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ABSTRACT: Dip coating consists in the immersion of a substrate into a reservoir containing a film-forming fluid and then the
withdrawing from the bath to produce the film. The objective of this work was to develop a mathematical model of the fluid-
dynamic variables in a dip-coating process, considering that the film-forming fluid behaves as a generalized Newtonian fluid. An
analytical and simple mathematical model that relates the main fluid parameters using a generalized Herschel−Bulkley model was
proposed. This model was obtained on the basis of rigorous mass and momentum balances applied to a monophasic and non-
evaporative system, where the main forces are viscous and gravitational. The parameters that can be estimated are velocity profile,
average velocity, flow rate, local thickness, and average thickness of the coating film. Finally, the sufficient conditions for the
model were obtained. The experimental validation and sensitivity analysis are presented in a complementary paper as part 2.

1. INTRODUCTION
Coating is an industrial process used to produce a continuous
or discontinuous film of some nonvolatile material (usually a
liquid) on a solid substrate.1 Coating is used for several
purposes such as material protection, magnetization, controlling
refractive index, and lubrication.2 Particularly in food industry,
this process is used to modify the appearance of the products,
to extend their shelf-life by decreasing the dehydration rate, to
improve their mechanical resistance, and to incorporate specific
additives, like nutrients and preservatives.3

While many different methods are employed in coating
applications, one of the most simple, clear, and fundamentally
important is the dip-coating technique.4 Dip coating consists in
the immersion of the substrate into a reservoir containing the
film-forming fluid for a certain period of time that ensures its
complete wetting and then the withdrawing of the substrate
from the bath. Afterward, the fluid drainage by gravity
completes the film formation.5 In addition, a drying process
can occur after (or eventually at the same time) the
withdrawing and draining steps, consisting in the evaporation
of volatile solvent and the concentration of solutes. The
evaporation can be done by thermal or oxidative processes,
while the progressive concentration of the dispersed or colloidal
phase leads to polymerization, cross-linking, or aggregation
phenomena that finalize the film deposition.6−8 Furthermore, in
the dip-coating process the substrate geometry can vary
extensively (for example, the substrate can be a plate, a
cylinder, or an irregular-shaped object), this being a distinguish-
ing advantage of this coating technique.2,9

As discussed above, momentum, heat, and mass transfer
phenomena are expected during film formation. However, if the
coating process can be considered as occurring in isothermal
and non-evaporative conditions, like in many practical
situations, the problem can be reduced to study the fluid
dynamics of the system.5 From the literature reviewed, the film
thickness obtained using the dip-coating technique (assuming a
process where the effect of the surface tension on the studied
variables is negligible) is influenced by several variables such as

the withdrawal speed of the substrate, the external volumetric
force (usually gravity), the size of the system, and the physical
properties of the film-forming fluid (i.e., density and
viscosity).2,10−13 Therefore, to improve the control of the
involved variables and to obtain an optimal design of the dip-
coating process for food applications, mathematical modeling of
the system fluid dynamics can be used for this purpose.
Some of the earliest theoretical studies in dip coating were

done by Jeffreys,14 Landau and Levich,15 Derjaguin,16 and
White and Tallmadge.17 Those authors used Newtonian fluids
as the fluid-forming material. A natural step to improve the
level of description with a convenient increase of the
mathematical complexity of the problem is to use mathematical
models that represent the fluid dynamics of a dip-coating
process for materials with a generalized Newtonian fluid
(GNF) behavior. The GNF is an extension of the Newtonian
fluid that includes the idea of a shear-rate-dependent viscosity
without taking into account normal stress or time-dependent
elastic effects.18,19 The GNF generally produces relatively
simple constitutive equations, such as the Casson model,20 the
Bingham model,21 the Herschel−Bulkley model,22 and the
Ostwald−de Waele model,23 that are useful in many practical
situations and industrial flow problems.19 It is important to
mention that a particular constitutive equation that can
represent all the expressions described before is the model
proposed by Ofoli et al.,24 which is a generalization of the
Herschel−Buckley equation originally developed for inelastic
fluid foods. Specifically, this model involves several important
rheological models (besides the generalized Herschel−Bulkley)
such as Heinz−Casson,25 Casson,20 Mizrahi−Berk,26 Her-
schel−Bulkley,22 Ostwald−de Waele,23 Bingham,21 and New-
tonian models.
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A theoretical study of the dip-coating process that includes
the mathematical modeling with their analytical solution and
that takes into account a generalized rheological behavior of the
film-forming fluid as proposed by Ofoli et al.24 was not found in
literature. Therefore, the objective of this work was to develop a
mathematical model of the fluid-dynamic variables in a dip-
coating process, considering that the film-forming fluid behaves
as a generalized Newtonian fluid. The experimental validation
and sensitivity analysis are presented in a complementary paper
as part 2.27

