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Abstract In this work we study the existence of invariant almost complex
structures on real flag manifolds associated to split real forms of complex
simple Lie algebras. We show that, contrary to the complex case where the
invariant almost complex structures are well known, some real flag manifolds
do not admit such structures. We check which invariant almost complex struc-
tures are integrable and prove that only some flag manifolds of the Lie algebra
Cl admit complex structures.
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1 Introduction

A flag manifold of a non compact semisimple Lie algebra g, is a quotient
space FΘ = G/PΘ, where G is a connected group with Lie algebra g and
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PΘ is a parabolic subgroup. If K ⊂ G is a maximal compact subgroup and
KΘ = K ∩ PΘ, then the flag FΘ can be written in the form FΘ = K/KΘ.

In this work, we study the existence and integrability of invariant almost
complex structures on real flag manifolds FΘ in the case that g is a split
real form of a complex simple Lie algebra. Our goal is to make an exhaustive
investigation of the real flag manifolds FΘ that admit K-invariant almost com-
plex structures and to verify their integrability, that is, when they are indeed
complex structures.

The invariant geometry of complex flag manifolds has been extensively
studied. Regarding invariant geometry of complex flag manifolds, the literature
is exhaustive and goes back to Borel [2] and Wolf-Gray [22], [21]. Recent works
are [1], [13], [3], [4], [14], [19], [20], [7], [9], [5] and [1].

For real flag manifolds the literature is much more sparse. There is no
systematic treatment of the invariant geometric structures on these flag mani-
folds. An attempt to fill this gap was made recently by Patrão and San Martin
[15] who provide a detailed analysis of the isotropy representations for the flag
manifolds of the split real forms of the complex simple Lie algebras.

In this paper we rely on the results of [15] to build (or to prove the non-
existence of) K-invariant almost complex structures on the real flag manifolds.
The conclusion is that only a few flag manifolds (associated to split real forms)
admit K-invariant almost complex structures. In this sense we obtain the
following result.

Theorem 1 A real flag manifold FΘ = K/KΘ admits a K-invariant almost
complex structure structure if and only if it is a maximal flag of type A3, B2,
G2, Cl for l even or Dl for l ≥ 4, or if it is one of the following intermediate
flags:

– of type B3 and Θ = {λ1 − λ2, λ2 − λ3};
– of type Cl with Θ = {λd − λd+1, . . . , λl−1 − λl, 2λl} for d > 1, d odd.
– of type Dl with l = 4 and Θ being one of: {λ1−λ2, λ3−λ4}, {λ1−λ2, λ3+
λ4}, {λ3 − λ4, λ3 + λ4}.

The next step is to check which of the existing almost complex structures
are integrable. By making computations with the Nijenhuis tensor we arrive
at the following result.

Theorem 2 A real flag manifold FΘ = K/KΘ admits K-invariant complex
structures if and only if it is of type Cl and Θ = {λd−λd+1, . . . , λl−1−λl, 2λl}
with d > 1, d odd.

These complex flag manifolds are realized as manifolds of flags
(V1 ⊂ · · · ⊂ Vk) of subspaces of R2l that are isotropic with respect to the stan-
dard symplectic form of R2l. Moreover FΘ is finitely covered by U(l)/U(l− d)
and the complex structures on FΘ can be lifted to this covering space.

To prove the results above we mainly use the isotropy decomposition of
TbΘFΘ, the tangent space of the flag a the origin bΘ. In [15] there are described
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the KΘ-invariant and irreducible components of this representation obtaining
a decomposition

TbΘFΘ = V1 ⊕ . . .⊕ Vk.

This decomposition is essential to find K-invariant geometries on FΘ. It is well
known that the compact isotropy group is a product KΘ =M(KΘ)0 whereM
is the isotropy of the maximal flag and (KΘ)0 the connected component of the
identity. An almost complex structure commutes with the isotropy representa-
tion of KΘ if and only if it commutes with the M and (KΘ)0 representations
on the tangent space. This allows us to split the proofs in two stages: study
M -invariance on the one hand, and the condition of commutativity with adX
for all X ∈ kΘ = Lie(KΘ), on the other hand.

A necessary and sufficient condition for a real flag to admit M -invariant
almost complex structures is that everyM -equivalence class on Π+ \〈Θ〉+ has
an even amount of elements. Two roots α and β lie in the sameM -equivalence
class if the representations of M on gα and gβ are equivalent. This condition
is necessary for FΘ to admit KΘ invariant almost complex structures, so by
inspection of these equivalence classes we discard many flags manifolds. For
the remaining cases we focus on the kΘ representation on TbΘFΘ. We should
remark that in all cases we give the almost complex structures explicitly, in a
constructive way. Integrability is proved by computing the Nijenhuis tensor.

It is worth stressing a main difference in the isotropy representation of
KΘ between the real case and the complex case. In the real flag, there are
cases where two KΘ-invariant and irreducible components are equivalent. In
the complex case this fact does not occur. Consequently, on the complex case,
the KΘ-invariant and irreducible components, in the isotropy representation
of FΘ, are invariant by almost complex structures. On the real flag, there are
cases where JVi = Vj , for Vi and Vj equivalent KΘ-invariant and irreducible
components.

This work is organized in the following manner. In Section 2 we fix nota-
tions and present the first results on existence of M -invariant complex struc-
tures. We give necessary and sufficient conditions for a flag manifold to admit
such structure. In the case of a maximal flag, that is Θ = ∅, this is all we need
to pursue our study since KΘ = M . Section 3 focuses in this case. Section 4
deals with intermediate flags, that is Θ 6= ∅. We only consider those intermedi-
ate flags verifying the necessary condition of Section 2. The full comprehension
of the isotropy representation of KΘ is needed, so we fully describe it for the
cases under study. The propositions in Sections 3 and 4 account to Theorems
1 and 2 above.

2 Notation and preliminary results

We refer to [17,11] for further developments of the concepts in this section.
We assume throughout the paper that g is the split real form of a complex
simple Lie algebra gC. If g = k⊕ a⊕ n is an Iwasawa decomposition then a is
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a Cartan subalgebra. Denote Π the set of roots of g associated to a. If α ∈ a∗

is a root then we write

gα = {X ∈ g : ad (H)X = α (H)X, H ∈ a}

for the corresponding root space, which is one-dimensional since g is split. Let
Π+ be a set of positive roots and Σ the corresponding positive simple roots.

The set of parabolic Lie subalgebras of g is parametrized by the subsets
of simple roots Σ. Given Θ ⊂ Σ, the corresponding parabolic subalgebra is
given by

pΘ = a⊕
∑
α∈Π+

gα ⊕
∑

α∈〈Θ〉−
gα = a⊕

∑
α∈〈Θ〉+∪〈Θ〉−

gα ⊕
∑

α∈Π+\〈Θ〉+
gα

where 〈Θ〉± is the set of positive/negative roots generated by Θ.
Denote byG the group of inner automorphisms of g, which is connected and

generated by exp ad(g) inside GL(g). Let K be the maximal compact subgroup
of G, then K is generated by ad(k). The standard parabolic subgroup PΘ of
G is the normalizer of pΘ in G. The associated flag manifold is defined by
FΘ = G/PΘ. The compact subgroup K acts transitively on FΘ so we obtain
FΘ = K/KΘ where KΘ = K ∩ PΘ. Fixing an origin bΘ in FΘ we identify the
tangent space TbΘFΘ with the nilpotent Lie algebra

n−Θ =
∑

α∈Π−\〈Θ〉−
gα.

In n−, the isotropy representation of KΘ on TbΘFΘ is just the adjoint
representation, since n−Θ is normalized by KΘ. The Lie algebra kΘ of KΘ is

kΘ =
∑

α∈〈Θ〉+∪〈Θ〉−
(gα ⊕ g−α) ∩ k.

Compactness of K implies that kΘ admits a reductive complement mΘ so that
k = kΘ⊕mΘ and TbΘFΘ is identified also with mΘ. The map Xα −→ Xα−X−α
for α ∈ Π−\ 〈Θ〉− is a KΘ invariant map from n−Θ to mΘ. Along the paper we
will call isotropy representation either the representation of KΘ on n−Θ or on
mΘ, without making any difference or special mention. In some cases we will
even use n+Θ instead of n−Θ.

Let M be the centralizer of a in K. Then KΘ = M · (KΘ)0 where (KΘ)0
is the connected component of the identity of KΘ. Thus M acts on TbΘFΘ by
restricting the isotropy representation of KΘ. The group M is finite and acts
on n−Θ leaving each root space gα invariant. Moreover if m ∈ M and X ∈ gα
then Ad(m)X = ±X. Two roots α and β are called M -equivalent, which we
will denote by α ∼M β, if the representations of M on the root spaces gα and
gβ are equivalent. The M -equivalence classes were described in [15].

