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Motivated by the recent resurgence of interest in topological superconductivity, we study super-
conducting pairing instabilities of the hole-doped Rashba-Hubbard model on the square lattice with
first- and second-neighbor hopping. Within the random phase approximation, we compute the spin-
fluctuation-mediated pairing interactions as a function of filling. Rashba spin-orbit coupling splits the spin
degeneracies of the bands, which leads to two van Hove singularities at two different fillings. We find that,
for a doping region in between these two van Hove fillings, the spin fluctuations exhibit a strong
ferromagnetic contribution. Because of these ferromagnetic fluctuations, there is a strong tendency towards
spin-triplet f-wave pairing within this filling region, resulting in a topologically nontrivial phase.
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Topological superconductors (TSCs) have attracted great
interest recently due to their potential use for quantum
information technology and novel superconducting devices
[1–6]. Many interesting topological phases, such as the
chiral p-wave state [7], are realized in superconductors
with odd-parity spin-triplet pairing. However, until now,
only a few material systems have been discovered which
show spin-triplet superconductivity [8–10], since spin-
singlet pairing is in most cases the dominant pairing
channel. There are two types of TSCs with triplet pairing:
intrinsic and artificial ones. While the former type arises as
an intrinsic property of the material, the latter is artificially
engineered in heterostructures by proximity coupling to an
s-wave superconductor [11]. Intrinsic TSCs have the
advantage that the topological phase exists in the entire
volume of the material and not just at an interface of a
heterostructure. In recent years, it has become clear that
strong spin-orbit coupling (SOC) is conducive to triplet
superconductivity [12–14]. Indeed, most candidate materi-
als for intrinsic TSCs, such as Sr2RuO4 [8,9], CePt3Si [10],
and CuxBi2Se3 [15,16], contain heavy elements with strong
spin-orbit interactions. Unfortunately, the strongly corre-
lated TSCs Sr2RuO4 and CePt3Si have a rather low Tc of≲1 K, while the pairing symmetry of the weakly correlated
TSC CuxBi2Se3 is still under debate [17,18]. Therefore, the
search for new intrinsic TSCs remains an important goal.
Parallel to these developments, MBE fabrication of

oxide and heavy-fermion superlattices has seen great
progress [19–22]. An important distinguishing feature of
epitaxial superlattices is their high tunability. That is,
carrier density and Fermi surface (FS) topology, as well
as SOC, can be tuned by modulating the layer thickness or
by applying electric fields [22,23]. Remarkably, some of

these superlattices show unconventional superconductivity
with a fairly high transition temperature. One example is
the heavy-fermion superlattice CeCoIn5=YbCoIn5 [21,22],
in which magnetic fluctuations [24] lead to superconduc-
tivity below Tc ≃ 2 K. Modulating the layer thicknesses in
this superlattice breaks the inversion symmetry, which
induces Rashba spin-orbit interactions. Interestingly, the
strength of the Rashba SOC can be controlled by the width
of the YbCoIn5 block layers. A strong Rashba interaction
drastically alters the FS topology by splitting the spin
degeneracy. This in turn is favorable for triplet super-
conductivity, provided that the pairing mechanism allows
for it. As is known from extensive theoretical works on
cuprate superconductors [25–27], the shape and topology of
the FS strongly influence the relative strengths of different
pairing channels. In order to optimize the layer thickness
modulation in CeCoIn5=YbCoIn5 for triplet superconduc-
tivity, it is therefore important to understand the detailed
interdependence among Rashba SOC, FS topology, and
superconducting pairing symmetry.
Motivated by these considerations, we analyze in this

Letter superconducting pairing instabilities of the hole-
doped Rashba-Hubbard model, which describes the essen-
tial features of many strongly correlated materials with
Rashba SOC [12–14,28]. Focusing on the square latticewith
first- and second-neighbor hopping, t and t0, we compute the
spin-fluctuation-mediated pairing interaction as a function
of filling. For this purpose, we use the random phase
approximation (RPA), which is known to qualitatively
capture the essential physics, at least within weak coupling
[12–14,25–27]. Finite SOC splits the energy bands leading
to two van Hove singularities at the fillings nvH1

and nvH2
.

