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ABSTRACT: This work presents a state-of the-art analytical
methodology, by which chemical state information on metallic
elements is obtained for liquid samples in a fast and simple
manner. This method overcomes limitations of conventional X-
ray techniques, such as X-ray absorption spectroscopy, by
applying resonant inelastic X-ray scattering under total reflection
geometry (TRIXS). TRIXS is particularly applicable for the
analysis of small quantity of liquid samples deposited on polished
reflectors. This feature is relevant for the chemical speciation of
metallic trace elements contained in water samples, since the
degree of their toxicity depends crucially on the concentration of
specific chemical species included. The analytical merits of the
proposed methodology were studied at Elettra Sincrotrone Trieste and at the Brazilian Synchrotron Light Laboratory.
Contaminated water samples with low concentration of different chromium and manganese compounds were measured. Results
prove the analytical potential of the TRIXS technique in characterizing different chemical species of metallic elements in water
samples.

Water contamination can come from either natural or
human sources. Anthropogenic causes include waste-

water treatment effluent, landfill leachate, agricultural runoff,
and a wide variety of industrial sources.
Heavy metals are among the most notorious water

pollutants. These contaminants have been long detected as a
threat to aquatic organisms and humans, even at trace
concentrations.1 They are known for their toxicity and
persistence in the environment. Heavy metals have also the
tendency to bioaccumulate in living tissues, reaching concen-
trations that can compromise the normal physiological
processes of the absorbing organism, providing a potential
pathway into the human food chain as well.2 Several
oligoelements, like lead, mercury or cadmium, are well-known
hazardous pollutants. In some other cases, the chemical state of
the metal can increase its toxicity, being arsenic the most
notorious example.3

Chromium is a not very widespread case of an element
commonly disposed by industries and factories; it has six
species but only one of them is hazardous.4 As chromium
compounds are used in dyes and paints and in the tanning of
leather, these compounds are often found in soil and
groundwater at abandoned or even industrial sites, now
needing environmental cleanup and remediation.5 Another

example of an industry demanding large amounts of chromium
is that of primer paint, which contains hexavalent chromium,
widely used for aerospace and automobile refinishing
applications. Chromium commonly appears in nature as Cr(III)
and Cr(VI), being the last one known for its toxicity.6 There
have been several attempts on discriminating these species of
Cr in water and in soil by different methods,7−9 with diverse
levels of success.
Manganese is another example for which the association of

the element’s oxidation state regarding its toxicity is not
carefully studied yet. Similar to the case of chromium, many
compounds of Mn have an industrial use, for example, as
divalent Mn acetate. They are used mainly in dyes or pigments
or even as a catalyst, so different Mn compounds can be also
found in soil and groundwater of industrial areas. It has been
reported that the chronic exposure to manganese (Mn)
produces deleterious effects on human health.10 Some other
experimental studies on animals have shown the effects of some
chemical forms of Mn (as MMT and MnC12) on their health
and behavior.11
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Regarding the current regulations, the Environmental
Protection Agency (EPA) of USA has defined a maximum
contaminant level (MCL), as the highest level of a contaminant
that is allowed in drinking water, of 0.1 mg/L for the total
amount of Cr in water.12 In the case of manganese, a Secondary
MCL has been set in only 0.05 mg/L.13

It is clear that a simple and reliable tool for the proper
discrimination, and characterization, of the different com-
pounds of these metal contaminants is of the highest
importance for both health and environmental science.
The aim of this work is to present a novel and different

approach to the chemical speciation problem by presenting
results on the determination of the chemical state and atomic
environment of two contaminant elements, chromium and
manganese, in dried water samples by means of resonant
inelastic X-ray scattering in total reflection conditions, using an
energy dispersive detection system. A multivariate statistical
approach has been taken into account as to exploit the
availability of such a rich data set, and to validate the proposed
methodology.
X-ray Spectrochemical Technique. In the resonant