When Θ = ∅, we drop all the sub indexes Θ. The associated flag manifold
is the maximal flag F = K/M and the tangent space at the origin b will be
identified with n−.
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Let U be a group of linear maps of the vector space V . A subspace W ⊂ U
is U -invariant if ux ∈W for all x ∈W and for all u ∈ U . A complex structure
on V is endomorphism J : V −→ V such that J2 = −1 and it is said to be
U -invariant if uJ = Ju for all u ∈ U . We shall prove two technical results.

Lemma 1 Let W ⊂ V be a U -invariant space. Then the following statements
are true:

1. JW is U -invariant as well.
2. W is irreducible if and only if JW is irreducible.
3. The representations of U on W and JW are equivalent.
4. If W is irreducible then either W ∩ JW = {0} or JW =W .
5. If dimW = 1 then W ∩ JW = {0}.

Proof Take u ∈ U and x ∈ W . Then, uJx = Jux ∈ JW showing that JW is
U -invariant.

Suppose that W is irreducible and let A ⊂ JW be a U -invariant subspace.
Then J−1A = JA ⊂ W is also U -invariant. Hence, JA = W or JA = {0},
which implies that A = JW or A = {0}. Thus JW is irreducible.

As J commutes with the elements of U , the map J :W → JW intertwines
the representations onW and JW so that they are equivalent. SinceW∩JW ⊂
W is U -invariant and W is irreducible we get item 4. Finally W ∩ JW = {0}
if dimW = 1 because the eigenvalues of J are ±i hence W is not invariant by
J .

Lemma 2 Let Wi, i = 1, 2 be U -invariant and irreducible subspaces of V such
that W1 ∩W2 = 0 and the representation of U on W1 is not equivalent to that
on W2. If V = W1 ⊕W2 ⊕W for some complementary subspace W and J is
a U -invariant complex structure, then Jw1 ∈W1 ⊕W for all w1 ∈W1.

Proof Consider P : V −→ W2 the projection map with respect to the de-
composition above. The map P ◦ J : W1 −→ W2 is U -invariant and bijective
if non-zero, since its domain and target spaces are irreducible. Thus it is an
equivalence between the representations of U , if non-zero. Therefore, P ◦J ≡ 0
and the result follows.

Under the hypothesis of the lemma above, in the particular case of V =W1⊕
W2 we have JWi =Wi, i = 1, 2.

From the general theory of invariant tensors on homogeneous manifolds
we know that K-invariant almost complex structures on the flag manifold
FΘ = K/KΘ are in one to one correspondence with KΘ-invariant complex
structures J : TbΘFΘ → TbΘFΘ. Recall that TbΘFΘ identifies with n−Θ (or mΘ)
and this identification preserves the KΘ representation. So K-invariant almost
complex structures on FΘ also correspond to KΘ-invariant complex structures
on n−Θ.

Let J : n−Θ −→ n−Θ be a complex structure and assume it is only M -
invariant. Since KΘ = M(KΘ)0 we have that J is also KΘ-invariant if and
only if J commutes with the elements in (KΘ)0, or equivalently, adX J = J adX
for all X ∈ kΘ (because of connectedness).
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Proposition 1 Let FΘ be a real flag manifold associated to a split real form.
Then a necessary and sufficient condition for the existence of a M -invariant
complex structure J : TbΘFΘ → TbΘFΘ is that the amount of elements in each
M -equivalence class [α] in Π− \ 〈Θ〉− is even.

In this case the M -invariant complex structures are given by direct sums of
invariant structures on the subspaces V[α] =

∑
β∼Mα gβ ⊂ n−Θ. In a subspace

V[α] the set of M -invariant structures is parametrized by Gl(d,R)/Gl(d/2,C),
where d = dimV[α].

Proof If α ∈ Π−\〈Θ〉− then gα ∈ n−Θ and dim gα = 1 (because g is a split real
form). The subspace Jgα ⊂ n−Θ is different of gα by 5. in Lemma 1 and the
representation ofM in Jgα is equivalent to the representation on gα. Lemma 2
implies that Jgα is contained in the subspace V[α] =

∑
β∼Mα gβ . Applying the

same argument to the roots β that areM -equivalent to α, we obtain JVα = Vα.
As J2 = −1, it follows that dimVα is even and, hence, the amount of roots
M -equivalent to α is even. This proves that the condition is necessary.

To see the sufficiency take a M -equivalent class [α] so that by assump-
tion the subspace V[α] =

∑
β∼Mα gβ is even dimensional. Given m ∈ M we

have Ad (m)X = ±X if X belongs to a root space X ∈ gβ . In this equal-
ity the sign does not change when β runs through a M -equivalence class. It
follows that Ad (m) = ±1 on V[α]. Hence any complex structure on V[α] is
M -invariant. Taking direct sums of complex structures on the several V[α] we
get M -invariant complex structures on TbΘFΘ ' n−Θ.

Finally the set of complex structures in a d-dimensional real space (d even)
is parametrized by Gl(d,R)/Gl(d/2,C).

We use the results in [15] to present in Table 1 all possible subsets Θ ⊂ Σ
for which the M -equivalence classes in Π− \ 〈Θ〉− have an even amount of
elements. Even though we do not give the explicit computations to construct
this table, we present theM -equivalence classes for some cases in the followings
sections.

Complex structures on FΘ which are invariant under K are induced by
KΘ-invariant complex structures on the tangent space and, in particular, are

Type Θ
A3 ∅
B2 ∅
B3 {λ1 − λ2, λ2 − λ3}
C4 ∅,{λ1 − λ2, λ3 − λ4},{λ3 − λ4, 2λ4}

Cl, l 6= 4 ∅ only for l even,
{λd − λd+1, · · · , λl−1 − λl, 2λl}, 1 < d ≤ l − 1, d odd, for all l

D4 ∅, {λ1 − λ2, λ3 − λ4}, {λ1 − λ2, λ3 + λ4},
{λ3 − λ4, λ3 + λ4}, {λ1 − λ2, λ2 − λ3, λ3 − λ4}

{λ1 − λ2, λ2 − λ3, λ3 + λ4}, {λ2 − λ3, λ3 − λ4, λ3 + λ4}
Dl, l ≥ 5 ∅, {λd − λd+1, · · · , λl−1 − λl, λl−1 + λl}, 1 < d ≤ l − 1.

G2 ∅

Table 1: M -equivalence classes in Π− \ 〈Θ〉− with even elements
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M -invariant. Hence Proposition 1 and a simple inspection of Table 1 give the
following result.

Proposition 2 Let FΘ be a real flag manifold associated to a split real form.
If FΘ admits a K-invariant almost complex structure, then Θ is in Table 1.

An invariant complex structure J : n−Θ −→ n−Θ induced is integrable if the
Nijenhuis tensor vanishes, that is if

NJ(X,Y ) := [JX, JY ]−[X,Y ]−J [JX, Y ]−J [X,JY ] = 0, for all X,Y ∈ n−Θ.

3 K-invariant complex structures on maximal flags

For a maximal flag manifold the isotropy subgroup KΘ is the centralizer of a
insideK, that is,KΘ =M . Hence Proposition 1 solves the question of existence
of almost complex structures, remaining only integrability to be solved. The
main result of this section is the following.

Proposition 3 The maximal real flag F associated to a split real form admits
a K-invariant almost complex structure if and only if F is of type A3, B2, G2,
Cl for even l and Dl for l ≥ 4. None of these structures is integrable.

Proof By Proposition 1, a maximal flag F admits an M -invariant almost com-
plex structure if and only if it appears in Table 1.

Recall that a M -invariant almost complex structure in F is given by an
endomorphism J : n− −→ n− which is a sum of almost complex structures
J[α] : V[α] −→ V[α], for α ∈ Π−. We address integrability of these structures
by fixing one of these J : n− −→ n− and we study case by case.

Notice that if V[α] is two dimensional with basis B, then the matrix of J[α]
in B is (

a −(1+a
2)

c
c −a

)
, with a, c ∈ R, c 6= 0. (1)

– Case A3. The M -equivalence classes of negative roots are:

{λ2 − λ1, λ4 − λ3}, {λ3 − λ1, λ4 − λ2} e {λ4 − λ1, λ3 − λ2}.

Thus for i = 2, 3, 4, dimV[λi−λ1] = 2 and it is spanned by {Ei1, Est} with
s > t, {s, t} ∩ {i, 1} = ∅ and {s, t} ∪ {i, 1} = {1, . . . , 4}; here Ejk is the
4× 4 matrix with 1 in the jk entry and zero elsewhere. For i = 2, 3, 4, let
ai, ci ∈ R such that J |V[λi−λ1]

in this basis has the following form(
ai
−(1+a2i )

ci
ci −ai

)
, ci 6= 0.