2. THEORETICAL APPROACH
2.1. Equations of Change. A schematic diagram of the

studied dip-coating process is shown in Figure 1. It is important
to mention that the studied phenomena occur far away from
the meniscus that is formed at the surface of the fluid-forming
reservoir. The equations of change that describe the
phenomena in an isothermal and non-evaporative dip-coating
process are as follows

Total mass balance (i.e., continuity equation):
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Taking into account the following assumptions: (1) the film-
forming fluid is incompressible (ρ ≠ f(x,̲t)), (2) the external
forces are mainly gravitational (F̲e = ρg)̲, (3) the surface forces
are negligible (Ca → ∞), (4) the system is open (∇p ̲ ≅ 0), 5)
the system can be represented in Cartesian coordinates (x ̲ = ex̲x
+ ey̲y + ez̲z), (6) the problem is mainly 2D (i.e., vz ≅ 0 and
changes in z direction are negligible: ∂/∂z ≅ 0), and (7) gravity
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The complexity (i.e., nonlinear nature) of eqs 3−5 makes it
difficult to obtain an analytical solution. Thus, a dimensional
analysis is useful to obtain simpler expressions of eqs 3−5 that
is also representative of the phenomena that take place in the
studied process. The following dimensionless variables are
defined:
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v
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where U and V are the reference velocities for the x direction
and y direction, respectively [m s−1], L is the length of the plate
[m], hL is the local thickness of the film at L [m], ηref is an
apparent viscosity at a reference condition.
Using eqs 6−9 in eq 3:
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In a dimensional analysis of eq 12 presented by Denn28 and
used by Peralta et al.,29 the order of magnitude of the factor
multiplying the second term is O[VL/(hLU)] ≅ 1. It is
important to note that if O[VL/(hLU)] ≫ 1, vỹ would be zero,
which is physically impossible during film developing.
Conversely, vx̃ would be constant, contradicting the fact that
vx̃ varies with x as the film thickness changes. Defining ε = hL/
L, O(V) ≅ O(εU) results. As Peralta et al.29 stated, this relation
shows a natural way to define V and the definition of V used
here will be V = εU. Equation 7 can then be rewritten as vỹ =
vy/(εU). Using this definition and eqs 6−9 in eqs 4 and 5, and
considering the symmetry of τ:19

Figure 1. Schematic diagram of dip-coating process showing the withdrawal and draining stages.
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where St = Re/Fr is the Stokes number,30 Re = ρUhL/ηref and Fr
= U2/(gxhL).
In the dip-coating process, a thin film is formed over the

plate that is being withdrawn from a vessel containing the
coating liquid. Taking into account that the length of the plate
is much larger than the average thickness of the film, that is ε≪
1, and the flow is in the laminar regime (usually the viscosity of
the coating liquid is high) so that Re ε ≪ 1, then eqs 12−14
become
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This set of equations, which may be found for a lubrication flow
in a fluid system,28 will be used to describe the flow of a coating
film during the stages of unsteady withdrawal and removal. It
should be pointed out that the order of magnitude of St should
be 1 in order to obtain an analytical solution different from (1)
a constant τyx across the film or (2) a solidlike behavior of the
film.
2.2. Range of Theoretical Validity of the Approach. An

important feature of the theoretical approach presented here is
to verify the range of validity of the set of eqs 15−17. The
following set of conditions was assumed to be true:

ε ≪ 1 (18)

ε ≪Re 1 (19)

≅St O(1) (20)

There is an additional condition, Re ε2 ≪ 1 (associated with eq
14), that is not taken into account in the set of equations to be
verified because it represents a more restrictive situation than
eq 19.
It is noteworthy that in order to evaluate eqs 18−20, two

parameters need to be defined: (1) ηref, (2) U. The definition of
the first parameter will depend on the stage of the process
where the model is applied and the evaluation of the second
parameter will depend on the rheological model adopted.
Therefore, different final expressions will be obtained from eqs
18−20 and an analysis for each case will be performed later.
Finally, it is necessary to mention that as Re ε ≪ 1, the

transient terms (along with the inertial terms in eqs 13 and 14)
were neglected. The validity of this assumption depends on the
operative conditions usually found in the dip-coating process.
This hypothesis was tested theoretically by Gutfinger and
Tallmadge31 for a Newtonian fluid drained from a vertical plate.
Those authors found that the solutions for local thickness with
and without the transient terms agreed within an error of 1%

for conditions usually found in dip-coating processes, that is,
times greater than 0.7 s and plate lengths less than 1 m.