Remarkably, we find that, in a doping region in between
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these two vanHove fillings, there exist strong ferromagnetic
(FM) spin fluctuations (Figs. 1 and 2). Because of these FM
fluctuations, there is a strong tendency towards spin-triplet
f-wave pairing in this filling region, while the pairing
channels of d-wave type (Fig. 3) are of the same order or
subdominant.
Model and method.—The Rashba-Hubbard model on the

square lattice is given by

H ¼
X
k

ψ†
kĥðkÞψk þ U

X
k;k0;q

c†k↑ckþq↑c
†
k0↓ck0−q↓; ð1Þ

where U is the local Coulomb repulsion, ĥðkÞ ¼ ðεkτ0 þ
gk · τÞ, and ψk¼ðck↑;ck↓ÞT . Here, τ¼ðτ1;τ2;τ3ÞT are the
three Pauli matrices, and τ0 stands for the 2 × 2 unit matrix.
The band energy εk¼−2tðcoskxþcoskyÞþt0coskxcosky−
μ contains both first- and second-neighbor hopping, t and t0,
respectively, and is measured relative to the chemical
potential μ. The vector gk describes Rashba SOCwith gk ¼
Vsoð∂εk=∂ky;−∂εk=∂kx; 0Þ and the coupling constant Vso.
For our numerical calculations, we set t ¼ 1, t0 ¼ 0.3, and
Vso ¼ 0.5 and focus on the hole-doped case with filling
0.4 < n < 1. We have checked that other parameter choices
do not qualitatively change our findings. The presence
of Rashba SOC splits the electronic dispersion εk into
negative- and positive-helicity bands with energies E1

k ¼
εk − jgkj and E2

k ¼ εk þ jgkj, respectively. Both spin-split
bands exhibit van Hove singularities at k ¼ ðπ; 0Þ and
symmetry-related points. For our parameter choice, the
corresponding van Hove fillings occur at nvH1

≃ 0.87 and
nvH2

≃ 0.65; see the inset in Fig. 2.

The first term in Eq. (1) defines the bare 2 × 2 fermionic
Greens function in the spin basis

Gð0Þ
σ1σ2ðk; iνnÞ ¼ f½iνnτ0 − ĥðkÞ�−1gσ1σ2 ; ð2Þ

where νn ¼ 2nπ=β is the fermionic Matsubara frequency.
For U ¼ 0, the bare spin susceptibility can be expressed in
terms of Gð0Þ as

χð0Þσ1σ2σ3σ4ðq; iωlÞ¼
X
k;iνn

Gð0Þ
σ1σ2ðk; iνnÞGð0Þ

σ3σ4ðkþq; iνnþ iωlÞ;

ð3Þ

where ωl ¼ 2lπ=β is the bosonic Matsubara frequency.
Within the RPA [12,13], the dressed spin susceptibility
χσ1σ2σ3σ4ðq; iωlÞ is computed as

χ̂ðq; iωlÞ ¼ ½1 − χ̂ð0Þðq; iωlÞÛ�−1χ̂ð0Þðq; iωlÞ: ð4Þ

In Eq. (4), the 16 components of χσ1σ2σ3σ4 and χð0Þσ1σ2σ3σ4 are

stored in the 4 × 4matrices χ̂ and ˆχð0Þ, respectively, and the
4 × 4 coupling matrix Û is antidiagonal; see Supplemental
Material [29] for details.
The spin fluctuations described by Eq. (4) can lead to an

effective interaction that combines two electrons into a
Cooper pair. As in Refs. [25,26], it is necessary to distin-
guish between the interaction for same- [Veff

sameðk;k0Þ] and
for opposite- [Veff

oppðk;k0Þ] spin projections between two
electrons with momentum k and k0 [30], which are given in
the spin basis by

Veff
sameðk;k0Þ ¼ U2χσσσσðk − k0Þ; ð5aÞ

Veff
oppðk;k0Þ ¼U2χσσ̄ σ̄ σðk−k0ÞþU2χσσσ̄ σ̄ðkþk0Þ; ð5bÞ

FIG. 1. (a)–(c) Calculated Fermi surface topology and (d)–
(i) static ω ¼ 0 spin susceptibility for the fillings n ¼ 0.50,
n ¼ 0.83, and n ¼ 0.95, with t0 ¼ 0.3, Vso ¼ 0.5, T ¼ 0.01, and
U ¼ 0.4. The second and third rows show the longitudinal
and transversal susceptibilities χlong¼χ↑↑↑↑−χ↑↓↓↑ and χtrans ¼
χ↑↑↓↓, respectively (see Supplemental Material [29]).