Explicit computations give

NJ(E21, E31) = (c3 − c2)c4E32 + (c2a3 − a2c3 + a4(c3 − c2))E41,

NJ(E21, E41) = c4(a3 − a2)E31 + c4(c2 + c3)E42.
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These two equations cannot be zero simultaneously since ci 6= 0. Thus the
Nijenhuis tensor does not vanish and J is not integrable.

– Case B2. The M -equivalence classes of negative roots are

{λ2 − λ1,−λ2 − λ1} e {−λ1,−λ2}.

Let X21, Y21, X1 and X2 be elements of a Weyl basis generating gλ2−λ1
,

g−λ2−λ1 , g−λ1 and g−λ2 , respectively. Thus J verifies

JX21 = a21X21 + c21Y21, JX1 = a1X1 + c1X2,
JY21 = −(1 + a221)X21/c21 − a21Y21, JX2 = −(1 + a21)X1/c1 − a1X2,

with c1, c21 6= 0.
Let m = mλ2−λ1,−λ2 6= 0 be the corresponding coefficient in the Weyl
basis, that is, [X21, X2] = mX1. Then

NJ(X21, X1) = [JX21, JX1]− [X21, X1]− J [X21, JX1]− J [JX21, X1]
= −mc21X2 +mc1(a21 − a1)X1

which is never zero since mc21 6= 0. Therefore J is not integrable.
– Case C4. The M -equivalence classes are:

{±λ2 − λ1,±λ4 − λ3}, {±λ3 − λ1,±λ4 − λ2}, {±λ4 − λ1,±λ3 − λ2},
{−2λi : i = 1, . . . , 4}.

Notice that dimV[2λ1] = dimV[λi−λ1] = 4 for i = 2, 3, 4. Let (aij)ij , (bij)ij ,
(cij)ij be the matrices corresponding to J |V[λ2−λ1]

, J |V[λ3−λ1]
, J |V[λ4−λ1]

respectively in a Weyl basis of n−.
Then NJ(X−λ2−λ1

, X−2λ2
) = 0 and NJ(X−λ4−λ3

, X−2λ4
) = 0 imply a12 =

a34 = 0 and moreover a214 + a224 6= 0 because otherwise X−λ4−λ3 would be
an eigenvector of J . Analogously we obtain b12 = b34 = c12 = c34 = 0 and
b214 + b224 6= 0, c214 + c224 6= 0.
With these conditions, NJ(X−λ2−λ1

, X−2λ4
) = 0 imply a32 = 0 and a42 6=

0. Similar computations give b32 = c32 = 0 and b42 6= 0, c42 6= 0. Now
J2 = −1 imply a14 = b14 = c14 = 0.
All this account toNJ(Xλ2−λ1 , X−λ3−λ1) = 0 andNJ(Xλ2−λ1 , X−λ4−λ1) =
0 only if, respectively, a31 = c42 and a31 = −c42. This clearly cannot hold
since c42 6= 0.

– Case Cl, l even and l ≥ 6. The M -equivalence classes are

{±λs − λi}, 1 ≤ i < s ≤ l, and {2λ1, . . . , 2λl}.

Let Xsi, Ysi and Xj be the generators of the roots spaces gλs−λi , g−λs−λi
and g−2λj , respectively, corresponding to a Weyl basis. In this case we have
dimV[λs−λi] = 2 while dimV[2λ1] = l, even. Thus JX1 =

∑l
j=1 bjXj and

for s = 1, . . . , l we have

JXs1 = as1Xs1 + cs1Ys1, JYs1 = − (1 + a2s1)

cs1
Xs1 − as1Ys1, cs1 6= 0.
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We compute the Nijenhuis tensor on the vectors X1 and Xs1, for s =
2, . . . , l. Denote m = mλs−λ1,−2λs 6= 0, then we get

NJ(Xs1, X1) = [JXs1, JX1]− [Xs1, X1]− J [Xs1, JX1]− J [JXs1, X1]

= [as1Xs1 + cs1Ys1,

l∑
j=1

bjXj ]− bsmJYs1

= as1bsmYs1 − bsm(− (1 + a2s1)

cs1
Xs1 − as1Ys1)

= bsm
(1 + a2s1)

cs1
Xs1 + as1(bsm+ 1)Ys1.

Hence NJ(Xs1, X1) = 0 if and only if bsm = 0. Thus J integrable implies
bs = 0 for s = 2, . . . , l. and therefore JX1 = b1X1, which contradicts the
fact that J2 = −1. Thus J is not integrable.

– Case D4. The M -equivalence classes are

{±λ2 − λ1,±λ4 − λ3}, {±λ3 − λ1,±λ4 − λ1}, {±λ4 − λ1,±λ3 − λ2}.

Clearly, dimV[λi−λ1] = 4 for i = 2, 3, 4. We proceed as in the C4 case. Let
(aij)ij , (bij)ij , (cij)ij be the matrices corresponding to J |V[λ2−λ1]

, J |V[λ3−λ1]
,

J |V[λ4−λ1]
, respectively, in a Weyl basis of n−.

By imposing NJ(Xγ , Xδ) = 0 for γ ∈ [λ3−λ1] and δ ∈ [λ4−λ1] we obtain
that the matrix of J |V[λ4−λ1]

in the Weyl basis is
−b44 −b34 b24 b14
−b43 −b33 b23 b13
b42 b32 −b22 −b12
b41 b31 −b21 −b11

 .

With this, NJ(Xλ2−λ1
, X−λ4−λ1

) = 0, NJ(X−λ4−λ3
, X−λ3−λ1

) = 0 and
NJ(Xλ4−λ3

, X−λ3−λ1
) = 0 imply b12b32 = 0, b12b42 = 0 and b32b42 = 0.

But we know that a212+a232+a242 6= 0 since X−λ2−λ1
is not an eigenvector.

So we conclude that only one of b12, b32, b42 is not zero. In each of the three
cases we obtain a12 = a32 = a42 = 0 if NJ vanishes, which cannot happen
since X−λ2−λ1

is not an eigenvector of J .
– Case Dl, l ≥ 5. The M -equivalence classes are:

{±λj − λi}, 1 ≤ i < j ≤ l.

For 1 ≤ i < j ≤ l, we have dimV[λj−λi] = 2; let Xij be a generator of
gλi−λj and let Yij be a generator of gλi+λj . Thus V[λj−λi] is spanned by
{Xij , Yij} and J in this basis has a matrix of the form(

aij
−(1+a2ij)

cij

cij −aij

)
, where cij 6= 0.
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Conditions NJ(X13, X23) = 0 and NJ(X12, X23) = 0 imply

mλ1−λ2,λ2+λ3

mλ1−λ2,λ2−λ3

=
c13
c23

= −mλ1−λ3,λ2+λ3

mλ1+λ3,λ2−λ3

. (2)

Now using Jacobi identity, we have

0 = [Y23, [X12, X23]]− [[Y23, X12], X23]− [X12, [Y23, X23]]
= mλ1−λ2,λ2−λ3

[Y23, X13] +mλ2+λ3,λ1−λ2
[X23, Y13]

= (mλ1−λ2,λ2−λ3
mλ2+λ3,λ1−λ3

+mλ2+λ3,λ1−λ2
mλ2−λ3,λ1+λ3

)Y12.

Thus

mλ1−λ2,λ2−λ3
mλ2+λ3,λ1−λ3

= −mλ2+λ3,λ1−λ2
mλ2−λ3,λ1+λ3

= −mλ1−λ2,λ2+λ3
mλ1+λ3,λ2−λ3

,

and therefore
mλ1−λ2,λ2+λ3

mλ1−λ2,λ2−λ3

=
mλ1−λ3,λ2+λ3

mλ1+λ3,λ2−λ3

. (3)

This equation clearly contradicts (2) and hence J is not integrable.
– Case G2. The M -equivalence classes are

{−λ1,−2λ2 − λ1}, {−λ2 − λ1,−3λ2 − λ1}, {−λ2,−3λ2 − 2λ1}.

For (i, j) ∈ {(1, 0), (0, 1), (1, 1)}, dimV[−iλ1−jλ2] = 2. In a Weyl basis of n−
we have that the matrix of J |V[−iλ1−jλ2]

has the form

(
aij

−(1+a2ij)
cij

cij −aij

)
, where cij 6= 0.