inelastic X-ray scattering (RIXS) interaction, also known as
X-ray resonant Raman scattering (RRS),14 the scattered
photons share an energy ES with the emitted inner shell
electrons of the irradiated atom, such that ES + Te = E0 − UL,
where E0 denotes the energy of the incoming photon, UL the L-
subshell binding energy of the target atom and Te the kinetic
energy of the corresponding L-subshell emitted electron. The
energy sharing between the scattered RIXS photon and the
emitted bound electron is based on the energy conservation
between the initial and final states involved in the process. The
RIXS spectrum shows a main peak structure centered around
the maximum scattered photon energy ES(max) = E0 - UL,
namely, when the kinetic energy of the emitted electron is zero,
but presenting a strong asymmetry at lower energies. The RIXS
process generates a continuous energy spectrum, and in a
similar manner as with the extended X-ray absorption fine
structure (EXAFS) signal, it is expected for the emission
spectrum to present small damped oscillations in the low
energy side of the peak structure. Therefore, the analysis of the
RIXS peak allows to establish a correspondence between the
peak’s oscillation pattern and the chemical state of the atom
under study.15 It should be noted that the possibility of
characterizing the chemical environment of different elements
in a variety of experimental conditions and samples, by means
of RIXS spectroscopy, has been widely demonstrated in recent
years.16−18

External total reflection is an inherent feature of X-rays
resulting from the fact that, in the X-ray regime, the refractive
index has a value for all materials slightly below one. Thus, the
incoming X-rays can be totally reflected if the incident angle is
less than a critical angle that takes values between one tenth of
a degree, up to few degrees, depending on the reflector-material
properties and the incoming X-ray energy. This feature offers
also the possibility to perform optimum peak to background X-
ray fluorescence (XRF) measurements under the external total
reflection irradiation geometry (TXRF analysis), allowing the
elemental analysis and characterization of trace and ultratrace
quantities of particles and of dried residues deposited on
smooth surfaces, such as silicon wafers.19 Several papers have
been published demonstrating the potentiality of external total
reflection combined with different spectroscopic techniques,
such as XRF,20−23 EXAFS,24,25 and even inelastic X-ray

scattering (IXS) at grazing incidence conditions.26,27 Applica-
tions of RIXS in total reflection geometry have been already
reported using an energy dispersive system, showing a
successful discrimination and characterization of arsenic species
in water samples,28 and of different chemical compounds
contained in nanolayers.29

In the present work, the data set analyzed is a combination of
measurements carried out in two different facilities, the IAEA
end-station of the XRF beamline at the Elettra Sincrotrone
Trieste, Italy, and the XRF D09B beamline at the Brazilian
Synchrotron Light Source (LNLS). The sample sets studied in
the present work consisted in a set of droplets with low
concentration of Cr(III) and Cr(VI), and another set of
droplets with low concentration Mn(II), Mn(IV), and Mn(VI)
deposited on silicon wafers. Cr samples were of interest for
addressing the environmental problem. Manganese samples
were chosen because of the rich variety of oxidation states in
the sample set, being suitable to show the methodology’s
potential and as a proof of concept in a different transition
metal. After a minimum processing of the raw spectral data, a
multivariate analysis was performed, involving principal
component analysis (PCA), discriminant analysis (DA), and
cross validation.
The results show patterns which are clearly correlated with

the different Mn and Cr chemical compounds. The results of
the present study suggest that the proposed analytical TRIXS
methodology is a novel and reliable tool to perform chemical
speciation analysis of toxic elements in contaminated water
samples.

■ EXPERIMENTAL SECTION
Sample Description and Measurements. A total of six

samples were prepared for these measurements. All of the
samples consisted of 40 μL droplets, each of different solutions,
dried on flat silicon wafers. These solutions consisted of
different compounds in distilled water, with the metallic
element of interest diluted to 1% by mass concentration.
Two of these samples were used to study chromium water

contamination. The first solution (1) was made with chromium
compound CrCl3 (Cr

3+), while the second (2) was made with
K2CrO4 (Cr

6+). The rest of the samples were prepared to study
manganese water contamination. Sample 3 consisted of a
solution of MnCl2·(H2O) (Mn2+), sample 4 of KMnO4 (Mn6+),
sample 5 of Mn(H2PO2)2 (Mn2+), and sample 6 of MnO2
(Mn4+). Since MnO2 is not soluble in water, we studied a
microgram quantity powder sample deposited directly onto a
reflector, as to have a Mn4+ compound to enhance and to
exploit the discriminant sensitivity of the multivariate analysis
results. It is important to clarify that two samples of different
chemical environments of Mn, but same oxidation state
(Mn2+), were chosen as to better comprehend the information
given by the multivariate analysis.
The Mn samples measurements were carried out at Elettra