2.3. Constitutive Equation for the Generalized New-
tonian Fluid. The set of eqs 15−17, which describes the
relationship among the main transport variables in the process
studied in this work, needs an additional equation to close the
problem. The necessary equation should give the information
of how the rate of deformation (expressed as a function of the
velocity gradients in the material) is related to the stress in the
film.
A generalized Newtonian fluid (GNF) is a fluid material that

can be described by:18,19

τ ηγ= − ̇ (21)

where τ is the shear stress tensor [Pa], γ ̇ is the rate of

deformation tensor (i.e., shear rate tensor) [s−1], η =
f(|γ ̇|,T,p,C) is the apparent viscosity (scalar quantity) [Pa s],

|γ ̇| is the second invariant or magnitude of γ ̇ [s−1], T is the

temperature [K], p is the thermodynamic pressure [Pa], and C
is the concentration [kg m−3].
Ofoli et al.24 proposed a generalization of the three

parameter Herschel−Buckley model for inelastic fluid foods
by adding a fourth parameter to yield:
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where τ0 = f1(T,p,C) is the yield stress [Pa], K = f 2(T,p,C) is
the consistency index [Pa sn/m], and n = f 3(T,p,C) and m =
f4(T,p,C) are dimensionless coefficients. It is important to
mention that by choosing conveniently the values of n, m and
τ0, eq 22 can yield several models found in literature (for
example, n = m, Heinz−Casson model;25 n = m = 1/2, Casson
model;20 m = 1/2, Mizrahi−Berk model;26 m = 1, Herschel−
Bulkley model;22 n = m = 1, Bingham model;21 m = 1 and τ0 =
0, Ostwald−de Waele model (i.e., power law);23 and n = m = 1
and τ0 = 0, Newtonian model). The consistency index is
transformed into the apparent viscosity at infinite rate of
deformation, that is K = η∞, when n = m.

2.4. Velocity Profile within the Film. Equations 21 and
22 can be simplified. First, bearing in mind that |γ ̇| can be

calculated through the second invariant of the rate of
deformation tensor:18

∑ ∑γ γ γ γ γ| ̇| = ̇ ̇ = ̇ ̇1
2

( : )
1
2 i j

ij ji
(23)

where γ ̇ = ∇̲v ̲ +(∇̲v)̲T and γi̇j = ∂vi/∂xj + ∂vj/∂xi.

At this time, a dimensional analysis is necessary to obtain a
convenient expression of eq 23. Taking into account that the
system can be described as a Cartesian 2D system, eq 23 can be
written as:19
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Using eqs 6−9 in eq 24:
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where |γ∼̇| = |γ ̇|/(U/hL).
Also, according to eq 16, the only component in τ that is

necessary to calculate is τyx. Therefore, considering that19

τ η= −
∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

v

x
v
yyx

y x

(26)

Using eqs 6−10 to nondimensionalize eq 26:
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where η̃ = η/ηref.
Considering that ε ≪ 1 and therefore ε2 ≪ 1, eqs 25 and 27

yield, respectively:
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Now, integrating eq 16:

τ ̃ ≅ ̃ +St y Cyx 1 (30)

Taking into account that the film will be surrounded at the top
by air and that ηair ≪ ηfilm, a feasible boundary condition will be
τỹx ≅ 0 in y ̃ ≅ h̃(x ̃), where h̃(x ̃) = h(x)/hL. Thus, eq 30 yields:

τ ̃ ≅ − ̃ − ̃St h y( )yx (31)

This equation predicts a linear profile of the shear stress
across the film with a slope that depends on the ratio between
gravitational and viscous forces. The nature of eq 31 shows that
it is independent of the type of the coating material (i.e.,
Newtonian, viscoelastic, etc.), and the maximum shear stress is
expected at the plate surface: (τỹx)max ≅ −St(h̃).
Now, using previous definitions, the dimensionless form of

eq 22 is

η
τ γ

γ
̃ =

̃ + ̃ | ̇|

| ̇|

∼

∼
K( )o

m m n m1/

(32)

where τ0̃ = τ0hL/(ηrefU) and K̃ = KUn/m−1/(ηref hL
n/m−1).