Denote m = m−(λ1+λ2),−λ2
then

NJ(X−λ1−λ2
, X−λ2

) = m(a11a01 − 1)X−λ1−2λ2
−m(a11 + a01)JX−λ1−2λ2

= m ((a11a01 − 1) + a10(a11 + a01))X−λ1−2λ2

+m(a11 + a01)
1 + a210
c10

X−λ1
.

Thus

NJ(X−λ1−λ2
, X−λ2

) = 0 ⇔ a01 = −a11 and a11a01 = 1,

and J is not integrable.
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4 K-Invariant complex structures on intermediate flags

In this section we study existence of invariant almost complex structures on
intermediate flags FΘ, and their integrability. We obtain the classification of
the flags admitting K-invariant complex structures, only some of type Cl do,
and also we describe the complex structures explicitly.

Proposition 2 states that if FΘ = K/KΘ with Θ 6= ∅ admits a K-invariant
almost complex structure, then FΘ is one of the following:

– of type B3 and Θ = {λ1 − λ2, λ2 − λ3};
– of type Cl with l = 4 and Θ = {λ1 − λ2, λ3 − λ4} or Θ = {λ3 − λ4, 2λ4};

or l 6= 4 and Θ = {λd − λd+1, . . . , λl−1 − λl, 2λl} for d > 1, d odd.
– of type Dl with l = 4 and Θ being one of: {λ1−λ2, λ3−λ4}, {λ1−λ2, λ3+
λ4}, {λ3−λ4, λ3+λ4}, {λ1−λ2, λ2−λ3, λ3−λ4}, {λ1−λ2, λ2−λ3, λ3+λ4},
{λ2−λ3, λ3−λ4, λ3+λ4}; or l ≥ 5 and Θ = {λd−λd+1, · · · , λl−1−λl, λl−1+
λl} for 1 < d ≤ l − 1.

We analyse the cases B, C and D separately in the next subsections. We
need to treat them separately since the isotropy representations differ signif-
icantly. In the three cases we start by imposing necessary conditions for the
flag to admit an invariant complex structure, which we shall describe in the
next paragraph. We obtain that only in few cases one can obtain that type of
structure.

Recall that K-invariant almost complex structures on FΘ are in one to one
correspondence with KΘ-invariant maps J : n−Θ −→ n−Θ such that J2 = −1.

Assume J : n−Θ −→ n−Θ is KΘ-invariant and J2 = −1. Then J is necessarily
M -invariant since M ⊂ KΘ =M(KΘ)0, hence by Proposition 1 we have

JV[α] = V[α] for each α ∈ Π−\ 〈Θ〉
−
. (4)

In addition, J is also (KΘ)0 invariant and therefore

adX J = J adX for all X ∈ kΘ. (5)

Assume n−Θ = W1 ⊕ · · · ⊕ Ws is a decomposition on KΘ-invariant and
irreducible subspaces. If the representation on Wi is not equivalent to the
representation on any other Wj , j 6= i then JWi = Wi because of Lemma
2. Notice that if this is the case Wi is even dimensional. To the contrary, if
JWi =Wj for some i 6= j, then the KΘ representation on these subspaces are
equivalent, and J gives such an equivalence.

To address the non-existence of almost complex structures, we prove that
some of the necessary conditions above cannot hold simultaneously. For the
cases where an invariant almost complex structure does exist, we use these
necessary conditions to build them explicitly. Notice that, for instance, if
J : n−Θ −→ n−Θ with J2 = −1 satisfying (4) and (5) is KΘ invariant.

We remark that the conditions related to the KΘ and kΘ representation
on n−Θ are dealt with through a description of g as a matrix Lie algebra.
Integrability of the almost complex structure is established by computing the
Nijenhuis tensor, as in the maximal flag case.
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4.1 Flags of B3 = so(3, 4).

The set of simple roots is Σ = {λ1 − λ2, λ2 − λ3, λ3}, and we take Θ =
{λ1 − λ2, λ2 − λ3} obtaining 〈Θ〉 = ±{λ1 − λ2, λ2 − λ3, λ1 − λ3}. Notice that
the flag is a six dimensional manifold. The M -equivalence classes outside of
Θ are: {λ1 + λ2, λ3}, {λ1 + λ3, λ2} and {λ2 + λ3, λ1}. The compact subgroup
(KΘ)0 is isomorphic to SO(3).

We consider the realization of B3 = so(3, 4) in real matrices of the type

 0 β γ
−γT A B
−βT C −AT

 ,

with A,B,C are 3×3 matrices, β, γ 1×3 matrices and B+BT = C+CT = 0.
Then, (KΘ)0 (respectively M) is given by matrices of the form

 1 0 0
0 g 0
0 0 g

 ,

with g ∈ SO(3) (respectively g diagonal with entries ±1 and an even amount
of −1 entries). The root space corresponding to the short root λ1 is given by
matrices where the components A,B,C and β vanish and γ is a multiple of
e1 = (1, 0, 0). The same holds for the roots λ2 and λ3 with e2 = (0, 1, 0) and
e3 = (0, 0, 1), respectively. The root spaces corresponding to λi + λj have B
as unique non-vanishing component and it has the following form, depending
on the long root:

λ1 + λ2 : B =

0 −1 0
1 0 0
0 0 0

 λ1 + λ3 : B =

 0 0 −1
0 0 0
1 0 0


λ2 + λ3 : B =

 0 0 0
0 0 −1
0 1 0

 .

The subspaces Vc =
∑
i gλi and Vl =

∑
i,j gλi+λj are both invariant sub-

spaces under the adjoint representation of KΘ = M · SO(3). The represen-
tation of the SO (3) on Vc is isomorphic to canonical representation on R3,
while the representation on Vl is the adjoint representation. These two rep-
resentations of SO(3) are isomorphic. In fact, an isomorphism is constructed
via the identification of R3 with the imaginary quaternions H: if p, q ∈ H then
ad(q)p = [q, p] ∈ Im H and ad(q) ∈ so(3) that commutes with the representa-
tions of the SO(3). This isomorphism also commutes with the representations
of M . Indeed, considering the basis {e1, e2, e3} = {i, j, k} ∈ R3 = Im H, we
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have

ad(i) =

0 0 0
0 0 −2
0 2 0

 , ad(j) =

 0 0 2
0 0 0
−2 0 0


and ad(k) =

 0 −2 0
2 0 0
0 0 0

 .

The isomorphism P : Vc → Vl takes the root spaces gλ1
, gλ2

and gλ3
to the

root spaces gλ2+λ3 , gλ1+λ3 and gλ1+λ2 , respectively. In addition, it commutes
with the representation of (KΘ)0 and with the representations ofM . Therefore,
P : Vc → Vl commutes with the representation of KΘ.

Proposition 4 The flag manifold FΘ of B3 with Θ = {λ1 − λ2, λ2 − λ3}
admits K-invariant almost complex structures and each of them is given by Ja
for some a 6= 0 where Ja : n+Θ −→ n+Θ is defined by

Ja(X) = aP (X) if X ∈ Vc, Ja(X) = −a−1P−1(X) if X ∈ Vl.

These structures are not integrable.

Proof We have n+Θ = Vc⊕Vl asKΘ-invariant irreducible subspaces and because
of the reasoning above, Ja is indeed invariant by KΘ. Thus, there is a one-
parameter family of invariant almost complex structures on FΘ.

Furthermore, a KΘ-invariant complex structure J on n+Θ is of this form. In
fact, any KΘ-invariant complex structure J : n+Θ −→ n+Θ interchanges Vc with
Vl by 4. in Lemma 1, since these are irreducible odd dimensional subspaces.
Moreover the subspaces gλ1+λ2

⊕gλ3
, gλ1+λ3

⊕gλ2
, gλ2+λ3

⊕gλ1
are J-invariant

because of (4). The fact that adX J = J adX for all X ∈ kΘ implies that J is
actually a multiple of P .

These structures are never integrable. In fact, [Vc, Vc] = Vl and [Vl, n
+
Θ] = 0.

Thus, for X,Y ∈ Vc we have JaX, JaY ∈ Vl and therefore NJa(X,Y ) =
−[X,Y ]. Hence NJ never vanishes.

Remark 1 This flag FΘ of type B3 and Θ = {λ1−λ2, λ2−λ3} is the Grassman-
nian of three dimensional isotropic subspaces of R7, that is, three dimension
subspaces in which the quadratic form matrix 1 0 0

0 0 13×3
0 13×3 0


vanishes. The proposition above gives a family of K-invariant almost complex
structures on this flag which is parametrized by R\{0}.
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4.2 Flags of Cl = sp(l,R)

The set of simple roots is Σ = {λ1 − λ2, . . . , λl−1 − λl, 2λl}. For the analysis
of these flags, we separate the case l = 4 where the M -equivalence classes are
different from the general case.