FIG. 2. The critical interaction strength Uc as a function of
filling n is indicated by the red line. The color scale represents the
relative intensity of the ferromagnetic fluctuations in the longi-
tudinal susceptibility. The inset shows the density of states versus
filling for Vso ¼ 0 (dashed line) and Vso ¼ 0.5 (solid line).
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respectively. In weak coupling, we can define for each
pairing channel i a dimensionless pairing strength as [31–34]

λαβi ¼ −

Z
FSα

dk
vαFðkÞ

Z
FSβ

dk0

vβFðk0Þ
ηiðkÞVeff

s=tðk; k0Þηiðk0Þ

2π2
Z
FSβ

dk0

vβFðk0Þ
½ηiðk0Þ�2

; ð6Þ

where α and β label the FS sheets. The diagonal and off-
diagonal elements of λαβi represent intra- and inter-Fermi
surface pairing strengths, respectively. In Eq. (6), k and k0 are
restricted to the Fermi sheets FSα and FSβ, respectively,
vαFðkÞ ¼ j∇kEα

kj is the Fermi velocity, and ηiðkÞ describes
the k dependence of each possible pairing symmetry; see
SupplementalMaterial [29]. In the case of singlet pairing, the
effective interaction in Eq. (6) is solely due to scattering
between electrons with opposite spins. For triplet pairing,
however, both same- and opposite-spin scattering processes
are possible. The effective superconducting coupling con-
stant λeffi for a given pairing channel i is given by the largest
eigenvalue of the matrix λαβi [32]. Hence, by numerically
evaluating Eq. (6) for all possible channels i, we can identify
the leading pairing instability as a function of filling and
SOC strength.
Spin susceptibility.—Before discussing superconductiv-

ity, let us first consider the static susceptibility in the
paramagnetic state for intermediate coupling U ¼ 0.4 and
T ¼ 0.01. While Figs. 1(d)–1(f) show the longitudinal
susceptibility, Figs. 1(g)–1(i) show the transversal suscep-
tibility for the fillings n ¼ 0.5, n ¼ 0.83, and n ¼ 0.95,
respectively. As expected, and different to the case without
SOC, the longitudinal and transversal susceptibilities show
different spin texture. The FS topology for each filling is
shown in Figs. 1(a)–1(c). The spin susceptibility shows large
magnetic fluctuations, whose magnetic modulation vectors
q depend strongly on filling n and FS topology. Indeed,
we observe an intricate interplay between FS topology
and the structure of the spin susceptibility: For n > nvH1

the two spin-split FS sheets are holelike and centered at
ðπ; πÞ [Fig. 1(c)], which results in a spin susceptibility with
incommensurate antiferromagnetic modulation vector
q ¼ ðπ; π � δÞ; see Figs. 1(f) and 1(i). For n < nvH2

, on
the other hand, both FS sheets are electronlike and centered
at Γ [Fig. 1(a)], leading to a longitudinal spin susceptibility
with a nearly commensurate antiferromagnetic q vector
[Fig. 1(d)]. In between the two van Hove fillings,
nvH2

< n < nvH1
, FS1 is electronlike and centered at Γ,

while FS2 is holelike and centered at ðπ; πÞ; see Fig. 1(b).
Interestingly, within this filling range there exists a broad
region, i.e., 0.76≲ n≲ nvH1

, where the dominant longi-
tudinal fluctuations are ferromagnetic with q ¼ ð0; 0Þ; see
Figs. 1(e) and 2.
Increasing the Hubbard interaction U enhances the

magnetic fluctuations and eventually drives the system
into the magnetically ordered phase. In this process, the

modulation vector of the strongest fluctuations becomes the
ordering wave vector of the ordered phase. The transition
between the paramagnetic and ordered phases occurs at the
critical interaction strength Uc with a given ordering wave
vector where the susceptibility diverges. Although the
transversal and longitudinal susceptibilities show different
spin texture, both diverge simultaneously at the same
ordering momentum, showing the nontrivial feedback
between them for finite SOC. Figure 2 displays the filling
dependence of the critical interaction Uc (red line). The
color scale indicates the intensity of the ferromagnetic
fluctuations in the longitudinal susceptibility relative to the
(incommensurate) antiferromagnetic fluctuations. We
observe that the ferromagnetic fluctuations are dominant
in the filling range 0.76≲ n ≲ nvH1