Sincrotrone Trieste (EST, Italy) in the XRF beamline using the
IAEA end station facility (IAEAXSpe).30 This end-station
consists of an ultrahigh vacuum chamber that includes a seven-
axis motorized manipulator for sample and detectors position-
ing, different kinds of X-ray detectors and optical cameras. The
detector used in this work was an ultrathin window Silicon
Drift Detector (SDD) (Bruker, Germany) mounted in fixed
position (90° in respect to the primary beam), with an energy
resolution of ∼131 eV for the Mn−Kα line. The flux of the
primary X-ray beam was monitored by a diamond membrane
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detector (Dectris, Switzerland). A LabVIEW Graphical User
Interface (GUI), designed and built by the NSIL group of the
IAEA,31 was utilized for data acquisition. The XRF beamline is
equipped with a double crystal channel-cut monochromator,
using a Si(111) crystal, having a resolving power of 1.4 × 10−4.
The incident beam had a size of approximately 250[h] ×
120[v] microns at the sample position.
The Cr samples were measured at the Brazilian Synchrotron

Light Laboratory (LNLS, Brazil) in the XRF station of the
XRF-D09B beamline.32 This beamline is equipped with a
double-crystal “Channel-cut” monochromator based on a
Si(111) crystal, resulting in a 3 eV energy resolution at 10
keV. The incident beam has a flux intensity on the sample of
approximately 108 ph/s at 10 keV. For the measurements, a
LEGe (Low Energy Germanium) solid-state detector was used
with an energy resolution of 140 eV for the Mn−Kα line. The
Minimum Detection Limit (MDL) of Fe for the TXRF
technique of the station is 20 ppb.
For the TRIXS analysis of all samples, the irradiation

geometry was arranged to fulfill the external total reflection
condition, setting a grazing incidence angle for the exciting
beam 0.1° below the respective critical angle, experimentally
determined in an angular scan. Moreover, to benefit from the
incident beam polarization at the electron orbit’s plane, the
detector axis was placed in the horizontal plane, thus
minimizing the Compton and Rayleigh scattering.33 The
incident photon energy was set monochromatic, and its value
was chosen to be 10 eV below the corresponding element’s K-
edge binding energy, that is, 6529 and 5979 eV for Mn and Cr
respectively (as to enhance the RIXS intensity). Fifty spectrum
repetitions were acquired for each Cr and Mn sample, resulting
in a total of 100 spectra for the Cr samples and 200 for the Mn
ones. The measuring time of each spectrum was set equal to
300 s.
TRIXS Spectra Analysis. A simple preprocessing of all

measured spectra was required before performing any multi-
variate analysis. It consisted basically in two steps: (1) the
separation of the region of interest (ROI) of the RIXS peaks
from the rest of the spectrum (a region of 270 eV below the
channel of maximum amplitude of the RIXS peak was used for
both cases) and (2) the normalization of this ROI to its
maximum amplitude value, leaving mainly the variability due to
the oscillations present in the fine structure. Data profiles after
preprocessing may be seen in Figures 1 and 2 for Mn and Cr
set of samples respectively
A principal component analysis34 (PCA) was first performed

to both Mn and Cr spectra. PCA is an exploratory methodology
that allows studying the variance and covariance structure of the
measured variables (energy channels) throughout many
measurements in a convenient way, by creating a linear
combinations of them, and using just a few representative ones
for the task. This technique allows a better comprehension of
the underlying variability and covariability since it may
drastically reduce the data set’s dimension in the attempt to
explain as much of the variance possible or of the variability of
interest, without losing relevant information. This technique
creates a new set of vectors, called the principal components
(PC), which are linear combinations of the original variables,
chosen in such a way as to maximize the variance they
represent. From a mathematical point of view, suppose we have
a set of p variables (energy channels) measured N times (total
amount of spectra). If xi (i = 1, ..., p) are the original variables,
then we may choose the coefficients ai of p new linear

combinations zi = ai·X (where X is the N × p matrix of the
data) as to maximize its variance. This means that we are
looking for