4.2.1 Case Cl, l 6= 4

Assume l 6= 4 and let Θ = {λd+1−λd+2, . . . , λl−1−λl, 2λl} with d ∈ {0, · · · , l}
and d even. Notice that Θ gives a Dynkin sub diagram Cp of Cl with p = l−d,
thus kΘ is the maximal compact subalgebra of sp(p,R), that is, kΘ ' u(p).

The M -equivalence classes in Π+\ 〈Θ〉+ are

{λi − λj , λi + λj}, 1 ≤ i ≤ d, i < j ≤ l, and {2λ1, . . . , 2λd}.

For each positive root α denote tα = (gα ⊕ g−α)∩ k. Then k = kΘ ⊕mΘ where
kΘ is the vector space sum of tα where α runs in 〈Θ〉+ and

mΘ =
∑

1≤i≤d,i<j≤l

tλi−λj ⊕ t2λ1
⊕ · · · ⊕ t2λd

is a reductive complement of kΘ.
The invariant and irreducible subspaces of mΘ by the KΘ action were

described in [15, Section 5.3] and we present them below. Define

R = {λi ± λj : 1 ≤ i < j ≤ d} ∪ {2λi : 1 ≤ i ≤ d}.
Πi = {λi ± λj : d+ 1 ≤ j ≤ l}, i = 1 . . . , d,

and let WR =
∑
α∈R kα and Wi =

∑
α∈Πi kα, i = 1, . . . , d. We have

mΘ =WR ⊕
d∑
i=1

Wi (6)

and the subspaces above are M -invariant.
If α ∈ R and β ∈ Θ, then ±α ± β is never a root so [Y,X] = 0 for any

Y ∈ kΘ and X ∈ WR. Thus Ad(g)X = X for any g ∈ (KΘ)0, since (KΘ)0 is
connected, and therefore WR is invariant by Ad(KΘ).

Each subspace Wi is KΘ invariant and is irreducible subspace and the
respective representations are not equivalent if i 6= j (see [15, Lemma 5.11]).
We make use of the following isomorphism between the compact algebra k and
u(l) given by (

A −B
B A

)
7−→ A+ iB, A+AT = B −BT = 0.

The isomorphism takes kΘ in the algebra of anti-hermitian matrices of the
form

kΘ :

(
0 0
0 X

)
, (7)
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being X a p×p matrix. Moreover WR corresponds to the matrices of the form

WR :

(
∗ 0
0 0

)
,

with d× d upper left block, while the subspace W =
∑d
i=1Wi corresponds to

W :

(
0 −CT

C 0

)
, (8)

where C is d × p. A subspace Wj is given by those matrices C having non
vanishing entries in column j. The representation of kΘ in W is given by the
adjoint action: [(

0 0
0 X

)
,

(
0 −CT

C 0

)]
=

(
0 C

T
X

XC 0

)
.

Thus C having non-vanishing entries on column j implies that the same occurs
for XC. So the subspaces Wj are, in fact, invariant.

The image of kλj−λk in u(l) through the isomorphism is generated by the
real anti-symmetric matrix Ajk = Ejk − Ekj , while the image of kλj+λk is
generated by the imaginary symmetric matrix Sjk = i(Ejk + Ekj).

Lemma 3 1. An almost complex structure J : mΘ −→ mΘ is M -invariant if
and only if J leaves invariant each subspace kλi−λj ⊕ kλi+λj and
k2λ1
⊕ · · · ⊕ k2λd .

2. An M -invariant almost complex structure J is KΘ-invariant if and only if
for each j = 1, . . . , d there is some εj = ±1 such that JAkj = εjSkj and
JSkj = −εjAkj for all d < k ≤ l.

Proof Let J : mΘ −→ mΘ be an isomorphism such that J2 = −1. From
Proposition 1 and taking into account the M -equivalence classes given above
we have that J is M -invariant if and only if it preserves each kλi−λj ⊕ kλi+λj
and k2λ1

⊕ · · · ⊕ k2λd .
Now assume J isM -invariant, then J isKΘ-invariant if and only if adY J =

J adY for all Y ∈ kΘ.
Notice that J preserves each Wi and WR in (6). Since [X,Y ] = 0 for all

Y ∈ kΘ, X ∈WR we see that J |WR
is KΘ-invariant. Recall that Wi is spanned

by Aji, Sji with d+ 1 ≤ j ≤ l.
Let Y ∈ kΘ be as in (7) with X imaginary diagonal matrix, i.e., X =

diag(ia1, . . . , iam). We have ad(Y )Akj = ajSkj and ad(Y )Skj = −ajAkj for
some aj ∈ R. That is, kλj−λk ⊕ kλj+λk is invariant by ad(Y ) and the matrix of
ad(Y ) in the basis {Akj , Skj} is (

0 −aj
aj 0

)
. (9)
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If we denote Jkj the restriction of J to kλj−λk ⊕ kλj+λk , for k > j we see
that Jkj commutes with ad(Y ) only when its matrix in the basis {Akj , Skj} is

Jkj = εkj

(
0 −1
1 0

)
with εkj = ±1. (10)

Fix j ∈ {1, . . . , d} and let l ≥ s, t ≥ d+1, consider Z be as in Eq. (7) with
X = Ets − Est and let D be as in Eq. (8) with C = Esj . Then

ad(Z)D =

(
0 −XCT

XC 0

)
, with XC = Etj .

This implies that that ad(Z)Asj = Atj and ad(Z)Ssj = Stj . Recall that J in
the basis restricted to kλj−λk ⊕ kλj+λk has a matrix of the form in Eq. (10) in
the appropriate basis. In order J to commute with ad(Z) above, we need

εtjStj = JAtj = J ad(Z)Asj = ad(Z)JAsj = ad(Z)εsjSsj = εsjStj .

Thus εsj = εtj for all l ≥ s, t ≥ d + 1, and we define εj this value. We have
then JAkj = εjSkj and JSkj = −εjAkj for all d < k ≤ l.

Next we prove that this condition is sufficient for J to commute with the
adjoint of elements in kΘ. Indeed, for j, s, t as above, we only have left to verify
that J commutes with matrices Z as in Eq. (7) with with X = i(Ets + Est).
We consider D as in Eq. (8) with C = Esj , then XC = iEtj and we obtain
ad(Z)Asj = Stj . Likewise, if C = iEsj , then XC = −Etj and thus ad(Z)Ssj =
−Atj . Therefore

ad(Z)JAsj = εjad(Z)Ssj = −εjAtj = JStj = Jad(Z)Asj

and

ad(Z)JSsj = −εjad(Z)Asj = −εjStj = −JAtj = Jad(Z)Ssj .

Remark 2 The set of K invariant almost complex structures on the flags FΘ in
Lemma 3 is parametrized by Gl(d−1,R)/Gl(d−1/2,C)×(R2∪R2)d(d−1)×Zd2.

The component Gl(d − 1,R)/Gl(d − 1/2,C) corresponds to the complex
structures on the space generated by long roots outside 〈Θ〉+. The component
(R2 ∪ R2)d(d−1) corresponds to the structures on the spaces generated by the
roots {λj−λk, λj+λk}. The set R2∪R2 is the disjoint union of the two copies
of R2, that is Gl(2,R)/Gl(1,C). Finally, Z(d−1)

2 parametrizes the signs εj .

We introduce two technical lemmas which will lead to the determination
of the integrable structures.

Lemma 4 Let J be a KΘ-invariant almost complex structure. If J is inte-
grable then for each i, j ∈ {1, . . . , d}, j > i, we have JAji = cjiSji and
JSji = −cjiAji, with cji = ±1.
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Proof Take 1 ≤ i < j ≤ d then by M -invariance JSii =
∑
k bkiSkk and

J |{Aji,Sji} =

(
aji −

1+a2ji
cji

cji −aji

)
where cji 6= 0.

We have

NJ(Sii, Aji) = Aji

(
2cji(bii − bji) + 2(bji − bii)

(1+a2ji)

cji
− 2cjiaji − 2aji

(1+a2ji)

cji

)
+Sji

(
2aji(bji − bii) + 2 + 2aji(bji − bii)− 2(a2ji + c2ji)

)
Therefore

NJ(Sii, Aji) = 0 ⇔
{
(bii − bji)(c2ji − 1− a2ji)− aji(c2ji + 1 + a2ji) = 0
c2ji = 2aji(bji − bii) + 1− a2ji

⇔
{
c2ji = 2aji(bji − bii) + 1− a2ji
((bii − bji)2 + 1)aji = 0

⇔
{
aji = 0
cji = ±1

.

