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Abstract
Bird nest orientation is affected by environmental variables determined by their geographical position as well as microclimatic 
conditions. In closed-cup-nesting species, nests may be oriented to avoid adverse environmental extremes such as sun expo-
sure, wind, and rainfall, although vegetal cover may provide extra protection generating random orientation patterns. Here, 
we assess nest entrance orientation in Rufous Hornero (Furnarius rufus) at 11 South American sites by comparing nests well 
covered by vegetation (> 75% covered) from those with less or non-external vegetal protection (< 25%). We estimated and 
compared mean entrance orientation between northern and southern locations and levels of vegetation cover using circular 
statistics (n = 1291). Additionally, the influence of geographical latitude and vegetation cover on nest orientation was evalu-
ated using linear mixed models across sites with non-random nest-orientation patterns. Results showed differences in mean 
orientation values between covered and uncovered nests at most locations and directed entrance orientation for uncovered 
nests. On the other hand, the models indicate that nest entrance orientation is not affected by the joint effect of latitude and 
vegetation cover and high variability between locations. Local microclimatic conditions provided by the vegetation above 
nests are important determinants for nest orientation in the species, although additional information about local rainfall, wind, 
temperature, and nesting site availability may help to determine the factors affecting orientation in the species on a local level.
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Zusammenfassung
Der Einfluss der geographischen Breite und der Sonneneinstrahlung auf die Nestausrichtung bei Rosttöpfern 
(Furnarius rufus) Die Ausrichtung von Vogelnestern wird von Umweltvariablen beeinflusst, die durch die geographische 
Position der Nester sowie die dortigen mikroklimatischen Bedingungen bestimmt werden. Bei Arten, die in geschlossenen 
Napfnestern brüten, können die Nester so ausgerichtet sein, dass sie widrige Umweltextreme, z.  B. bezüglich 
Sonneneinstrahlung, Wind und Regen, vermeiden, wobei die Vegetation zusätzlichen Schutz bieten und zu einer zufälligen 
Ausrichtung des Nesteingangs führen kann. Hier untersuchen wir die Ausrichtung des Nesteingangs bei Rosttöpfern 
(Furnarius rufus) an 11 südamerikanischen Standorten und vergleichen stark durch Vegetation geschützte Nester (> 75% 
bedeckt) mit solchen, denen die Vegetation nur wenig oder gar keinen Schutz bietet (< 25% bedeckt). Wir haben die mittlere 
Ausrichtung des Nesteingangs abgeschätzt und mit Hilfe von Kreisstatistik zwischen nördlichen und südlichen Standorten 
sowie Standorten mit unterschiedlicher Vegetationsbedeckung verglichen (n = 1291). Zusätzlich haben wir den Einfluss 
der geographischen Breite und der Vegetationsbedeckung auf die Nestausrichtung an Standorten, an denen die Nester nicht 
zufällig ausgerichtet waren, mit Hilfe linearer gemischter Modelle ausgewertet. Die Ergebnisse zeigten an den meisten 
Standorten Unterschiede in der mittleren Ausrichtung zwischen durch Vegetation geschützten und exponierten Nestern 
sowie eine gezielte Ausrichtung des Eingangs für exponierte Nester. Andererseits zeigen die Modelle, dass die Ausrichtung 
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des Nesteingangs nicht durch den gemeinsamen Effekt von geographischer Breite und Vegetationsbedeckung beeinflusst 
wird und die Variabilität zwischen Standorten hoch ist. Die lokalen mikroklimatischen Bedingungen, die durch die über 
dem Nest befindliche Vegetation zustande kommen, sind wichtige Faktoren für Nestausrichtung bei dieser Vogelart, wobei 
zusätzliche Informationen über örtliche Regenfälle, Wind, Temperatur und Nistplatzverfügbarkeit dabei helfen dürften, die 
Faktoren zu ermitteln, welche die Nestausrichtung auf lokaler Ebene beeinflussen.