Equating the momentum balance (eq 31) with the
constitutive expression for the coating material (eqs 28, 29,
and 32) yields:
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Defining s = 1 − [St (h̃ − y)̃/τ0̃]
m and integrating eq 33:
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The integral in eq 34 can be solved using the definition of the
incomplete beta function B[s,a,b] through the Chevyshev
integral:32,33

∫= −− −B s a b s s s[ , , ] (1 ) da b1 1
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Additionally, eq 34 should be rearranged to obtain a convenient
form because the factor (−1)1/n can cause mathematical
problems that arise from negative numbers powered to real
numbers. Expressing eq 35 in terms of the Gauss hyper-
geometric function 2F1[a,b;c;s] using
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Then, using eqs 35 and 36 with the boundary condition vx̃ =
vx̃,y=̃0 = Up/U in y ̃ = 0, and taking into account that the velocity
profile can be considered as composed by two regions: τyx ≥ τ0
and τyx ≤ τ0 where the location of the transition is δ ̃ = h̃ − τ0/
(ρgxhL), eq 34 yields the following:
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2.5. Average Velocity Profile. The average velocity in the
thickness h can be estimated by

∫⟨ ⟩ =v
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Non-dimensionalizing eq 43 and taking into account the
separation of the velocity profile in two regions performed in
eqs 37 and 38 gives
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Replacing eqs 37 and 38 in eq 44:
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Equation 45 can be solved by combining the identities
presented by Abramowitz and Stegun32 and Weisstein34 into
the following expression:
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where −a ∉ .
Now, defining a new intermediate variable s = 1 −[Sτ0/(1 −

y/̃h̃)]m to transform the integral in eq 45 to the form of eq 46,
the expression for the volumetric flow rate yields
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In many practical situations involving fluid dynamics problems,
the ratio of the average to the maximum velocity is necessary.
This expression can be obtained from eqs 38 and 47. Therefore,
the ratio of the average velocity to the velocity in the film−air
interface (eq 38) is
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2.6. Estimation of the Volumetric Flow Rate Per Unit
of Width of the Film. The volumetric flow rate per unit of
width (Qz) is one of the main macroscopic parameters that can
be related to the rest of the local quantities (i.e., velocity,
pressure, etc.). Applying a mass balance on the film, Qz can be
estimated in dimensionless form as

̃ = ⟨ ̃ ⟩ ̃Q v hz x y (49)

where Q̃z = Qz/(UhL).
Thus, combining eqs 47 and 49:

̃ =
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In some cases, useful information can be obtained when the net
flux within the film is zero. That is, the mass of film that goes
upward is equal to the mass that is descending. This situation
can be obtained when the plate has a velocity Up > 0 and a
constant film thickness is expected.5 In this case, the

dimensionless plate velocity expressed as vx̃,y=̃0 can be related
to h̃ and the rest of the parameters by
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2.7. Estimation of the Film Thickness. The local
thickness of the film that is being drained from the plate can
be estimated using some of the above expressions. The
integration of eq 1 in the y axis can be made taking into account
the Leibniz integration rule35 and that (1) the process can be
represented by a 2D Cartesian coordinate system, (2) the
coating process can be fast enough to neglect any mass transfer
due to evaporation of volatile components of the film (i.e.,
water) through the film−air interface and thus a kinematic
boundary condition36 can be used, and (3) the film is
incompressible. The resulting equation in dimensionless form is

∂ ̃
∂ ̃ +
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≅h

t

v h

x

( )
0x y

(52)

where the quantity that is differentiated with respect to x ̃ is the
volumetric flow per unit of width.
Introducing eq 50 into eq 52 gives
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The derivative in eq 53 can be carried out by combining the
identities from Abramowitz and Stegun32 and Weisstein,34 that
is:

∂
∂

− + +
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(54)

Taking into account that h̃ = h̃(x ̃) and considering f(s) = 1 −
Sτ0
m, a = 1 + 1/n, and b = −(2/m + 1/n), eq 53 yields
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Equation 55 is the differential balance that describes the
dynamics of the film thickness over the plate. The solution of
eq 55 equation has the form:37