and for U within the
range 0 ≤ U ≲ 1.6. These ferromagnetic fluctuations origi-
nate from the combined effect of finite SOC Vso and finite
t0. As a matter of fact, for Vso ¼ 0 and t0 ≠ 0 there is only
one van Hove filling at nvH ∼ 0.72 (inset in Fig. 2), which
separates commensurate antiferromagnetism [q ¼ ðπ; πÞ]
for n > nvH from incommensurate antiferromagnetism
[q ¼ ðπ; π − δÞ] forn < nvH, and ferromagnetic fluctuations
occur only in a narrow region around thevanHove fillingnvH
[25]. For t0 ¼ 0 and Vso ≠ 0, ferromagnetic fluctuations are
absent [14]. Different to the longitudinal susceptibility, the
transversal susceptibility shows ferromagnetic fluctuations
only very close to thevanHove fillingsnvH1

andnvH2
(Fig. S5

of Supplemental Material [29]).
Superconducting instabilities.—The discussed magnetic

fluctuations can lead to superconducting pairing instabil-
ities. We set the Hubbard interaction to U ¼ 0.4 < Uc and
compute λeffi within the filling range 0.4 < n < 1 for the
lowest-harmonic pairing symmetries, as defined in
Eq. (S11) of Supplemental Material [29]. The resulting
filling dependence of the pairing symmetries is presented in
Fig. 3. Note that theweak coupling approach ismore reliable
away from the van Hove fillings. At the van Hove fillings
nvHi

, λeffi exhibits large jumps due to the divergent density of
states [35], which is an artifact of the weak coupling
approach. Let us examine the results of Fig. 3 separately
for (i) n > nvH1

, (ii) n < nvH2
, and (iii) nvH2

< n < nvH1
.

(i) n > nvH1
.—For this filling region, the singlet dx2−y2-

wave pairing channel is dominant. This is due to large
antiferromagnetic spin fluctuations that exist in the entire
hole-doping range 1>n>nvH1

, similar to the case of Vso¼0

[25]. The subleading pairing solutions have p-wave and
f-wave symmetry due to effective interactions with same-
spin projections. Notice that, in contrast to the case for
Vso ¼ 0 [25], here the pairing strength for same-spin
projections is different from opposite-spin projections.
While the tendency to superconductivity in the f-wave
channel is strongly decreasing approaching half filling, it is
rather stable for the p-wave channel. Because Rashba SOC
breaks inversion symmetry, we expect that in this filling
range the pairing symmetry is an admixture of dx2−y2-wave,
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p-wave, and f-wave [36]. However, since λeffdx2−y2
≫ λeffp=f,

the dx2−y2-wave channel is the leading one.
(ii) n < nvH2

.—In this filling region, the dxy-wave
pairing is leading, while the f-wave and p-wave channels
are subdominant. We ascribe this tendency towards dxy-
wave pairing, rather than dx2−y2-wave, to the strong trans-
versal spin fluctuations, which are peaked at ðπ; 0Þ and
symmetry-related points.
(iii) nvH2

<n<nvH1
.—This is the most interesting

region. Remarkably, we find that around the filling n ≃
0.78 the triplet f-wave solution for same-spin projections
is the leading one, which we attribute to the strong
ferromagnetic fluctuations that occur for this filling
in the longitudinal susceptibility [cf. Figs. 1(e) and 2].
The subdominant pairing channels have dx2−y2-wave and
dxy-wave form. Hence, due to the broken inversion sym-
metry, the gap is expected to exhibit also d-wave admixture
to the dominant f-wave harmonic. Although the weak
coupling RPA approach underestimates the values of λeffi , it
nevertheless qualitatively captures the relative tendency to
superconductivity in each channel. Different to the case for
Vso ¼ 0 [25], where ferromagnetic fluctuations occur only
very close to the van Hove filling and a singular behavior is
found at this filling for triplet f-wave pairing, here triplet
f-wave extends in a broad filling region. This fact rules out

