-
tional value not lower than the starting protein and have
an acceptable taste.
The degree of hydrolysis is defined as the percentage of

broken peptide bonds in relation to the original protein. It
is a fundamental property of the additive and will precisely
determine other characteristics of it and their possible uses.
The degree of final hydrolysis is determined by the pro-
cess conditions applied such as: substrate concentration,
enzyme/substrate ratio, incubation time and physicochem-
ical conditions as pH and temperature. Another factor that
will also determine the degree of hydrolysis is the nature
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of the enzyme, characterized by its specific activity and
type of activity. Then the nature of the used enzyme will
not only influence the degree of hydrolysis, but also the
type of peptides produced.1

Hydrolysates produced for foods can be grouped into
hydrolysates with low degree of hydrolysis, 1% to 10%, to
improve the functional properties; hydrolysates with vary-
ing degrees of hydrolysis, for use as flavoring and exten-
sive hydrolysates, which hydrolysis degree exceed 10%,
for use in specialized nourishment.1 The raw material used
for producing hydrolysates become from animal, plant or
bacterial origins. The protein hydrolysis is usually carried
out in a reactor controlling stirring, pH, temperature and
time processing. Processes for preparation of hydrolysates
and their applications are explained in the literature.1�8

Moreover, attention is paid nowadays to the develop-
ment and production of food products based on scientific
requirements to human diets. Special attention should be
paid to high-protein cheeses’ products dairies.8

Recently, the food industry began to commercialize
enzymatically modified cheeses, which are products whose
flavor intensity is several times the original cheese and
consequently can be used to flavor foods and to accel-
erate the ripe of other cheeses.9 Depending on alterna-
tive procedures such as the final degree of hydrolysis,
substrate concentration, incubation time, physicochemical
conditions such as pH and temperature, etc., result in mul-
tiple situations of compromise from the operational point
of view.10–12 Due to a large number of variables involved
in this process and the essential need to perform measure-
ment efficiently with the proper economy in the number
of trials, time and costs, the Patagonia E-Nose designed in
our laboratories was used. Patagonia is composed of SnO2

sensors in a thermally stabilized chamber which improves
the repeatability of the measurements.13�14

The aim of this work is to analyze and evaluate modi-
fied dairy additives to incorporate them into different foods
composed of flour and/or milk. According to our knowl-
edge, no bibliographic records on the use of electronic
noses applied to the study of the odors properties of pro-
tein hydrolysates combined with the use of chemometrics
as artificial neural networks are known.

2. EXPERIMENTAL DETAILS
2.1. Samples
The following samples with different degree of hydrolysis
were analyzed (see Table I): additives for food composed
by flour (Sample No. 1 and 2) and additives for food dairy
(Sample No. 3 and 4). As is usual in this type of mea-
surements with electronic nose it is necessary to perform
a blank,14 in this case without hydrolyzing proteins. In
this way, a set of control (named Control No. 1 to 4) was
tested, consisting of non hydrolyzed samples in order to
compare with those hydrolyzed additives.

Table I. Resume of the samples analyzed.

Type of additive Control No Sample No

Food flour type 1 1 1
Food flour type 2 2 2
Food dairy type 1 3 3
Food dairy type 2 4 4

2.2. Experimental Design
Measurements were performed with the Patagonia Elec-
tronic Nose (E-Nose) developed in our laboratories, shown
in Figure 1(a).14–19 It is assembled for 8 commercial SnO2

metal oxide thin film semiconductor as gas sensors placed
inside a heated chamber that allows to reach thermal sta-
bility and to improve the repetitive measurements. The
experimental set up is shown in Figure 1(b). During oper-
ation, the sensors operate at 380 �C, while the chamber
containing them is heated to 40 �C. As described in Table I
four samples were measured using air as a carrier gas.

(a)

(b)

Fig. 1. (a) Patagonia E-nose with notebook associated and software.
(b) Experimental set up for the measurements of dairy additives.
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Every liquid samples were stored in a Pyrex glass tube
immersed inside a thermostatized bath at 40 �C to increase
the concentration of volatile compounds in the headspace.
A total of eight measurements for each sample were taken.

The following protocol was applied to each
measurement:
—An initial air purge is performed during 75 seconds in
order to clean the sensors chamber.
—Subsequently, the sample is absorbed in 19 seconds.
—Finally, an air purge is performed during 77 seconds.

The sample and air purge flow are controlled by a microp-
ump at 350 cm3 ·min−1.

2.3. Multivariate Analysis of Data
The integrated signals were analyzed using different mul-
tivariate chemometric methods such as Principal Compo-
nent Analysis (PCA) and Linear Discriminant Analysis
(LDA).20

Geometrically, principal components analysis can be
thought of as a rotation of the axes of the original coor-
dinate system to a new set of orthogonal axes that are
ordered in terms of the amount of variance of the original
data they account for. One of the reasons for perform-
ing a principal components analysis is to find a smaller
group of underlying variables (named latent variables)
that describe the data. In order to do this, we expect
that the first few components will account for most of
the variance of the original data. The principal compo-
nent analysis is a variable-directed technique. It makes no
assumptions about the existence of groupings within the
data and so is described as an unsupervised feature extrac-
tion technique.20

The term linear discriminant analysis (LDA), although
generically referring to techniques that produce discrimi-
nant functions that are linear in the input variables, in some
sense, maximizes between-class separability and mini-
mizes within-class variability. The axes of the transformed
coordinate system can be ordered in terms of ‘importance
for discrimination.’ Those most important can be used to
obtain a graphical representation of the data by plotting
the data in this coordinate system (usually, two or three
dimensions).21

The results obtained in two dimensions by method PCA
and LDA are classified by the back-propagation neural
network and linear classifiers22–26 (see Figs. 3–5). These
methods are provided by the E-Nose-Pat version 1.01
software.