β̃ ≅ − ̃ − ̃ ̃ + ̃
τ

−
̃=x S S t v t h(1 ) ( )K

m n m n
x y

/ 1/
, 00 (56)

Taking into account that h̃(t,̃0) = 0, the effect of the term β(h̃)
is usually neglected (for long drainage times) or considered
zero.14,38−41 Thus, eq 56 yields

− − ̃
̃ + ̃ ≅τ

−
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⎝
⎞
⎠S S

x
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v(1 ) 0K
m n m n
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It is important to mention that when eq 57 is applied for x ̃ →
∞, the film thickness can be considered as nearly constant (an
example of this case is a substrate that is being withdrawn
constantly from a vessel containing the film-forming fluid5 and
the parameter β(h̃) is assumed as nonzero.42,43
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2.8. Estimation of the Average Thickness. The
uniformity of the film is one of the main properties to be
evaluated. This quantity can be estimated by the ratio of the
average thickness to the local thickness.40 The average
dimensionless film thickness at a distance x ̃ is defined by

∫⟨ ⟩̃ =
̃

̃ ̃
̃

h
x

h x
1

dx

x

0 (58)

where ⟨h̃⟩x = ⟨h⟩x/hL.
To integrate eq 58 and solve the problem of the implicit

nature of eq 57 in terms of h̃, the method presented by
Gutfinger and Tallmadge40 will be used. Differentiating eq 57
with respect to dx ̃:
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and using eqs 56 and 59 in eq 58 gives
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A change of variable is necessary to solve eq 60. Defining s = 1
− Sτ0

m and ds = Sτ0
m(m/h̃) dh̃, leads to
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Using eqs 35 and 36 and taking into account only the positive
real roots of eq 57, finally eq 61 yields
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2.9. Estimation of the Force Required to Withdraw
the Plate. An interesting industrial parameter is the force
required to withdraw the plate carrying the film of fluid. In this
case, the total force (Ftotal) can be estimated by

= +F F Ftotal plate film (63)

where Fplate is the force related to the plate mass [N] and Ffilm is
the force related to the film on the plate [N].
The forces in eq 63 can be estimated by

ρ=F eWL g2 xplate p (64)

∫ τ=F A( ) d
A

yxfilm max (65)

where e is the half thickness of the plate [m], W is the width of
the plate [m], and ρp is the density of the plate [kg m

−3]. Using
eq 31 evaluated on the plate surface (in dimensional form) and
taking into account the dimensional form of eq 58, the total
force can be estimated by

ρ ρ≅ + ⟨ ⟩F g WL e h2 ( )x xtotal p (66)

2.10. Application to Quasi-vertical Systems. The model
developed in this work can be used for systems with a certain
inclination of the axis along g ̲ is acting. This can be done using
the expression:

θ= | |g g cos( )x (67)

where |g|̲ is the magnitude of g ̲ [m s−2] and θ is the angle
between the axis of the plate and the axis of g ̲ [deg]. It is
important to mention that if another force is acting in the
system, g ̲ should be changed accordingly.

3. RESULTS AND DISCUSSION
3.1. Theoretical Validity of the Model. As stated in

section 2.2, ηref and U should be defined. The basic criterion
that was used to select the way to define those quantities is that
they should be representative and easy to estimate for a given
system.
In the first case, and taking into account eqs 22 and 33, ηref is

a function of the position. Furthermore, because the maximum
gradient is found at the end of the plate (that is, x = L and y =
0), ηref is defined as
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Using the dimensional form of eq 33 in eq 68:
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Using eq 69 gives the expression for the Reynolds number as
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This expression is consistent with the idea of the existence of
flow (i.e., Re > 0) if ρgxhL > τ0.
In the second case, the characteristic velocity can be related

to the stage of the process that is being studied. In the lifting or
withdrawal (when the plate is withdrawn from the container of
the film-forming fluid) the plate velocity is Up > 0 and U can be
defined as U = Up. On the other hand, in the removing or
draining the velocity of the plate cannot be used and the
conditions at x = L are conveniently used to yield U = QzhL

−1.
Using eq 70 in eq 19 and taking into account the definition

of Fr, Sτ0 and SK, the second condition of section 2.2 yields

ε ε= − ≪τ
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m n
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where Sτ0,L = τ0(ρgxhL)
−1 and SK,L = K(UhL

−1)n/m(ρgxhL)
−1.