= Σ =i pz a amax[var( )] max[ ], for 1, ...,i i
T

i

where ∑ is the covariance matrix of the data set. If we define

the variance of the linear combination zi as λ = =| |
Σ

a
a a
a a

zvar( ) T

T ,

then obtaining the maximum value of λ is equivalent to solving
the eigenvalue equation (∑ − λiI)·ai = 0 for the covariance
matrix and selecting the largest eigenvalue. The principal
component 1 (PC1) is defined as the eigenvector correspond-
ing to the largest eigenvalue, PC2 is defined as the eigenvector
corresponding to the second largest eigenvalue, and so on.
Since eigenvectors are orthogonal, each PC explains different
parts of the total variability, and it is easy to see that the total
variability is obtained by summing the variance explained by
each of the PC. From a geometrical point of view, performing a
PCA to a data set is equivalent to obtaining a set of new axes in
the p dimensional space that consist on centering the original
axes on the data cloud, and rotating them as to align them with
the axes of maximum variance in it.

Figure 1. Energy region used for the PCA and DA procedures of Mn
RIXS spectra (normalized to maximum amplitude). The average value
of each energy channel over all measured spectra (for each of the
samples) is shown. Error bars represent the standard deviation of the
corresponding energy channel.

Figure 2. Energy region used for the PCA and DA procedures of Cr
RIXS spectra (normalized to maximum amplitude). The average value
of each energy channel over all measured spectra (for each of the
samples) is shown. Error bars represent the standard deviation of the
corresponding energy channel.
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In order to objectively compare the oscillation patterns
present in the RIXS spectra, a linear discriminant analysis
(LDA) was performed. This technique is especially relevant in
the Mn case since this data set presents more than two
classifying labels, allowing the observation of the variability in a
plane. LDA is a multivariate technique which is widely used for
classification. It is especially useful when one has previous
knowledge of the category of some of the samples to be
discriminated because it uses this information as to classify the
rest. This technique searches the p-dimensional space in the
attempt to find the most discriminant set of vectors with
respect to the selected categories. The idea is to map the high
dimensional data set onto a lower-dimensional space which
allows the best discrimination. This lower dimensional space is
obtained by the set of most discriminant projection vectors
found by the LDA. In this space, all projected samples will form
the maximum between-class scatter and the minimum within-
class scatter simultaneously. This idea belongs to Fisher35 and it
is sometimes called as Fisher’s discriminant analysis.
Mathematically speaking, the variability between classes may
be written as

∑ μ μ= | − ̅ |
α

α
=

b e e( ) ( )
N

T

1

2

where N is the number of classes in the data set (two for Cr and
three for Mn), e is a vector pointing in some particular
direction, μα the mean of the random vectors xα (in our case
the mean of the spectra of one class), and μ̅ the mean vector of
the N vectors μα. Following the same notation, the variability
within a class may be written as

∑=
α

α
=

w e e x( ) var( )
N

T

1

So, the idea of Fisher’s Discriminant Analysis is to find e so as
to maximize the ratio:

δ =
⎛
⎝⎜

⎞
⎠⎟

b e
w e

max
( )
( )

If we obtain the matrices B and W that satisfy that b(e) = eT

Be and w(e) eTWe, then it is possible to obtain the direction e
that maximizes the value of δ in the same way as in PCA, but by
Eigen decomposition of the matrix W1−B instead of ∑ (the
covariance matrix).
As to estimate our technique’s predictive capability, a k-fold