Introduction

Avian nest site selection determines nest microclimate, 
exposing eggs and nestlings to different conditions of humid-
ity, temperature, wind, and solar radiation during incubation 
and rearing (Collias and Collias 1984; Hartman and Oring 
2003; Lloyd and Martin 2004). Since embryos and nest-
lings are highly sensitive to moisture and thermal condi-
tions (Webb 1987), adults are likely to achieve higher nest-
ing success by optimizing nest conditions (Webb and King 
1983; Mainwaring et al. 2014). This may be accomplished 
either through behavioral adjustment by parents during incu-
bation or through changes in nest location/orientation and 
design (Conway and Martin 2000; Hartman and Oring 2003; 
Mainwaring et al. 2016), with the latter being energetically 
cheaper than the former (Mainwaring and Hartley 2013).

Studies examining entrance orientation preferences show 
great variation among species, some of which have shown 
strong tendencies towards particular directions (Inouye et al. 
1981; Norment 1993; Zwartjes and Nordell 1998; Hooge 
et al. 1999; Mezquida 2004; Lloyd and Martin 2004; Landler 
et al. 2014). Other studies, however, have revealed little or 
no preference in nest orientation at all (Albano 1992; Tarvin 
and Smith 1995; Souza and Santos 2007). Nest orienta-
tion has generally proved to be correlated with mean wind 
direction (Facemire et al. 1990; Mezquida 2004) and sun 
exposure (With and Webb 1993; Hartman and Oring 2003; 
Burton 2006). Birds can modify nest sun exposure depend-
ing on the geographical position (Petersen and Best 1985; 
Burton 2007; Landler et al. 2014; Mainwaring et al. 2016) 
and solar radiation received during daylight hours (With and 
Webb 1993; Hooge et al. 1999; Nelson and Martin 1999).

Temperature is the most important determinant of nest 
microclimate because it can dramatically influence embry-
onic viability (Webb 1987; Cook et al. 2003; Burton 2006; 
DuRant et al. 2013) and the energy balance of both the 
incubating adults and the developing nestlings (Webb and 
King 1983; Visser and Lessells 2001; Hanssen et al. 2005). 
Thus, nest orientation can help in the optimization of nest 
temperature by the adults (Brown and Downs 2003; Hart-
man and Oring 2003). Moreover, vegetation cover may 
have an effect on nest orientation generating random and 
non-random values since its presence may offer protection 
against wind, solar radiation, or predation (Martin and Roper 

1988; Norment 1993; Hoekman et al. 2002; Souza and San-
tos 2007). On the other hand, wind can ease nest refrigera-
tion through convection (Facemire et al. 1990; Viñuela and 
Sunyer 1992; Norment 1993).

In closed-cup, open-cup and cavity-nesting species, nests 
may be oriented to avoid adverse environmental extremes 
such as sun exposure, wind, and rainfall (Hartman and Oring 
2003; Burton 2007; Landler et al. 2014). In addition, nest 
orientation may vary even within a bird species, in relation 
to latitude, altitude, topography or when considering a sin-
gle reproductive season due to changing climate conditions 
(Rauter et al. 2002; Burton 2007; Landler et al. 2014).

Rufous Hornero is a species of the Furnariidae family, 
widely known as ovenbirds. This species constructs nests 
which consist of a dome structure made of clay, mixed with 
plant fibers, hair, or dung (Zyskowski and Prum 1999). The 
nests are frequently seen in trees and on lampposts (Fig. 1) in 
rural and urban areas (Ridgely and Tudor 1994). The species 
is widely distributed in South America including Bolivia, 
Brazil, Argentina, Uruguay, and Paraguay (Fraga 1980) 
(Fig. 1), and its nesting period extends from September to 
March. After this period nests can be repaired and reused in 
a new breeding season or abandoned. Thus, it is common to 
see several nests close to each other (or even on top of older 
nests) at the same nesting site (Peña 2005).

According to anecdotal information for Argentinean 
populations of Rufous Hornero, nest openings have a south-
southwestern orientation in response to the local wind direc-
tion (Fraga 1980). On the other hand, previous data for the 
species in Brazil reported a random pattern of nest entrance 
orientation, regardless of local climate conditions and the 
absence of vegetation cover (Souza and Santos 2007).