Up to this moment we have proved that if J is KΘ-invariant and integrable
then for each j = 1, . . . , d:

– JAkj = ckjSkj and JSkj = −ckjAkj for k = 1, . . . , d, k 6= j and
– JAkj = εjSkj and JSkj = −εjAkj for all k = d+ 1, . . . , l.

where εj , ckj ∈ {±1}. To simplify notation in the following lemma we write

JAkj = µkjSkj , JSkj = −µkjAkjfor all j = 1, . . . , d, j < k 6= l. (11)

Lemma 5 Let J be a KΘ-invariant (integrable) complex structure. Then for
any triple k > j > s such that j, s ∈ {1, . . . , d} the possible values for
(µks, µkj , µjs) are:

(µks, µks, µks), (µks,−µks, µks) and (µks, µks,−µks)., µks = ±1.

In particular, if εj = −εs then cjs = εs.

Proof By equation (11) we obtain

0 = NJ(Akj , Aks) = (1 + µkjµjs − µkjµks − µksµjs)Ajs
= ((µkj − µks)µjs + (µks − µkj)µks)Ajs
= ((µjs − µks)µkj + (µjs − µks)µjs)Ajs.

From the second row of this equation we see that µkj = −µks implies µjs =
µks; while the third row implies µkj = −µjs = µks if µjs = −µks. We conclude
then that the possible values for the triple (µks, µkj , µjs) are: (µks, µks, µks),
(µks,−µks, µks) and (µks, µks,−µks).
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Proposition 5 Let J : mΘ −→ mΘ be such that J2 = −1 and moreover
it preserves k2λ1 ⊕ · · · ⊕ k2ld and JAkj = µkjSkj, JSkj = −µkjAkj for all
j = 1, . . . , d, j < k ≤ d, with µkj = ±1.

Then J is KΘ-invariant and integrable if and only if the following hold:

– for each j = 1, . . . , d, µkj = εj for all k = d+ 1, . . . , l.
– for each triple k > j > s such that j, s ∈ {1, . . . , d} the coefficients

(µks, µkj , µjs) are one of the following:

(µks, µks, µks), (µks,−µks, µks) and (µks, µks,−µks).

Conversely, any K-invariant complex structure on FΘ is induced by J as
above.

Proof It is necessary for J to be M -invariant to preserve k2λ1
⊕ · · · ⊕ k2ld and

kλj−λk ⊕ kλj+λk . The conditions above are necessary as proved in Lemma 3
in order J to be KΘ-invariant and Lemma 4 and Lemma 5 to be integrable.
As seen there, such J verifies NJ(Skk, Akj) = 0 j = 1, . . . , d, j < k ≤ l
and NJ(Akj , Aks) = 0 for each triple in the second item. To show that
these conditions are sufficient we have to show that i) NJ(Skk, Skj) = 0, ii)
NJ(Skj , Sks) = 0, iii) NJ(Skj , Aks) = 0 and iv) NJ(Sjj , Sss) = 0 for all
j > s ∈ {1, . . . , d} and k > j > s.

Clearly iv) holds since these matrices are diagonal. Moreover,NJ(Akj , Aks) =
NJ(Skj , Sks) so ii) also holds. Similar computations as in the proof of Lemma
4 give i). Finally NJ(Skj , Aks) = (−1− µkjµjs + µkjµks + µksµjs)Sjs so rea-
soning as in Lemma 5 one obtains iii).

Example 1 We consider the flag FΘ of C3, with Θ = {2λ3}. The component
WR of tangent space at the origin of flag is given by sum of kα, α ∈ R, and
has the following form: R = {λ1 ± λ2} ∪ {2λ1, 2λ2}. The components Wj are
determined by the sets of roots

Π1 = {λ1 ± λ3}, Π2 = {λ2 ± λ3}.

Fix εj = ±1 j = 1, 2 ν = ±1 such that

(ε1, ε2, ν) ∈ {(1, 1, 1), (−1,−1,−1), (1,−1, 1), (−1, 1,−1), (1, 1,−1), (−1,−1, 1)},

and let a11, c11 ∈ R s.t. c11 6= 0. The following table gives all KΘ-invariant
integrable complex structures J in FΘ.

Components KΘ-invariant complex structures
W1 JA31 = ε1S31, JS1 = −ε1A31,
W2 JA32 = ε2S32, JS32 = −ε2A32

JA21 = νS21, JS21 = −νA21,
WR JS11 = a11S11 + c11S22,

JS22 = − 1+a211
c11

S11 − a11S22
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4.2.2 Case C4

The M -equivalence classes of positive roots are

{λ1 ± λ2, λ3 ± λ4}, {λ1 ± λ3, λ2 ± λ4}{λ1 ± λ4, λ2 ± λ3}, {2λ1, 2λ2, 2λ3, 2λ4}.

Proposition 6 The real flag FΘ of C4 with Θ = {λ1 − λ2, λ3 − λ4} does not
admit K-invariant almost complex structures.

Proof According to [15, Section 5.3] the KΘ irreducible components of n−Θ are
given by

V1 = 〈X2λ1
−X2λ2

, X−λ2−λ1
〉 V4 = 〈X2λ3

+X2λ4
〉,

V2 = 〈X2λ1
+X2λ2

〉, V3 = 〈X2λ3
−X2λ4

, X−λ4−λ3
〉

V5 = 〈Xλ3−λ1 +Xλ4−λ2 , Xλ3−λ2 −Xλ4−λ1〉
V6 = 〈Xλ3−λ2 +Xλ4−λ1 , Xλ4−λ2 −Xλ3−λ1〉,
V7 = 〈X−λ3−λ1

+X−λ4−λ2
, X−λ3−λ2

−X−λ4−λ1
〉

V8 = 〈X−λ3−λ2
+X−λ4−λ1

, X−λ4−λ2
−X−λ3−λ1

〉,

where Xα is a generator of root space gα.
The components V2, V5 and V6 are equivalent to the components V4, V7

and V8, respectively. The subspaces V1 and V3 are neither equivalent between
them nor to any other representation subspace.

Assume J is a KΘ-invariant complex structure J on n−Θ. Then JV1 = V1
since it is irreducible and non-equivalent to any other representation subspace.
Moreover, V[−λ2−λ1] = g−λ2−λ1 ⊕ g−λ4−λ3 and J preserves this subspaces
too because of its M -invariance. Therefore V1 ∩ V[−λ2−λ1] = 〈X−λ2−λ1〉 is
an invariant subspace of J , which is a contradiction. So we conclude that no
K-invariant complex structure exists in this case.

Fix Θ = {λ3 − λ4, 2λ4} for C4. The KΘ-irreducible components of mΘ are
([15, Section 5.3]):

V1 = g−2λ1
, V3 = gλ2−λ1

,
V2 = g−2λ2 , V4 = g−λ2−λ1 ,

V5 = gλ3−λ1 ⊕ g−λ3−λ1 ⊕ gλ4−λ1 ⊕ g−λ4−λ1 ,
V6 = gλ3−λ2

⊕ g−λ3−λ2
⊕ gλ4−λ2

⊕ g−λ4−λ2
.

(12)

The components V1 and V3 are equivalent to, respectively, the components V2
and V4. The components V5 and V6 are not equivalent.

As in the previous section, we consider the isomorphism between k and
u(4). Under this map, kΘ = 〈{A43, S43, S33, S44}〉 and

mΘ =WR ⊕
⊕
j=1,2
k=3,4

Wkj

where WR =W 1
R ⊕W21 with W 1

R = 〈{S11, S22}〉 and Wkj = 〈{Akj , Skj}〉.
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Proposition 7 The flag manifold FΘ of C4 with Θ = {λ3 − λ4, 2λ4} admits
K-invariant almost complex structures and each of them is induced by a map
J : mΘ −→ mΘ verifying

JS11 = ν1S22, JS22 = −ν−11 S11 with ν1 6= 0,
JA21 = ν2S21, JS21 = −ν−12 A21 with ν2 6= 0,
JAkj = εjSkj , JSkj = −εjAkj for k ∈ {3, 4}, j ∈ {1, 2},

with εj = ±1.
Such structure is integrable if and only if ν2 = ±1 and ν2 = ε1 if ε2 = −ε1.

Proof We already know that FΘ admits M -invariant almost complex struc-
tures and such J is the direct sum of almost complex structures in each V[α],
α ∈ Π+\ 〈Θ〉+. In this case, the M -equivalence classes are

{λ1 − λ2, λ1 + λ2}, {λ1 ± λ3, λ2 ± λ4}, {λ1 ± λ4, λ2 ± λ3}, {2λ1, 2λ2}.

So, in particular, W 1
R, W21, W31 ⊕W42 and W32 ⊕W41 are J-invariant.