Then, eq 71 can be rearranged as
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On the other hand, using the definitions of Sτ0,L and SK,L in eq
20 gives
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Conservatively assuming that O(1) ≅ 0.5 to 5, combining eqs
18 and 19 to obtain Re < 1, and that ε≪ 1 can be regarded as ε
< 0.1 allows eqs 72 and 73 to be written as
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Figure 2 shows the region of validity of the model based on eqs
74 and 75. It is worth mentioning that the region represents the
sufficient conditions for the model proposed.

3.2. Dimensional Forms of the Main Variables for
Rheological Models Studied. In previous sections, the
model was presented in a dimensionless form, which is useful
to analyze the physics of each equation. It is important to
mention that the expressions obtained in this work can be
simplified. These cases can be arranged taking into account the
rheological models that can be derived from eq 22. Table
1−Table 8 present (in dimensional form) the expressions for
velocity, average velocity, flow rate, local thickness, and average
thickness for the following cases: (1) Generalized Herschel−
Bulkley (Table 1), (2) Heinz−Casson (Table 2), (3) Casson
(Table 3), (4) Herschel−Bulkley (Table 4), (5) Mizrahi−Berk
(Table 5), (6) Ostwald−de Waele (Table 6), (7) Bingham
(Table 7), and (8) Newtonian (Table 8). Some of the
expressions presented in those tables are used in Part 227 to
validate and analyze the developed model.
The simplifications were made by taking into account that in

cases where m is an integer (for example: m = 1) or m = 1/2, the
function 2F1[a,b;c;s] can be simplified by using the symmetry
property of 2F1[a,b;c;s]

34
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where k ∈  and Γ(s) is the gamma function of s.44

Also, in cases where τ0 = 0 (i.e., Sτ0 = 0), the Gauss
hypergeometric function can be simplified by using the
following identity:34

= Γ Γ − −
Γ − Γ −

F a b c
c c a b
c a c b

[ , ; ; 1]
( ) ( )
( ) ( )2 1 (78)

where c − a − b > 0.
Finally, a useful property of the gamma function is44

Γ + = Γs s s( 1) ( ) (79)

Table 1. Dimensional Forms of Velocity, Average
Velocity, Flow Rate, Local Thickness and Average
Thickness for the Generalized Herschel−Bulkley Case:
η = (τ0
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Figure 2. Region related to the sufficient conditions for the theoretical
validity of the model.
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Table 2. Dimensional Forms of Velocity, Average Velocity,
Flow Rate, Local Thickness and Average Thickness for the
Heinz−Casson Case: η = (τ0

m| γ |̇−m + η∞
m )1/m
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For y > δ:
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Table 3. Dimensional Forms of Velocity, Average
Velocity, Flow Rate, Local Thickness and Average
Thickness for the Casson Case: η = (τ0
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Table 4. Dimensional Forms of Velocity, Average
Velocity, Flow Rate, Local Thickness, and Average
Thickness for the Herschel−Bulkley Case: η = (τ0| γ |̇−1
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Table 5. Dimensional Forms of Velocity, Average
Velocity, Flow Rate, Local Thickness and Average
Thickness for the Mizrahi−Berk Case: η = (τ0

1/2| γ |̇−1/2 +
K1/2| γ |̇n−1/2)2

For 0 ≤ y ≤ δ:

ρ
≅

+
−

+
+ − − −

+
+ − −

τ

τ τ

τ

+ +

+

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎧
⎨⎪
⎩⎪

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥⎥

⎡
⎣⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥⎥
⎫
⎬⎪
⎭⎪

v
n

n

g

K
h S

n
n

S
y
h

S

n
n

S
y
h

U

2
(2 1)

(1 )

( 1)
1 1

( 1)
1

x
x

n
n n

n

1/(2 )
1/(2 ) 1 1/2 1/ 1

1/2
1/2

1/2
1/ 1

1/2
1/2

p

0

0 0

0

(104)

For y > δ:
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Table 6. Dimensional Forms of Velocity, Average
Velocity, Flow Rate, Local Thickness and Average
Thickness for the Ostwald−de Waele Case: η = K| γ |̇n−1
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Table 7. Dimensional Forms of Velocity, Average
Velocity, Flow Rate, Local Thickness and Average
Thickness for the Bingham Case: η = τ0| γ |̇−1 + η∞
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Table 8. Dimensional Forms of Velocity, Average
Velocity, Flow Rate, Local Thickness and Average
Thickness for the Newtonian Case: η = μ
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It is important to note that, as a first validation step, some few
expressions presented in Table 3 and Table 5−Table 8, can be
rearranged to reproduce expressions found in the literature for
a given rheological model and the stage of a dip-coating process
studied (i.e., withdrawal, draining, etc.).10,14,19,38−40