In this study, we analyze nest entrance orientation in 
Rufous Hornero in a wider range of its distribution at 11 sites 
belonging to different ecoregions across four South Ameri-
can countries, considering vegetation cover as a microhabi-
tat condition. Based on Souza and Santos (2007), if nest 
entrance varies in relation to solar radiation we expect a non-
random orientation toward southern directions in uncovered 
nests at lower latitudes to be protected against strong solar 
radiation from northern directions, and a random orientation 
pattern for covered nests. Considering the hypothesis that 
yearly mean temperatures influence entrance orientation in 
birds (Wiebe 2001; Burton 2007; Landler et al. 2014), we 
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would expect southern populations to orient their nest open-
ings towards the north at higher latitudes (irrespective of 
vegetal cover), as they would benefit more from the warmer 
nest temperatures provided by a northerly exposure.

Materials and methods

Data collection

Data was collected at 11 sites in South America (Fig. 1) 
from September to March 2014–2016. Sites comprised rural, 
semi-urban or urban green areas with low building density. 
At each site, we systematically searched along randomly 
chosen transects for nests of Rufous Hornero on trees or 
lampposts during the species’ breeding period. The com-
plete data set consisted of 1291 nests (55% of the nests were 
found on lampposts and 45% on trees). Nests close to each 
other placed on the same tree or lamppost were considered 

to be different. Although we did not confirm that all nests 
belonged to different nesting pairs, we believe this fact 
should not affect our conclusions through a pseudo-repli-
cation effect. The number of nests per site was distributed 
as follows: (1) Florianopolis, Brazil, n = 100; (2) San Lor-
enzo, Paraguay, n = 69; (3) San Salvador de Jujuy, Argen-
tina, n = 153; (4) Santiago del Estero, Argentina, n = 121; (5) 
Catamarca, Argentina, n = 44; (6) Calera, Argentina, n = 98; 
(7) Córdoba, Argentina, n = 140; (8) San Vicente, Santa Fé, 
Argentina, n = 151; (9) Mendoza, Argentina, n = 106; (10) 
La Plata, Argentina, n = 108; (11) Ciudad de la Costa, Uru-
guay, n = 201.

For each sampled nest we recorded nest entrance orienta-
tion using a compass, and vegetation cover. Vegetation cover 
was considered a categorical variable with two levels: those 
with > 75% of vegetation cover on top (0.20–0.50 m above 
the nests) were considered protected nests, and nests fixed in 
places with scarce (< 25%) or no vegetation cover were con-
sidered unprotected. Although we followed the methods of 

Fig. 1  Distribution of Rufous Hornero (bottom left) and drawings of Rufous Hornero nests (covered and uncovered; credit M. Morales). Right 
Map showing locations surveyed (numbered dark points), their names, geographical coordinates, and altitude (m a.s.l.)
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Souza and Santos (2007), we selected two different groups of 
vegetation cover type in order to establish two well-defined 
extreme groups from a possible continuous range of vegetal 
coverage. All latitudinal points were corrected for magnetic 
declination from true north (Evans 2017).

Statistical analysis

We estimated and compared mean entrance orientation (± SD) 
between different locations and levels of vegetation cover 
using circular statistics. Watson’s U2-test was used to deter-
mine if nest entrance was randomly distributed (p > 0.05) or 
directed (p < 0.05) (Zar 1999). To estimate differences in mean 
orientation values due to vegetation cover level and within a 
given location, we used a Watson–Williams F-test.

In order to find a northward compensation in nest 
entrance orientation with increasing latitudes, we divided 
the sites into two groups: northern sites and southern sites 
(the limit between the groups was set to 30°S), and then 
compared mean nest entrance orientation of uncovered nests 
between groups. In addition, we analyzed the entrance ori-
entation of covered nests. We finally compared mean nest 
entrance values of covered and uncovered nests of southern 
sites. All analyses were performed using Oriana software 
(Kovach Computing Services 2004). Data from locations 6 
and 7 (Calera and Córdoba, in Argentina) were grouped for 
circular statistics.