Moreover, since V5 =W31⊕W41 and V6 =W32⊕W42 in (12) are irreducible
and non-equivalent, we have JV5 = V5 and JV6 = V6. Therefore each Wkj ,
k = 3, 4, j = 1, 2 is invariant, since it can be described as an intersection of
V[α] and Vt for suitable root and index.

We proceed as in the general case Cl, l 6= 4 to show that J has the form
given in the statement of the proposition.

For any Y ∈ kΘ and Z ∈ WR, we have [Y, Z] = 0 so J restricted to this
subspace is also kΘ-invariant. Let Y = a3S33+a4S44 ∈ kΘ, then adY J = J adY
implies that for k = 3, 4, j = 1, 2 the matrix of J |Wkj

in the basis {Akj , Skj}
is

µkj

(
0 −1
1 0

)
, µkj = ±1.

Now let Y = a3A43 + a4S43 ∈ kΘ and let Z ∈ Wkj with k = 3, 4, then
adY JZ = J adY Z holds if and only if ε4j = ε3j for j = 1, 2. It is not hard to
see that these conditions are also sufficient for J to be KΘ-invariant.

To address integrability, notice that, as in the general case, we have

NJ(S11, A21) = −2
(
ν1(ν2 − ν−12 )A21 + (−1 + ν22)S21

)
NJ(A41, A42) =

(
ε1ε2 − 1 + (ε1 − ε2)ν−12

)
A21

Therefore J is integrable if ν2 = ±1 and ν2 = ε1 in the case that ε1 = ε2. One
can check that these conditions are sufficient for J to be integrable.

4.3 Flags of Dl = so(l, l)

A root system is given by ±λi±λj , i 6= j, and the corresponding set of simple
roots is given by Σ = {λ1 − λ2, . . . , λl−1 − λl, λl−1 + λl}, 1 ≤ i < j ≤ l. The
maximal compact subalgebra of so(l, l) is k ' so (l)⊕ so (l).

As in the Cl case, we deal first with the case Dl with l ≥ 5 and later we
address the case of l = 4 because of the difference between the M -equivalence
classes.
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4.3.1 Case Dl, l ≥ 5

We consider Θ = {λd−λd+1, . . . , λl−1−λl, λl−1+λl}, this gives a sub diagram
Dp of Dl with p = l − d+ 1, thus kΘ ' so (p)1 ⊕ so (p)2. The set 〈Θ〉 of roots
generated by Θ is given by

〈Θ〉 = {± (λi ± λj) : d ≤ i < j ≤ l}.

The roots in Π+\ 〈Θ〉+ are

λi ± λj with 1 ≤ i < j ≤ d, and λi ± λj with i = 1, . . . , d− 1, j = d, . . . l.

and the M -equivalence classes are {λi − λj , λi + λj}. Consider the subsets of
roots in Π+\ 〈Θ〉+:

R = {λi ± λj : 1 ≤ i < j ≤ d}
Πi = {λi ± λj : d ≤ j ≤ l}, i = 1, . . . , d− 1

and let WR =
∑
α∈R gα and Wi =

∑
α∈Πi gα. Clearly we obtain

n+Θ =WR ⊕
d−1∑
i=1

Wi. (13)

The subspace WR is KΘ invariant and irreducible. Moreover, each Wi de-
composes as Wi = V 1

i ⊕ V 2
i , where V

j
i is irreducible KΘ-invariant and the

representations are not equivalent [15]. We present an explicit description of
these subspaces.

A split real form of Dl is so (l, l) and it is represented by real matrices of
the form (

A B
C −AT

)
, where B +BT = C + CT = 0. (14)

The algebra g (Θ) generated by gα, α ∈ 〈Θ〉 is given by matrices in Eq. (14)
such that A,B and C have the form(

0 0
0 ∗

)
,

where the non-zero part is squared of size p = l− d+1. The Lie algebra g (Θ)
is of type Dp, isomorphic to so (p, p).

The compact part k inside so(l, l) is given by the subset matrices in (14)
having the form (

A B
B A

)
, where A+AT = B +BT = 0.

It is well known that k decomposes as a sum of two ideals, both isomorphic
to so (l). The compact Lie algebra kΘ lies inside k and also inside g(Θ) and
consists of matrices of the form(

A B
B A

)
, with A,B ∈ 〈{Est − Ets : d ≤ s < t ≤ l}〉 . (15)
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The Lie algebra kΘ also decomposes as a sum of two ideals, both isomorphic
to so (p), which are

so (p)1 =

{(
A A
A A

)
: A ∈ 〈{Est − Ets : d ≤ s < t ≤ l}〉

}
,

so (p)2 =

{(
A −A
−A A

)
: A ∈ 〈{Est − Ets : d ≤ s < t ≤ l}〉

}
.

Fix i ∈ {1, . . . , d − 1} and denote Si = {X = (ast) ∈ gl(l,R) : ast =
0 for all (st) /∈ {(ij) : j = d, . . . , l}}. For any j = d, . . . , l the root space
gλi−λj is represented by matrices (14) where A = Eij , C = B = 0; meanwhile,
gλi+λj is represented by the matrices of the above form where B = Eij −Eji,
A = C = 0. Thus Wi is given by(

X Y − Y t
0 −XT

)
, where X,Y ∈ Si. (16)

For Z ∈ Si denote

XZ =

(
Z Z − ZT
0 −ZT

)
, YZ =

(
Z −Z + ZT

0 −ZT
)

(17)

and define V 1
i = {XZ : Z ∈ Si}, V 2

i = {YZ : Z ∈ Si}. Clearly, V 1
i , V

2
i ⊂ Wi.

Moreover, a matrix as in (16) can be written as the sum of two matrices in
(17) by taking Z = (X+Y )/2, Z ′ = (X−Y )/2. Thus we obtainWi = V 1

i ⊕V 2
i

and dimV 1
i = dimV 2

i = l − d+ 1 = p = |Θ|.
We compute the kΘ action on V 1

i and V 2
i : let N ∈ kΘ as in (15) and let

XZ ∈ V 1
i , YZ ∈ V 2

i then AZ = 0 = BZ, ZTA = 0 = ZTB so

[N,XZ ] = X−Z(A+B), and [N,YZ ] = Y−Z(A−B).

This implies that so(p)2 acts trivially on V 1
i while for N ∈ so(p)1 the action is

[N,XZ ] = X−2ZA. Similarly, so(p)1 acts trivially on V 2
i while for N ∈ so(p)2

the action is [N,XZ ] = X−2ZA. We conclude that the kΘ representation on
V 1
i is equivalent to the so(p) ⊕ so(p) representation on Rp where the action

of so(p)1 is the canonical and the action of so(p)2 is trivial. Similarly, the kΘ
representation on V 2

i is equivalent to the so(p) ⊕ so(p) representation on Rp
where the action of so(p)1 is by zero and the action of so(p)2 is the canonical
one.

We keep i = 1, . . . , d − 1 fixed. Let s, t ∈ {d . . . l}, s 6= t and consider N1
st

being as in (15) with A = Est − Ets and B = A (i.e. N ∈ so(p)1). Then[
N1
st, XEis

]
= −2XEit and [N1

st, XEit ] = 2XEis , while [N1
st, YEij ] = 0 for all j.

(18)
Similarly, denote N2

st ∈ so(p)2 being the matrix in kΘ associated to A =
Est − Ets and B = −A, then[
N2
st, YEis

]
= −2YEit and [N2

st, YEit ] = 2YEis , while [N2
st, XEij ] = 0 for all j.

(19)
Having described the kΘ representation on n+Θ we can state:
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Proposition 8 The real flags FΘ of Dl with l ≥ 5 and Θ 6= ∅ do not admit
KΘ-invariant complex structures.

Proof Assume J : n+Θ −→ n+Θ is a KΘ-invariant almost complex structure. As
it is M -invariant and each subspace in (13) is sum of M -equivalence classes,
we have that JWR =WR and JWi =Wi for all i = 1, . . . , d− 1.

Recall thatWi is not irreducible, for i = 1, . . . , d−1. InsteadWi = V 1
i ⊕V 2

i

where each of these subspace is invariant and irreducible by theKΘ action, and
the induced representations are not equivalent [15]. By Lemma 2, we conclude
that V 1

i , V 2
i are J-invariant. In particular, V 1

i and V 2
i are even dimensional

and thus p is even.
Fix i = 1, . . . , d − 1 and let j ∈ {d, . . . , l}. In the notation (17) one can

see that gλi−λj ⊕ gλi+λj =
〈
{XEij , YEij}

〉
, which is a J-invariant subspace of

Wi because of the M -invariance of J . Thus JXEij = aijXEij + cijYEij with
cij 6= 0. For any s ∈ {d, . . . , l}, s 6= j we apply (18) and obtain

adN1
sj
JXEij = adN1

sj
(aijXEij + cijYEij ) = −2aijXEis , while

J adN1
sj
XEij = J(−2XEis) = −2(aisXEis + cisYEis),

but cis 6= 0, contradicting the KΘ-invariance of J .