the possibility that the observed tendency towards f-wave
pairing is an artifact of the van Hove singularity. Without
second-neighbor hopping, the triplet pairing component is
always subdominant [14]. Thus, our results offer a micro-
scopic mechanism for the realization of triplet pairing with
same-spin projection, which was proposed on phenomeno-
logical grounds to be a candidate in noncentrosymmetric
systems with strong SOC [36].
To analyze the dominance of the triplet f-wave channel,

we show in Fig. 3(b) the dependence of λeffi on the interaction
strength U for n ¼ 0.78. We find that λefff is the largest
effective coupling for 0.0 < U ≲ 0.5. This behavior is
consistent with the result in Fig. 2, which shows that the
ferromagnetic fluctuations become less and less dominant
with increasing U. Before concluding, let us briefly discuss
the contributions of the intra- and inter-FS scattering
processes to the effective superconducting coupling. In
Fig. 3(c), we present the filling dependence of the intra-
FS (λ11i and λ22i ) and the inter-FS (λ12i ) pairing strengths for
the f-wave channel for same-spin projections [29]. We
observe that the f-wave pairing is driven by intra-FS
processes within FS2.
Conclusions and implications for experiments.—We

have studied superconducting instabilities of the hole-doped
Rashba-Hubbard model with first- and second-neighbor
hopping within a spin-fluctuation-mediated pairing sce-
nario. Using an RPA approach, we have determined the
pairing symmetry as a function of filling andhave shown that
there exists an interplay between the FS topology, structure
of the magnetic fluctuations, and pairing symmetry. In
between the two van Hove fillings, close to n ≃ 0.78, the
leading pairing solution has triplet f-wave symmetry, which
is drivenby ferromagnetic fluctuations. Sincewithin the spin
fluctuation scenario the pairing symmetry is largely deter-
mined by the type of spin fluctuations, we expect that more
sophisticated treatments, such as FLEX [37] or fRG [38],
will confirm our RPA analysis. The tendency towards
f-wave pairing near n ≃ 0.78 unavoidably leads to a
topologically nontrivial state. The precise nature of this
topological state depends on the detailed momentum struc-
ture of the gap. There are three possibilities. (i) The super-
conducting state is nodal with a dominant f-wave pairing
symmetry and only small admixtures of d-wave andp-wave
components. The point nodes of this superconducting state
are topologically protected by a winding number, which
gives rise to Majorana flat band edge states [5]. (ii) The
superconducting state is fully gapped due to a sizable
admixture of d-wave and p-wave components. In this case
the superconducting state belongs to symmetry class DIII
and exhibits helical Majorana edge states [1]. (iii) The
nonlinear gap equation has a complex solution, yielding a
time-reversal-breaking triplet pairing state without nodes.
This corresponds to a topological superconductor in sym-
metry class D, with chiral Majorana edge states [1].
In closing, we note that pair decoherence caused by

FIG. 3. (a) Filling dependence of the superconducting cou-
plings λeffi , as determined from Eq. (6) for U ¼ 0.4, and for the
lowest-harmonic pairing symmetries given by Eq. (S11). Here,
we do not show the s-wave pairing channel, since it is highly
suppressed (i.e., negative) for the entire hole-doping range. For
the numerical evaluation of Eq. (6), we used 408 Fermi momenta.
(b) λeffi versus U for the filling n ¼ 0.78. We present results up to
U ¼ 0.7 to show the regime where f-wave is dominant. With
increasing U, the curves increase monotonically, and d-wave
becomes dominant while f-wave subdominant for U ≳ 0.5. Near
the magnetic instability U ¼ Uc, we find that λeffd ∼ 0.2 and
λefff ∼ 0.15. (c) Filling dependence of the intra- and inter-FS

pairing strengths λααi and λαβi for the f-wave channel with same-
spin projections.
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impurity scattering is suppressed in all of the above three
scenarios, due to the spin-momentum locking of the band
structure [39].
Our findings provide a new mechanism for the creation

of triplet superconductivity, which is relevant for non-
centrosymmetric superconductors with strong SOC [5,10]
and for oxide and heavy-fermion hybrid structures [19–22].
It might be possible to realize the discussed f-wave state
in CeCoIn5=YbCoIn5 hybrid structures [21,22], by an
appropriate choice of layer thickness modulation. We hope
that the present study will stimulate further experimental
investigations along these directions.
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