cross validation (CV) was performed for each data set (k = 2
for Cr and k = 4 for Mn).36 In this type of CV, the data set is
randomly split into k mutually exclusive subsets (the folds) of
approximately equal size. As to understand this estimation
method, we briefly define some keywords and reference them
to our data set. A classif ier is a function that maps an unlabeled
instance (a spectrum of a sample with unknown oxidation state)
to a label (the oxidation state, e.g. Cr(III) or Cr(VI)) using
internal data structures (the correlations in the oscillations). An
inducer (also called induction algorithm) builds a classifier from a
given data set. In our case, the inducer is the LDA or PCA
performed on each fold, and the classifier is the canonical axis
or principal component obtained respectively (some specific
linear combination of the spectrum’s energy channels). The
accuracy of our classifier is the probability of correctly
classifying a randomly selected spectra. If X is the total data
set, then in each fold it is divided into two subsets, Xt and X|Xt,

where the first is called the testing subset, and the latter the
training subset (the leftover spectra). The inducer is trained
and tested k times. This means that, in each t ∈ {1, 2, ..., k}, the
inducer is trained in X|Xtand tested in Xt. For each fold, the
estimate of accuracy is obtained as the total number of correct
classifications divided by the number of spectra in the data set.
For the k-fold CV, the cross-validation estimate of accuracy is the
average of the estimates of accuracy on each fold.

■ RESULTS AND DISCUSSION
Figures 1 and 2 show the region used for the PCA and DA
procedures for Mn and Cr samples, respectively. All the spectra
were normalized to the maximum amplitude of the RIXS peak.
Since several RIXS spectra were recorded for each sample, the
above-mentioned figures display, for each sample, the mean
value and standard deviation of each channel content within the
region of interest.
As it can be seen, it is impossible, a priori, to properly

discriminate the different species. Nevertheless, it is possible to
observe in Figure 3 how the Principal Component Analysis

finds an adequate plane in which the spectra belonging to the
Cr(III) and Cr(VI) samples are clearly differentiated. For
clarity, we remind the reader that each point in the PC1−PC2
plane represents a measured spectra. The position they have in
this plane is the calculated value of both principal component
functions, taking its energy channels as input values. It is
important to understand that the only channels used were the
normalized ones belonging to the RIXS region, where the
dampened oscillations are present. What is nonobservable by a
visual inspection of Figure 2 is being completely noticed by the
analysis.
The PCA’s result for the Mn data set is shown in Figure 4.

This figure shows the projections of every measured Mn spectra
onto the PC1−PC2 plane. The percentage given in parentheses
is the amount of the total variance explained by the
corresponding principal component. Taking into account
both PC1 and PC2, a 50.54% of the total variance is visualized
in this plane. However, only the 35.24% variance from the data
set explained by the PC1 is required to discriminate the
different Mn oxidation states. It should be noticed that, as PC’s
are orthogonal, the variability shown by one PC is not
observable in the rest of the PC’s. Therefore, by observing the

Figure 3. Projection of the chromium data cloud onto principal
components 1 and 2. The measured spectra from the Cr(III) sample
are represented with yellow triangles and the ones from the Cr(VI)
sample in green dots.
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projection onto the PC1−PC2 plane we are missing a 49.46%
of the total variability in the data set. Even so, this missing
variability shows to be unnecessary for our discrimination task.
To comprehend this last point, it should be observed that the
principal component 1 is enough to discriminate the Mn(II)
spectra (with a centroid of the data cloud around PC1 = −4)
from the Mn(IV) spectra (centroid around PC1 = 2), and from
the Mn(VI) measurements (centroid around PC1 = 6). This is
achieved just by studying a 35.24% of the total variability.
Exploratory results, as the ones obtained above, are really

interesting and allow to infer the underlying structure from the
clustering of spectra of the same species in the PC1−PC2
plane. There is a correlation between the element’s species and
the spatial distribution in this specific projection plane (in fact,
it suffices to only observe the PC1 axis). But sometimes, like in
the Mn case, it is possible to take it another step forward. We
may use the fact of having TRIXS spectra of two Mn chemical
compounds, but with the same Mn oxidation state. We may
also contemplate in our analysis the fact that we have three
different classes, something that is not contemplated at all when
performing a PCA. This “extra” information is taken into
account by the linear discriminant analysis. Figure 5 shows the
results of a 4-fold cross validation (CV) performed to the data