We analyzed nest orientation patterns taking into account 
the variability between locations by linear mixed models 
(Zuur et al. 2009). Only, non-random nest entrance ori-
entation was considered. Following Landler et al. (2014), 
angular deviation from north was used to linearize circular 
data regarding orientation, i.e., an orientation towards south 
would have the maximum value of 180, and a northward 
orientation the minimum value of 0. However, orientation 
towards east or west would both be 90. Nest geographical 
position was averaged within site; therefore latitude was 
used as informative of longitude and altitude. In this way, the 
codependence of geographic location and vegetation cover 
were explored by type III error in ANOVA (Fox and Weis-
berg 2011). The analysis was performed in R version3.2.3 
(R Core Team 2017) with lme4, car, dplyr and ggplot2 pack-
ages (Fox and Weisberg 2011; Wickham 2011, 2016; Bates 
et al. 2015). Normality and homogeneity of the residuals 
were analyzed by visual inspection of the error distribution 
pattern (Zuur et al. 2009).

Results

Results of Watson’s U2-test from the complete set of nests 
(without considering vegetation cover) revealed that nest 
entrance orientation is directed non-randomly at seven out 

of ten locations (70%; Table 1). Localities showing random 
orientation included San Lorenzo (Paraguay), Santiago del 
Estero (Argentina), and Ciudad de La Costa (Uruguay).

With respect to the degree of vegetation cover and local-
ity, the mean orientation of covered nests was towards the 
southwest (quadrant between 180° and 270°; Fig. 2). On 
the other hand, uncovered nests at 60% of the sites were 
mostly oriented towards the north-west quadrant (between 
270° and 360°; Fig. 2; Table 1). The Watson-Williams F-test 
used for comparing differences in mean orientation values 
among vegetation cover type was significant at seven out 
of ten locations (Fig. 2). Only three locations (Catamarca, 
Argentina; Mendoza, Argentina; and Ciudad de la Costa, 
Uruguay) showed no variation in orientation between cov-
ered and uncovered nests (Fig. 2).

Covered nests at most localities (70%) showed random 
entrance orientation with the exception of two localities, 
Catamarca and Mendoza. In these two cases only covered 
nest entrances were oriented (Table 1). On the other hand, 
half of the localities (50%) showed directed orientation for 
uncovered nests, and 40% showed random orientation. In 
Catamarca, orientation of uncovered nests was not calculated 
due to the low number of uncovered nests registered. Uncov-
ered nests were oriented toward the south-east in Floriano-
polis (Brazil) and toward the north-west in San Salvador 
de Jujuy, Córdoba, San Vicente, and La Plata (Argentina).

The comparison between mean nest orientation of uncov-
ered nests from northern (nl) and southern latitudes (sl) 
showed significant differences (F = 118; p-value < 0.0001). 
Uncovered nests at lower latitudes were oriented toward the 
south-east (µnl = 128.5, SD = 124°; U = 0.21; p-value < 0.05) 
and nests at higher latitudes were oriented in a northerly 
direction (µsl = 298, SD = 111.5°; U = 0.73; p-value < 0.005). 
Moreover, covered nests at lower latitudes showed ran-
dom orientation patterns (µnl = 253°, SD = 132°; U = 0.17; 
p-value > 0.05), while at higher latitudes they had a south-
western orientation (µsl = 251.5°, SD = 118°). Thus, covered 
and uncovered nests showed a significantly different orienta-
tion (F = 22.2; p-value < 0.0001) at southern latitudes.

The pattern of linear nest entrance orientation was not 
affected by the joint effect of latitude and vegetation cover 
(X2 = 2.425; n = 900; p-value = 0.12) or the additive effect 
of latitude (X2 = 0.11; p-value = 0.73) and vegetation cover 
(X2 = 1.57; p-value = 0.21). Moreover, the linear orien-
tation showed considerable variation between locations 
(σ2 = 30.48; Fig. 3).