4.3.2 Case D4

Now we proceed to the study of flags of D4 with Θ as in Table 1. The M -
equivalence classes of positive roots in D4 are:

{λ1 − λ2, λ1 + λ2, λ3 − λ4, λ3 + λ4}, {λ1 − λ3, λ1 + λ3, λ2 − λ4, λ2 + λ4}
{λ1 − λ4, λ1 + λ4, λ2 − λ3, λ2 + λ3}.

As in the general case we work with the split form so(4, 4). In what follows
we denote by Xij = Ei,j−El+j,l+i a generator of gλi−λj and by Yij = Ei,l+j−
Ej,l+i a generator gλi+λj , where Ei,j is the 8×8 matrix with 1 in the position
ij and zeroes elsewhere.

The groupM consists of 8×8 diagonal matrices diag(ε1, ε2, ε3, ε4, ε1, ε2, ε3, ε4)
where εi = ±1 and ε1ε2ε3ε4 = 1, that is, there is an even amount of −1’s in
the diagonal of matrices of M .

Proposition 9 The real flag manifold FΘ of type D4 with Θ =
{λ1 − λ2, λ3 − λ4} admits KΘ invariant almost complex structures. These
structures are not integrable.

Proof The following is the decomposition of n+Θ inKΘ invariant and irreducible
subspaces

n+Θ = gλ1+λ2
⊕ gλ3+λ4

⊕
4∑
i=1

Vi,

where
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V1 = 〈X13 −X24, X14 +X23〉
V2 = 〈X13 +X24, X14 −X23〉

V3 = 〈Y13 − Y24, Y14 + Y23〉
V4 = 〈Y13 + Y24, Y14 − Y23〉

The map T13 : V1 −→ V3 defined by T13(X13 − X24) = Y13 − Y24 and
T13(X14 + X23) = Y14 + Y23 commutes with adkΘ . Moreover, the linear map
T24 : V2 −→ V4, verifying T24(X13 +X24) = Y23 + Y24 and T24(X14 −X23) =
Y14 − Y23 commutes with the adjoints of kΘ. Therefore the (KΘ)0 representa-
tions on V1 and V3 and the representations on V2 and V4, are equivalent. One
can see that these two different representations are not equivalent.

Assume J : n+Θ −→ n+Θ is aKΘ-invariant almost complex structure. TheM -
invariance implies that V[α] is M -invariant. For instance, V[λ1−λ3] =
〈{X13, Y13, X24, Y24}〉 is invariant under J . Because of the kΘ representations
described above, we have that JV1 = V1 or JV1 = V3. In the first case, we
may have X13−X24 as an eigenvalue of J , which is not possible, so we obtain
JV1 = V3 and J(X13 − X24) = c1(Y13 − Y24) for some c1 6= 0. By analogous
reasoning we obtain that J is as follows:

JY12 = aY12 + cY34,
JY34 = (1 + a2)Y12/c− aY34,

J(X13 −X24) = c1(Y13 − Y24),
J(X14 +X23) = c2(Y14 + Y23),
J(X13 +X24) = c3(Y13 + Y24),
J(X14 −X23) = c4(Y14 − Y23),

where ci, c 6= 0. But J adX = adX J for X ∈ kΘ implies c1 = c4 and c2 = c3.
Direct computations show that this is M -invariant and J adX = adX J for all
X ∈ kΘ, therefore, a KΘ-invariant almost complex structure.

Regarding integrability, it suffices to remark that, for instance,NJ(Y12, X13−
X24) is never zero.

Proposition 10 The real flag manifold FΘ of type D4 with Θ =
{λ1 − λ2, λ3 + λ4} admits KΘ invariant almost complex structures. These
structures are not integrable.

Proof We proceed as in the previous proof. The following is a decomposition
into KΘ invariant and irreducible subspaces

n+Θ = gλ1+λ2
⊕ gλ3−λ4

⊕
4∑
i=1

Vi,

where

V1 = 〈X13 − Y24, Y14 +X23〉
V2 = 〈X13 + Y24, Y14 −X23〉

V3 = 〈Y13 −X24, X14 + Y23〉
V4 = 〈Y13 +X24, X14 − Y23〉
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The subspace V1 is kΘ-equivalent to the subspace V3 and the subspace V2 is
kΘ-equivalent to the subspace V4 through the following linear transformations
T13 : V1 −→ V3 and T24 : V2 −→ V4, given by T13(X13 − Y24) = Y13 − X24,
T13(Y14+X23) = X14+Y23, T24(X13+Y24) = Y13+X24 and T24(Y14−X23) =
X14 − Y23. The other representations are not kΘ equivalent.

Assume J is aKΘ-invariant almost complex structure. As before, JV1 = V3
and JV2 = V4 and J verifies

JY12 = aX34 + cY12,
JX34 = (1 + a2)X34/c− aY12,

J(X13 − Y24) = c1(Y13 −X24),
J(Y14 +X23) = c2(X14 + Y23),
J(X13 + Y24) = c3(Y13 +X24),
J(Y14 −X23) = c4(X14 − Y23),

J commuting with adX , for X ∈ kΘ implies c1 = c2 and c3 = c4, and any such
J commutes with all adX ∈ kΘ, so it is (KΘ)0 invariant. One can verify that
J is also M -invariant.

Again, it is possible to see that NJ(Y12, X13 − Y24) never vanishes.

Proposition 11 The real flag manifold FΘ of type D4 with Θ =
{λ3 − λ4, λ3 + λ4} admits KΘ invariant almost complex structures. These
structures are not integrable.

Proof The following is a decomposition into (KΘ)0 invariant and irreducible
subspaces

n+Θ = gλ1−λ2
⊕ gλ1+λ2

⊕
4∑
i=1

Vi,

where
V1 = 〈X13 + Y13, X14 + Y14〉
V2 = 〈X13 − Y13, X14 − Y14〉

V3 = 〈X23 + Y23, X24 + Y24〉
V4 = 〈X23 − Y23, X24 − Y24〉

The subspace V1 is kΘ-equivalent to the subspace V3 and the subspace V2
is kΘ-equivalent to the subspace V4. Indeed, we consider the linear transforma-
tions T13 : V1 −→ V3 given by T13(X13+Y13) = X24+Y24 and T13(X14+Y14) =
−(X23 + Y23) and T24 : V2 −→ V4 given by T24(X13 − Y13) = X24 − Y24 and
T24(X14 − Y14) = −(X23 − Y23).

Any (KΘ)0-invariant complex structure J is of form

JX12 = aX12 + cY12,
JY12 = (1 + a2)X12/c− aY12,

J(X13 + Y13) = c1(X24 + Y24),
J(X14 + Y14) = −c1(X23 + Y23),
J(X13 − Y13) = c2(X24 − Y24),
J(X14 − Y14) = −c2(X23 − Y23),

Direct computations show that this is also M -invariant and therefore KΘ-
invariant. For such structure, NJ(X12, X13 + Y13) never vanishes.
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Proposition 12 The real flag manifolds FΘ of type D4 where Θ is one of the
following sets:

– Θ1 = {λ1 − λ2, λ2 − λ3, λ3 − λ4},
– Θ2 = {λ1 − λ2, λ2 − λ3, λ3 + λ4},
– Θ3 = {λ2 − λ3, λ3 − λ4, λ3 + λ4},

do not admit KΘ-invariant almost complex structures.

Proof Below we give the respective decompositions of n+Θi in KΘ invariant and
irreducible subspaces.

n−Θ1
= 〈Y12 + Y34, Y13 − Y24, Y14 + Y23〉 ⊕ 〈Y12 − Y34, Y13 + Y24, Y14 − Y23〉.

n−Θ2
= 〈Y12 +X34, Y13 −X24, X14 + Y23〉 ⊕ 〈Y12 −X34, Y13 +X24, X14 − Y23〉.

n−Θ3
= 〈X12 + Y12, X13 + Y13, X14 + Y14〉 ⊕ 〈X12 − Y12, X13 − Y13, X14 − Y14〉.

We see that each of them decomposes as a sum of two irreducible sub-
spaces V1 and V2 which induce non-equivalent representations and such that
dimV1 = dimV2 = 3. Lemma 2 implies that any KΘ-invariant complex struc-
ture preserves each of these irreducible components, which is not possible since
these are odd dimensional. Therefore FΘi does not admit K-invariant almost
complex structures for i = 1, 2, 3.
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