set as to show the LDA efficiency to discriminate Mn
compounds. In each of these CVs, a random set of 50 spectra
were separated from the total set of 200 spectra. The 150
leftovers were used to create the canonical axes (through the
LDA) and with these new canonical axes, the 50 “unknown”
samples were classified in the possible categories (Mn(II),
Mn(IV), or Mn(VI)). For each spectrum, the classification
obtained by the LDA was compared to its known oxidation
state as to establish an error measurement for the classification.
In all four cross validations shown in Figure 5, the accuracy

of the LDA was of 100%, meaning that every spectrum was
correctly classified with respect to its oxidation state. The
results of this 4-fold CV gives a statistical sustain to the
classification ability of our technique.
We also performed a simple cross validation to the PCA

results of the Mn data set. We left out of the PCA all spectra
belonging to one of the Mn(II) samples, and performed the
analysis with the rest of the spectra. Afterward, we evaluated
PC1 and PC2 for the left out spectra and plotted every spectra
in the PC1−PC2 plane. This was performed two times, each
time leaving out one of the two Mn(II) samples. Figure 6

shows the results obtained in both cases. It is possible to see
that in both CV’s, the PC1 obtained by the PCA is equally
discriminative and that the result is independent of which
Mn(II) compound was selected to perform the analysis.
The presented results clearly support the discrimination

capability of this methodology (See Figures 3 and 4). The
cross-validation results show that the principal components and
canonical axes generated with the different methods do not
depend on the specific data set used for their generation, rather
depend on the existing internal structure of the oscillations.
They also show that these generated functions work as good
predictors for a set of unknown spectra, since they resulted in
100% accuracy when classifying.
This technique may present some potential drawbacks when

analyzing complex samples with many elements of similar
atomic number. This problem can be solved by selecting a
smaller ROI for the RIXS tail. Most of the times, this procedure
is sufficient to continue with a correct analysis.
The analysis here performed contemplates the excitation of a

K-shell electron. Nevertheless, this analysis can also be applied
to L (and even M) lines by setting the incident energy under an
L (or M) absorption edge. This could give sensitive
information about the electron configuration, providing
complementary information to the analysis performed on the
K edge, broadening the reach of this methodology, and
allowing the study of heavy elements as well.

■ CONCLUSIONS
This work shows the potentiality of energy dispersive RIXS
spectroscopy applied under external total reflection sample
irradiation geometry, combined with multivariate analysis tools

Figure 4. Projection of the manganese data cloud onto principal
components 1 and 2 axes.

Figure 5. 4-Fold cross-validation in DA of manganese data set. In each
of the four groups, a set of 50 spectra have been randomly removed
(and labeled as “unknown”), and for each group, the canonical axes
have been calculated with the rest. Afterward, the unknown spectra are
evaluated and plotted.

Figure 6. Cross validation in PCA for Mn(II) data.
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(principal component analysis (PCA) and linear discriminant
analysis (LDA)) to characterize different chemical species of
metals in contaminated water samples. This outcome has been
validated by complementary Cross Validation (CV) proce-
dures. Due to the versatility of the RIXS methodology, the
different experimental XRF setup configurations (such as
grazing incidence, grazing exit, confocal, etc.) can be also
used for depth resolved chemical speciation analysis from the
nm to sub-millimeter range. The proposed analytical method-
ology can be applied even in a conventional X-ray laboratory by
utilizing an X-ray tube in conjunction with an appropriate
secondary stage (equipped with a fluorescent target/filter or
diffractive crystal) to produce a highly monochromatic exciting
beam, avoiding the need of visiting a synchrotron radiation
facility.
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618279.
(30) Karydas, A. G.; Czyzycki, M.; Leani, J. J.; Migliori, A.; Osan, J.;
Bogovac, M.; Wrobel, P.; Vakula, N.; Padilla-Alvarez, R.; Menk, R. H.;
et al. J. Synchrotron Radiat. 2018, 25 (1), 189−203.
(31) Wrobel, P.; Bogovac, M.; Sghaier, H.; Leani, J. J.; Migliori, A.;
Padilla-Alvarez, R.; Czyzycki, M.; Osan, J.; Kaiser, R. B.; Karydas, A. G.
Nucl. Instrum. Methods Phys. Res., Sect. A 2016, 833, 105.
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