Discussion

Our results provide partial evidence for the solar radiation 
hypothesis regarding Rufous Hornero nest orientation (Bur-
ton 2007; Landler et al. 2014). When sites were grouped 
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according to latitude of entrances of uncovered (or poorly 
covered) nests, those at lower latitudes showed a non-ran-
dom orientation toward southern directions as a way of 
compensation for higher solar radiation. Meanwhile, vegetal 
coverage might release bird orientation selection from the 

pressure imposed by solar radiation, as covered nests did not 
show any specific orientation at higher latitudes. Solar radia-
tion is weaker at higher latitudes where Rufous Hornero nest 
orientation preference is expected to fit the mean yearly tem-
perature hypothesis, which states that southern populations 

Table 1  Results from Watson’s U2-test, and p-values, considering the complete set of data and data separated according to vegetation cover 
(> 75 or < 25%) at each site sampled (1–11)

p-values < 0.05 in italics indicate non-random orientation
1 Florianopolis, Brazil, n = 100; 2 San Lorenzo, Paraguay, n = 69; 3 San Salvador de Jujuy, Argentina, n = 153; 4 Santiago del Estero, Argen-
tina, n = 121; 5 Catamarca, Argentina, n = 44; 6 Calera, Argentina, n = 98; 7 Córdoba, Argentina, n = 140; 8 San Vicente, Santa Fé, Argentina, 
n = 151; 9 Mendoza, Argentina, n = 106; 10 La Plata, Argentina, n = 108; 11 Ciudad de la Costa, Uruguay, n = 201; n number of nests, µ mean 
orientation
a Values were not calculated because of low sample size (n < 10)

Location

1 2 3 4 5 6 and 7 8 9 10 11

Total
 n 100 69 153 121 44 238 151 106 108 201
 µ 139.752° 323.269° 210.266° 14.073° 240.226° 327.054° 282.725° 277.485° 293.39° 209.224°
 SD 100.813° 135.96° 161.25° 156.008° 90.329° 117.898° 106.725° 99.494° 96.315° 119.155°
 U2-test 0.274 0.069 0.262 0.124 0.346 0.274 0.451 0.338 1.016 0.185
 p-value < 0.01 > 0.25 < 0.025 > 0.15 < 0.005 < 0.01 < 0.005 < 0.005 < 0.005 > 0.5

Coverage > 75%
 n 6 40 121 54 38 105 61 46 60 40
 µ 208.757° 307.696° 180.283° 286.091° 223.278° 276.004° 244.839° 265.006° 114.461° 183.98°
 SD 74.955° 103.096° 151.184° 125.659° 102.444° 121.872° 103.98° 83.774° 143.974° 113.511°
 U2-test -a 0.114 0.118 0.071 0.211 0.119 0.145 0.338 0.127 0.094
 p-value -a > 0.15 > 0.15 > 0.25 < 0.05 > 0.15 0 > 0.1 < 0.005 > 0.25 > 0.25

Coverage < 25%
 n 94 29 32 67 6 133 90 60 48 161
 µ 133.081° 111.993° 309.693° 74.19° 262.952° 348.380° 305.295° 300.379° 293.484° 216.042°
 SD 100.004° 113.347° 136.341° 127.569° 14.991° 106.839° 101.389° 112.491° 57.827° 119.639°
 U2-test 0.271 0.075 0.506 0.137 -a 0.333 0.462 0.183 1.823 0.147
 p-value < 0.01 > 0.25 < 0.005 > 0.1 -a < 0.005 < 0.005 > 0.05 < 0.005 > 0.1

Fig. 2  Mean entrance orienta-
tion values of nests of Rufous 
Hornero categorized by 
vegetation cover (> 75%, black 
circles; < 25%, gray circles) for 
each locality. The table shows 
the Watson–Williams F-test 
between covered versus uncov-
ered nests of the same locality, 
and p-values. Asterisk indicates 
significant difference. For loca-
tion names, see Fig.  1
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would benefit more from the warmer nest temperatures pro-
vided by a northerly exposure (Burton 2007). Therefore, the 
entrances of covered and uncovered nests may face north, yet 
the former faced the opposite way. This might be explained 
by other factors such as differences in altitude or prevailing 
winds, which remain unclear at a regional scale.