2.4. Classifiers and Cross-Validation
Three matrices of data were analyzed: a matrix of the
integral of the signals, another matrix of LDA results and
another matrix of PCA results. These data were separated
by different classifiers: K-nearest neighbors (K-NN), Lin-
ear Classifier and Back-propagation neural networks.22–26

These classifiers were implemented by libraries in C++
language, Octave (free license) and Matlab.
The K-NN method is used for classification. In this

method, an object is classified by a majority vote of its
neighbors, with the object being assigned to the class most
common among its K nearest neighbors (K is a positive
integer, typically small). If K = 1, then the object is simply
assigned to the class of that single nearest neighbor. The
choice of K has a different effect on the K-NN classifier
obtained. K-NN is a completely non-parametric approach:
no assumptions are made about the shape of the bound-
ary decision. Therefore, we can expect this approach to
dominate LDA and logistic regression when the decision
boundary is highly non-linear. On the other hand, KNN
does not tell us which predictors are important; we do not
get coefficients. When the true decision boundaries are lin-
ear, then the LDA and logistic regression approaches will
tend to perform good. For much more complicated deci-
sion boundaries, a non-parametric approach such as K-NN
can be superior.27 In this work, different K values were
tested, obtaining better results with K = 3.
In general, as we use more flexible classification meth-

ods, the training error rate will decrease, but the test error
rate will not.27

The performance of each algorithm was analyzed by
cross-validation.28 Twenty percent of the total samples
were randomly selected and classified. The number of cor-
rect classifications (CC) was estimated by calculating the
number of samples correctly classified divided by the total
number of samples. For statistical purposes, this procedure
was repeated 40 times for each algorithm. In this way,
the robustness of the algorithms was also checked using
various input data.

3. RESULTS AND DISCUSSION
A typical set of signals obtained with the E-nose as
normalized resistance versus time is shown in Figure 2.
The integrals of these signals were analyzed through the

Fig. 2. A typical signal of the Patagonia E-nose. Differences between
the four samples and air signals are observed.
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Fig. 3. LDA for control (without hydrolysis). (•) Control 1, (�) con-
trol 2, (�) control 3 and (�) control 4.

application of different processing algorithms: Linear Dis-
criminant Analysis (LDA), Principal Components Analysis
(PCA) and Back-propagation Neural Network.
Figures 3 and 4 show the results obtained by LDA cor-

responding to non-hydrolyzed (Control) and hydrolyzed
samples respectively. As can be seen, an appropriate dis-
crimination of the samples and control system (without
hydrolysis) was obtained; this is due to different compo-
sitions of the control samples and furthermore, different
degree of hydrolysis in each hydrolyzed sample.
Figure 5 shows PCA of the hydrolyzed samples. It can

be observed that although the 4 samples are correctly sep-
arated and classified, the figure shows that, according to
the values of the axes in the PCA (PC1 95% and PC2 4%),
samples 2 and 3 present greater similarity and the same
behavior is observed for samples 1 and 4.
The different types of samples (with different degree

of hydrolysis) and control system (without hydrolysis)
allowed the electronic nose to distinguish the differences
between them. The hydrolysis process helps the release of

Fig. 4. LDA and neural network for samples. (•) Sample 1, (�) sam-
ple 2, (�) sample 3 and (�) sample 4.

Fig. 5. PCA for samples. (•) Sample 1, (�) sample 2, (�) sample 3
and (�) sample 4.

Table II. Result for the analysis of different classifiers.

Correct classifications CC (%)

Algorithms For control For samples

K-NN euclidean metric 70.5 98�75
K-NN classifier citiblock metric 75 95�6
PCA+ linear classifier 72 99�4
LDA+ linear classifier 79 98�75
LDA+K-NN euclidean metric 77.5 98�75
LDA+neural network back-propagation 65 80�6

volatile compounds of low molecular weight, intensifying
the aroma of the sample.
In order to evaluate the capability of the combination

of different algorithms for data analysis, correct classifi-
cations (CC) were estimated. Table II present the results
of the analysis of different classifiers, showing the CC
percentage.
According to the results of Table II, high values of %CC

for samples were obtained; however, for control system,
this number is lower. The most significant %CC value
is the combination of PCA with linear classifiers: 99.4%
of correct classifications were obtained. This is because
the measurements of the control system are more similar
between themselves than hydrolyzed samples, affected by
different degrees of hydrolysis.

4. CONCLUSIONS
A simple and low-cost method of classification of
hydrolyzed dairy additives was implemented using an elec-
tronic nose. Different algorithms were implemented and
compared by calculating the number of correctly classi-
fied samples of each method. By using cross-validation
and selecting the most appropriate algorithms, 99.4% of
correct classifications were obtained.
The application of the PCA and LDA methods allows

a quick visualization of the results in the two-dimensional
projection data. Moreover, to strengthen the ability of
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discrimination between samples, different methods were
implemented with these classifiers: K-nearest neighbors
(K-NN), Linear Classifier and Back-propagation neural
networks.

It is also important to admit that depending on the con-
ditions of the hydrolysis, the ability to separate by the
E-nose may vary, being necessary to adapt the algorithms
to achieve a good separation of samples.

This methodology represents a potential application in
the food industry in order to measure and consequently to
control the production of hydrolyzed food additives. This
work aims to contribute to the study of the functionality
of a single ingredient or additive, providing useful tools to
predict, control and induce desirable functional character-
istics to real food systems.
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