Finally, a quantity that could be useful in some studies is the
ratio of the average velocity to the velocity in the film−air
interface when Up = 0 (i.e., the velocity for y ≥ δ, vx̃,y≥̃δ̃). A list
of simplified expressions of this ratio is presented in Table
Table 9.
Table 9. Ratio of Average Velocity to the Velocity in

the Film−Air Interface: Up = 0
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4. CONCLUSIONS
An analytical and simple mathematical model relating the main
parameters in a dip-coating process using a generalized
Newtonian fluid was proposed. This model has been obtained
based upon rigorous mass and momentum balances applied to
a monophasic and non-evaporative system, where the main
forces are viscous and gravitational. The phenomena occur far
away from the meniscus that is formed at the surface of the
fluid−forming reservoir. It is worth mentioning that the work
carried out in this study and the generalized nature of the
model allowed finding the analytical solutions (i.e. mainly film
thickness) for dip-coating processes using rheological models
such as Heinz−Casson, Casson, Mizrahi−Berk, and partially
Herschel−Bulkley, and Bingham. The parameters that can be
estimated are velocity profile (eqs 37 and 38), average velocity
(eq 47), flow rate (eq 50), local thickness (eq 57), average
thickness (eq 62) of the coating film, and the total force
required to withdraw the substrate with the film (eq 66).
Finally, the sufficient conditions for the model were obtained.
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Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie500407t | Ind. Eng. Chem. Res. 2014, 53, 6521−65326530

mailto:jmperalta@intec.unl.edu.ar


■ NOMENCLATURE

B[s,a,b] = incomplete beta function
C = concentration, kg m−3

Ca = capillary number (ηUσ−1)
ei̲ = unit vector in the ith direction
e = half thickness of the plate, m
F̲e = external forces vector, N m−3

Ffilm = force related to the film on the plate, N
Fplate = force related to the plate mass, N
Ftotal = total force, N
2F1[a,b;c;s] = Gauss hypergeometric function
Fr = Froude number (U2gx

−1hL
−1)

g ̲ = gravity acceleration vector, m s−2

g = gravity acceleration component, m s−2

|g|̲ = magnitude of g ̲ (9.81), m s−2

h = local thickness of the film, m
hL = h evaluated at L, m
K = consistency index used in eq 22, Pa sn/m

L = length of the plate, m
m = second behavior index used in eq 22
n = first behavior index used in eq 22
 = natural numbers
p = pressure, Pa
Qz = flow rate per unit width, m2 s−1

Re = Reynolds number (ρUhLηref
−1)

SK = ratio of the viscous stress to the maximum stress
Sτ0 = ratio of the yield stress to the maximum stress
St = Stokes number (ρgxhL

2ηref
−1U−1)

s = dummy variable
T = temperature, K
t = time, s
U = reference velocity for the x direction, m s−1

Up = velocity of the plate, m s−1

V = reference velocity for the y direction, m s−1

v ̲ = velocity vector, m s−1

v = velocity component, m s−1

W = width of the plate, m
x ̲ = position vector, m
x,y,z = Cartesian coordinates

Greek Symbols
Γ[s] = gamma function
γ ̇ = rate of deformation tensor, s−1

|γ ̇| = magnitude or second invariant of γ ̇, s−1

δ = position of the viscous to solidlike behavior transition, m
ε = dimensionless ratio (hLL

−1)
η = apparent viscosity, Pa s
θ = angle between the axis of the plate and the axis of g,̲ deg
ρ = density, kg m−3

ρp = density of the plate, kg m−3

σ = surface tension coefficient, N m−1

τ = shear stress tensor, Pa
τij = shear stress component acting in jth direction on a plane
with a normal vector acting in ith direction, Pa
τ0 = yield stress coefficient used in eq 22, Pa
ψ = function defined by eq 39

Subscripts
ref = reference state
x = in x direction
y = in y direction
z = in z direction
∞ = at infinite rate of deformation

Special Symbols
⟨ ⟩i = averaged quantity in the ith direction
□̃ = dimensionless quantity
O() = “of the order of”
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