When analyzing data within sites, the results show a wide 
range of mean entrance orientation values between locations 
for both covered and uncovered nests, suggesting that nest 
orientation in the species may be explained by either random 
orientation (Souza and Santos 2007) or by different factors 
exerting some effect on nests orientation at a local scale such 
as microclimate, predation, and habitat structure (Conner 
1975; Inouye 1976; Martin and Roper 1988; Bergin 1991; 
Norment 1993; Ardia et al. 2006; Burton 2006). Climatic 
differences across a species’ breeding range can complicate 
the study of nest site selection (Hartman and Oring 2003). 
This study almost covers 30% of the species’ geographic 
distribution; however, it represents the main occupancy area 
(eBird 2017). Thus, considering the geographic range and 
the diversity of places included in the analysis, different val-
ues in mean nest orientation between locations may reflect 
different local conditions.

Nests without vegetal protection showed directed entrance 
orientation at half of the places studied. For instance, uncov-
ered nests in San Salvador de Jujuy, the highest sampled site 
(1260 m a.s.l.), were directed to the west. Due to the eleva-
tion, nests in San Salvador de Jujuy experience lower night-
time temperatures, so a western orientation would allow for 
higher temperatures due to the evening sun. Places at higher 

latitudes and lower altitude showed a tendency towards a 
northern direction. At the local level, our results disagree 
with Souza and Santos (2007) who found a random orienta-
tion pattern and an absence of vegetation cover effect. We 
found Brazilian nests to be directed, particularly uncovered 
nests (this  could not be determined for nests with > 75% 
vegetation cover due to low sample size). Consequently, in 
southeastern Brazil, uncovered nests follow a rather non-
random nest entrance orientation due to lack of vegetal 
protection.

Regarding vegetation cover, we found differences 
between mean entrance orientation values of covered and 
uncovered nests at seven locations. In Rufous Hornero veg-
etation cover could affect mean nest entrance orientation, 
suggesting that vegetation may offer extra protection under 
harsh climatic conditions related to intense insulating wind 
or prevailing storms, as reported for other bird species (Nor-
ment 1993; Hoekman et al. 2002). Future work is necessary 
to establish the effect exerted by vegetation cover on nest 
orientation with respect to Rufous Hornero nesting biology. 
This work should take into account a continuous vegeta-
tion cover scale, but also the structural configuration of the 
surrounding habitat of nests, as we found that orientation 
variance among locations differed.

The present results highlight the importance of analyzing 
vegetation cover as nest orientation patterns in birds (Hoek-
man et al. 2002; Souza and Santos 2007) might be related to 
it, causing random nest orientation values (Walsberg 1981; 
Norment 1993; With and Webb 1993). Other additive fac-
tors different from the ones tested here may have an effect 

Fig. 3  Local source of variation 
in the nest entrance orientation 
of Rufous Hornero. Error bars 
Mean random effect ± SD
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on nest orientation (i.e., prevailing winds, risk of predation, 
habitat structure, nest height from the ground, and nesting 
site availability). Thus, the different local trends in the ori-
entation of nests in the same region might be informative for 
these additive factors.

Our model results did not show an effect of vegeta-
tion cover or latitude on mean linear nest orientation val-
ues in Rufous Hornero. Latitude did not show the same 
effect as in cavity nesters like the Picidae from the North-
ern Hemisphere [i.e., at higher latitudes nests tend to face 
north (Landler et al. 2014)]. We possibly failed to prove 
the latitudinal effect as this hypothesis probably operates at 
extreme latitudes and, as mentioned above, the places con-
sidered in our study overlap most of the core distribution of 
the species. Moreover, the latitude effect may act at broader 
phylogenetic and geographic scales (Landler et al. 2014). 
Alternatively, the unique nest topology and materials used 
by Rufous Hornero (Fraga 1980; Shibuya et al. 2015) may 
provide enough insulation, counteracting the highest pair-
wise climatic-latitudinal cost.

To our knowledge, this is the first study in which the ori-
entation of nest entrances has been analyzed in a species by 
considering several locations across its range of distribution. 
Future work including measures at more extreme latitudes of 
the species’ distribution, or nests’ inner temperatures related 
to nest orientation and top vegetation, would be interesting 
to test for their effects on reproductive success and nest-
ling growth in this species (Ardia et al. 2006; DuRant et al. 
2013).
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